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Summary: Regenerative peripheral nerve interface (RPNI) surgery has been dem-
onstrated to be an effective tool as an interface for neuroprosthetics. Additionally, 
it has been shown to be a reproducible and reliable strategy for the active treat-
ment and for prevention of neuromas. The purpose of this article is to provide a 
comprehensive review of RPNI surgery to demonstrate its simplicity and empower 
reconstructive surgeons to add this to their armamentarium. This article discusses 
the basic science of neuroma formation and prevention, as well as the theory of 
RPNI. An anatomic review and discussion of surgical technique for each level of 
amputation and considerations for other etiologies of traumatic neuromas are 
included. Lastly, the authors discuss the future of RPNI surgery and compare this 
with other active techniques for the treatment of neuromas. (Plast Reconstr Surg 
Glob Open 2023; 11:e5127; doi: 10.1097/GOX.0000000000005127; Published online 
17 July 2023.)
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INTRODUCTION
Nearly 200,000 major amputations are performed 

in the United States each year, with many of these 
patients developing chronic postamputation pain.1,2 
Postamputation pain comprises residual limb pain and 
phantom limb pain.2 Residual limb pain is pain at the site 
of amputation and can have multiple etiologies, includ-
ing inflammation, infection, heterotopic ossification, and 
neuroma pain.3 Neuroma pain is caused by instances in 
which regenerating nerves cannot reinnervate an end tar-
get and develop into a neuroma bulb consisting of aber-
rant free axons, fibrotic tissue, and blood vessels.4,5 When 
peripheral nerves are divided and undergo Wallerian 
degeneration, the active cell body in the spinal cord 
directs axonal regeneration through a series of well-estab-
lished physiological pathways.6,7 Small, unmyelinated 
nociceptive free nerve endings in the neuroma bulb have 
a lower threshold for activation, resulting in increased 
neuronal activity and hypersensitivity.8–10 Neuromas of 

mixed and motor nerves have also been demonstrated to 
be sources of significant neuropathic pain.11 Neuromas 
release inflammatory cytokines that have been attributed 
to changes in processing of pain in the somatosensory 
cortex and subsequent centralization of pain that in turn 
contributes to amplification and perpetuation of the pain 
response.12

Phantom limb pain is the sensation of pain in the 
perceived missing limb and occurs in up to 95% of 
amputees.2,13–15 Although the exact pathogenesis of 
phantom pain is not fully understood, it is believed to 
be multifactorial with contributions from the peripheral 
and central nervous systems.14 From a peripheral stand-
point, the abnormal, spontaneous axonal activity, and 
inflammatory cytokines from neuromas are known to 
contribute to phantom limb pain.16 Additionally, ectopic 
activity in the dorsal root ganglia amplifies the effects 
of residual limb neuromas and may additionally pro-
duce cross reactivity with neighboring axons, resulting 
in symptomatic pain. Spinal and supraspinal changes 
have been well described in the literature and clearly 
play significant roles in this process.17,18 These key roles 
include spinal cord sensitization, and reorganization of 
the somatosensory cortex and thalamus, which are dic-
tated by peripheral feedback. Moreover, psychological 
components potentiate and exacerbate phantom limb 
pain by contributing to the aforementioned thalamic 
reorganization.17,19 Psychosocial well-being, depression, 
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and anxiety are predictive factors for pain and distress 
and contribute to this negative neuropsychological feed-
back loop.17,19,20

Numerous treatments have been proposed to treat 
or prevent postamputation neuromas.21–26 Neuroma 
management can be broadly categorized into passive 
and active interventions.22 Passive interventions excise 
the diseased nerve end but do not address the subse-
quent regeneration. Active interventions aim to address 
healthy, physiologic regeneration after neuroma exci-
sion. Some examples of active methods for neuroma pre-
vention include burying the transected nerve end into 
adjacent muscle, proximal crushing, or burning the dis-
tal nerve end. Burying nerve ends into adjacent muscle, 
bone, or vein is one of the most popular techniques for 
neuroma.27 This technique does not prevent formation 
of neuroma because the regenerating axons are bur-
ied into neighboring muscle that is already innervated, 
where each muscle fiber is already in physiologic contact 
with a nerve fiber.22 Due to the low rate of success with 
these traditional approaches, novel new approaches have 
been developed to improve outcomes by actively guid-
ing axonal regeneration into denervated tissues. The 
two most notable active approaches to control axonal 
sprouting and elongation are regenerative peripheral 
nerve interfaces (RPNIs) and targeted muscle reinnerva-
tion (TMR).28 RPNI is the placement of free nerve ends 
into free, devascularized muscle or dermal grafts. TMR 
includes excision of the terminal neuroma, and then the 
fresh end of the nerve is coapted to a nearby, expendable 
motor nerve.29 Both have demonstrated great results with 
the treatment and prevention of neuroma and phantom 
limb pain.24,30,31,49–53 The authors’ preference is to use 
RPNI surgery, which has been demonstrated to yield 
favorable results in the literature and in our own prac-
tices.32 The purpose of this article is to provide a step-
by-step technical guide for the use of RPNIs in different 
anatomical regions.

THE RATIONALE FOR RPNI
RPNI was originally designed as an interface for 

advanced neural control of prosthetic devices and to 
overcome the limitations of current control strate-
gies.33–44 RPNI surgery was developed in response to the 
limitations of existing peripheral nerve electrodes that 
directly interface with fascicles but yield well-documented 
adverse sequelae.35,45,46 Similarly, the use of surface elec-
tromyographic signals to drive a prosthetic limb has been 
associated with poor prosthetic performance. In con-
trast, electrodes placed in muscle have greater reliabil-
ity, less impedance, and improved resistance to fibrosis/
longevity.35 Capitalizing on this feature, the regenerative 
peripheral nerve interface was designed to create an 
interface composed of peripheral nerve fascicles rein-
nervating free skeletal muscle grafts, that can then be 
interrogated by electrodes. RPNIs have been demon-
strated to exhibit greater amplification, specificity, and 
reliability of EMG signals for advanced prosthetics and 

have been shown to decrease neuroma formation and 
reduce postamputation pain.32,46,47

The goal of physiologic surgery for neuroma-related 
pain is to provide neuromuscular targets for regenerating 
axons of transected nerves.31,48–55 Currently, the autologous 
free muscle or dermal grafts utilized in RPNI surgery are 
designed to be small enough to revascularize and provide 
living motor end plates or dermal appendages suitable 
for reinnervation within 1–3 months.13,24,47,56,57 As long as 
these grafts are appropriately sized and placed within well-
vascularized tissue, they theoretically incorporate via imbi-
bition, inosculation, and revascularization. It is believed 
that the grafts receive support from the surrounding soft 
tissues they are embedded within and from the vasa ner-
vorum itself.

TECHNICAL GUIDE
RPNI surgery can be performed any time peripheral 

nerves are transected and direct nerve repair cannot 
reapproximate these axons back to their native targets. 
In immediate RPNI surgery, major peripheral nerves 
are isolated, marked, and sharply transected during the 
amputation. Traction neurectomy is not performed to 
purposefully avoid proximal retraction of the nerve end. 
Free skeletal muscle grafts are the most common form of 
RPNI and may be harvested from a healthy area within the 
amputated limb or from an alternative donor site. In cases 
of amputation for oncologic reasons, the muscle grafts 
should be harvested far from the tumor. Proximal muscle 
may also need to be harvested in cases of delayed presen-
tation or in mangled extremities without suitable donor 
muscle in the amputated extremity. Because the tech-
nique relies on free muscle grafts, one should be careful 
when performing this technique on patients with acutely 
traumatized limbs, patients with poorly controlled diabe-
tes, smokers, or patients with vascular disease. However, 
there are no absolute contraindications to RPNI surgery. 
If adequate vascular supply to the wound bed is demon-
strated, RPNI surgery can be effectively performed.

The ideal choice for muscle is one that is long and 
broad; in the lower extremity, the choice includes the 
vastus lateralis, gracilis, sartorius, or soleus muscles. The 

Takeaways
Question: How do reconstructive surgeons unfamiliar 
with regenerative peripheral nerve interfaces use them in 
their practice?

Findings: A step-by-step technique and anatomical guide, 
background of the method, and future direction have 
been outlined to aid surgeons in addressing neuroma 
pain and preventing neuroma formation during nerve 
transection.

Meaning: Regenerative peripheral nerve interface sur-
gery is safe, straightforward, reproducible, reliable, effec-
tive, and scalable to many surgical specialties. It allows 
reconstructive surgeons of all types to treat and prevent 
traumatic nerve pain.
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muscle grafts should be harvested along the axis of the 
muscle fibers to minimize disruption of individual muscle 
fibers and to optimize regeneration.13 Grafts that are too 
thick will undergo central necrosis. Thus, for larger cali-
ber nerves such as the sciatic nerve, fascicular dissection 
is performed to enable multiple fascicular RPNIs rather 
than creating a single large RPNI. Doing so also improves 
the ratio of denervated muscle fibers to regenerating 
axons to maximize reinnervation.58 Each graft should be 
trimmed of connective tissue to minimize obstruction to 
revascularization. Theoretically, grafts revascularize not 
only from the surrounding tissue but also from the nerve 
itself with its intrinsic supply (vasa nervorum). The ideal 
size of muscle graft varies with the caliber of the peripheral 
nerve being treated. For most peripheral nerves (diame-
ter: 5–10 mm), each muscle graft should be approximately 
3 cm long, 2 cm wide, and about 0.5 cm thick.57,59 This can 
be reduced depending on the caliber of the nerve but 
should allow a complete wrapping of the nerve at least 1 cm 
proximal to its end and be able to cover the nerve circum-
ference without tension, while still being thin enough to 
revascularize. The transected nerve is then placed within 
the central portion of the muscle graft. The epineurium 
of the nerve is then secured to the muscle graft distally 
and 1 cm proximally with interrupted sutures of either 5-0 
Monocryl or 6-0 nonabsorbable monofilament on a small 
cutting needle. The muscle graft is then wrapped around 
the nerve end circumferentially, and additional sutures 
are placed in the ends of the muscle graft to tubularize 
and secure it around the nerve. Accordingly, the dimen-
sions of the graft may be made smaller to accommodate 
smaller nerves, such as digital nerves (Fig. 1).

In cases of sensory nerves, such as the dorsal radial 
sensory nerve, sural nerve, or digital nerves, an RPNI can 
be performed utilizing either a muscle graft or a dermal 

graft. In clinical practice, both demonstrate efficacy in 
treating neuroma pain. Denervated muscle tissue contains 
sensory targets that associate with regenerating sensory 
axons during reinnervation.60–62 Alternatively, a de-epithe-
lialized dermal graft may be used for sensory nerve RPNI 
surgery.63 Dermal grafts contain a large number of sensory 
organs that will serve to make functional connections with 
regenerating sensory afferents.35 Successful reinnervation 
of dermal grafts have been demonstrated with RPNIs, and 
stimulation of the dermal graft can result in meaningful 
compound sensory nerve action potentials, which can be 
measured from the proximal nerve.35 For most sensory 
nerves (diameter: 2–5 mm), a single dermal graft for each 
RPNI is harvested by de-epithelializing a 2.0 × 1.0 × 0.5 cm 
piece of full-thickness skin graft and then completely 
removing the underlying adipose tissue35,56 (Fig. 2).

Upper Extremity
Digital

If selecting a muscle graft, options include the brachio-
radialis due to its expendable nature and broad, long mus-
cle belly. The graft should be about 1.0 × 1.0 × 0.3 cm and 
can simply be placed in an adjacent subcutaneous pocket. 
In cases of digital neuromas, the patient is placed in a soft 
dressing and allowed to resume gentle use of the affected 
hand at 3 days postoperatively.56 (See table, Supplemental 
Digital Content 1, which displays the guide for upper 
extremity RPNI, including anatomical considerations and 
recommendations for graft size and placement. http://
links.lww.com/PRSGO/C665.)

Transradial
The brachioradialis is a good donor site for muscle 

graft. It has a broad, long muscle belly with adequate tis-
sue for graft harvest. This muscle inserts into the distal 

Fig. 1. Diagram illustrating the steps of RPNi procedure: (1) intraneural dissection to isolate individual nerve 
fascicles, (2) placing the nerve in the muscle graft, (3) securing nerve to muscle graft with monofilament 
suture, and finally, (4) securing RPNi with rolling muscle graft upon itself. Figure credit: catherine Tsai, MD.

http://links.lww.com/PRSGO/C665
http://links.lww.com/PRSGO/C665
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radius and thus is not a functional muscle after transradial 
amputations. If more muscle for grafting is needed, local 
muscles may be suitable, or a distant muscle like the vastus 
lateralis may need to be used.

Thus far, the median and ulnar nerves have been the 
principal targets for RPNI in transradial amputations. We 
strongly recommend performing RPNIs on the radial 
nerve branches as well, including the dorsal radial sensory 
nerve and the posterior interosseous nerve. Consider per-
forming RPNI surgery on the anterior interosseous nerve. 
Also, consider performing a fascicular dissection to make 
multiple RPNIs on the median, ulnar, and radial nerves if 
large in caliber36 (See table, Supplemental Digital Content 
1, http://links.lww.com/PRSGO/C665).

Transhumeral
In the upper arm, the long head of the triceps offers a 

long, broad muscle for graft harvest. Amputations above 
the elbow render the triceps muscles nonfunctional, fur-
ther making them a great option for muscle graft harvest.

The principal nerves to address are the median, ulnar, 
radial, and musculocutaneous. Particularly in the median 
and ulnar nerves, the more proximal that these nerves are 
discovered, the stronger the indication for interfascicu-
lar dissection and creation of multiple RPNIs (See table, 
Supplemental Digital Content 1, http://links.lww.com/
PRSGO/C665 and Fig. 3).

Shoulder Disarticulation
The anatomy encountered in shoulder disarticula-

tion is rather variable. The axillary neurovasculature fre-
quently migrates after removal of the humeral head. Any 
part of the amputated limb is a good choice for graft selec-
tion, particularly the aforementioned muscle groups, as 
long as the muscle chosen is out of the zone of traumatic 

injury or located an oncologically safe distance from the 
tumor. These grafts may then be buried in this space (See 
table, Supplemental Digital Content 1, http://links.lww.
com/PRSGO/C665).

Fig. 2. RPNi surgery performed via dermal graft for a patient with neuroma after sural nerve biopsy. a, Demonstrating the exposure.  
B, Demonstrating creation of the regenerative peripheral nerve interface with the dermal graft.

Fig. 3. RPNi surgery performed at the time of transhumeral ampu-
tation. Nerves identified and receiving RPNis included ulnar, radial, 
median, medial antebrachial cutaneous, and musculocutaneous.

http://links.lww.com/PRSGO/C665
http://links.lww.com/PRSGO/C665
http://links.lww.com/PRSGO/C665
http://links.lww.com/PRSGO/C665
http://links.lww.com/PRSGO/C665
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Nonamputation Indications
Upper extremity neuromas may be encountered sec-

ondary to traumatic laceration or iatrogenic injury (ie, 
distal radius exposure). In these cases, the site can be iden-
tified via Tinel’s test or confirmed with injection of local 
anesthetic. The neuroma should be accessed through the 
previous cutaneous scar and should be excised. The proxi-
mal nerve stump is wrapped in a dermal (our practice’s 
preference) or muscle graft. Common nerves are dis-
cussed in Supplemental Digital Content 1 (http://links.
lww.com/PRSGO/C665). These sensory nerves may be 
encountered during amputation and should be addressed 
as well if encountered.

Lower Extremity
Below Knee

Grafts can be harvested from the ipsilateral proximal 
thigh, typically the vastus lateralis. The amputated limb 
offers reasonable options to avoid a separate incision by 
harvesting from the anterior or deep posterior compart-
ments. We advocate not harvesting muscle grafts from 
the soleus or gastrocnemius, as these will be used for the 
myodesis and padding of the BKA residual limb. During 
initial amputation planning, if there is some redundant 
posterior compartment musculature, then it is a suitable 
RPNI donor. RPNIs should be performed on the tibial, 
peroneal, sural, and saphenous nerves at the time of BKA.

RPNIs to the peroneal nerves may be performed 
through a separate incision at the level of the common 
peroneal nerve, as it crosses the lateral head of the fibula. 
During below-knee amputation surgery, the fibular head is 
easily palpable, and a curvilinear incision is designed over 
the course of the common peroneal nerve, as it exits the 
popliteal fossa and travels laterally in a superficial plane. 
Care is taken to maintain enough width between this inci-
sion and the below-knee amputation incision to preserve 
skin viability. Dissection is performed into the investing 
fascia around the common peroneal nerve, and the nerve 
is exposed circumferentially. At the level of the fibular 
neck, the separation between superficial and deep pero-
neal nerves is visible. The two nerves are divided with a 
knife as distally as possible, and intraneural dissection is 
performed proximally to sharply separate the superficial 
and deep peroneal nerves within the common peroneal 
nerve for about 4 cm. Two free muscle grafts are then used 
to create two separate RPNIs in the subcutaneous plane. 
Compared with the previous method of finding the two 
main branches of the peroneal within the muscular com-
partments of the lower leg, this technique requires no 
intermuscular dissection but does result in more dener-
vation of the residual lateral and anterior compartment 
muscles. However, this additional denervation does not 
seem to be clinically meaningful (Figs.  2 and 4). (See 
table, Supplemental Digital Content 2, which displays the 
guide for lower extremity RPNI, including anatomical 
considerations and recommendations for graft size and 
placement. http://links.lww.com/PRSGO/C666.)

Above Knee
The vastus lateralis is a large muscle with expendable 

mass for graft harvest. The sartorius and gracilis muscles 
are suitable donors.

When the sciatic nerve is identified, component fascicles 
of the tibial and common peroneal nerves can very often be 
seen through the epineurium. An epineural incision is made, 
and crossing nerve branches are sharply divided. The tibial 
and common peroneal nerves can be further divided into 
components for a total of three or four individual fascicles 
available to make RPNIs (See table, Supplemental Digital 
Content 2, http://links.lww.com/PRSGO/C666 and Fig. 5).

Hip Disarticulation
Like the shoulder disarticulation, the anatomy of resid-

ual transected peripheral nerves after a hip disarticulation 
is much more variable. However, the vastus lateralis is still 
an excellent graft choice for the nerves at this level.

Nerves reliably encountered included the femoral, 
anterior, and posterior obturator, and sciatic nerves. The 
femoral and sciatic nerves should receive further fascicular 
dissection into components. Each of these should receive 
individual RPNIs (See table, Supplemental Digital Content 
2, http://links.lww.com/PRSGO/C666 and Fig. 6).

Nonamputation Indications
The lower extremity frequently has indications for RPNI 

beyond amputation. Patients who have experienced an iatro-
genic or traumatic nerve injury, which cannot be repaired or 
was not repaired, should undergo an RPNI on the proximal 

Fig. 4. Photograph showing RPNi surgery performed on the com-
mon peroneal nerve. Please note the access via a separate incision 
at the level of the common peroneal nerve, as it crosses the fibula.

http://links.lww.com/PRSGO/C665
http://links.lww.com/PRSGO/C665
http://links.lww.com/PRSGO/C666
http://links.lww.com/PRSGO/C666
http://links.lww.com/PRSGO/C666
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aspect of the divided nerve. In addition, patients should also 
undergo RPNI to treat the proximal end of a sural nerve after 
nerve graft harvest (See table, Supplemental Digital Content 
2, http://links.lww.com/PRSGO/C666).

In these cases, the previous incision can be opened 
and explored to identify the neuroma, which should be 
excised if possible. The nerve can then be wrapped in a 
muscle or dermal graft. We prefer the vastus lateralis for 
this indication. The RPNI can then be left in the subcuta-
neous pocket. Additionally, we advocate for prophylactic 
RPNI at the time of biopsy to avoid subsequent neuroma 
formation (See table, Supplemental Digital Content 2, 
http://links.lww.com/PRSGO/C666).

Other Indications
Treatment of thoracic neuromas in cases of postmas-

tectomy neuroma or abdominal neuromas after hernia 
repair may also be necessary, and these are discussed in 
Table 1.

DISCUSSION
RPNI surgery has demonstrated its reliability and dura-

bility in harnessing neural signals for neuroprosthetic 
control.35–44 Additionally, RPNI surgery is effective for 
treatment and prevention of postamputation pain, includ-
ing both symptomatic neuroma pain and phantom limb 
pain.59,64–68 In the authors’ practice, RPNI surgery has also 
been successful in management of neuromas of superfi-
cial sensory nerves particularly in cases of nerve autograft 
harvest.

This procedure is simple, requires no specialized 
training or equipment, and adds only a modest amount 
of time to the operation. RPNIs effectively and actively 
guide axonal regeneration into denervated targets.37 This 
theory has been supported in the literature, as the RPNI 

Fig. 5. Photograph showing RPNi surgery in total on below-knee 
amputation. Note the intraneural dissection to isolate the individ-
ual fascicles of the sciatic nerve.

Fig. 6. RPNi surgery in a case of hip disarticulation.

Fig. 7. TMR surgery demonstrating the size mismatch of nerve 
coaptation.

http://links.lww.com/PRSGO/C666
http://links.lww.com/PRSGO/C666
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data demonstrate significant reduction in neuroma pain 
and phantom limb pain, and improved prosthetic expe-
rience and psychosocial well-being.13,24,32 As previously 
mentioned, peripheral pain has an impact on centrally-
mediated pain via cortical and thalamic remodeling. This 
plays a significant role in the development of chronic pain. 
Treating all other etiologies of peripheral nerve pain (ie, 
migraine headache and carpal tunnel syndrome) can also 
help reduce centrally-mediated pain69–73 This proposes 
a future direction of RPNI surgery in that the treatment 
of peripherally-mediated pain associated with neuromas 
may have a role in mitigating centrally-mediated pain. In 
other words, RPNI may have benefit in treating amputa-
tion patients with phantom limb pain, even if there is no 
severe neuroma pain in the residual limb. However, this 
will require further investigation.74,75

Like RPNI surgery, TMR surgery involves denervation 
of muscle and reinnervation of this denervated target with 
regeneration axons. We prefer RPNI in our practices for sev-
eral reasons. Particularly in cases of amputation, TMR is more 
technically demanding regarding identification and dissec-
tion, and prolongs operative time. We believe the donor mor-
bidity of a muscle graft harvest is less than the morbidity of 
compromising a motor branch in the residual limb. However, 
the authors’ primary preference for RPNI over TMR is the size 
discrepancy of the donor to recipient nerves.76 The mismatch 
in nerve calibers is potentially a source for axonal escape. 
This can result in a symptomatic neuroma-in-continuity at 
the site of the nerve coaptation or may lead to loss of rein-
nervation76–79 (Fig. 7). The proximal end of the lost motor 
nerve could form a symptomatic terminal end neuroma.80 In 
theory, either could contribute to peripheral or central sensi-
tization, thereby contributing to and worsening chronic pain 
experienced by these patients.81–85

One proposed solution to address this nerve-size mis-
match and corresponding axonal escape is to place a dener-
vated piece of muscle around the TMR coaptation site. The 
free denervated skeletal muscle graft to address the escap-
ing axons from the TMR makes this similar to RPNI alone.76 
One reason for the size mismatch is that in the TMR 
method, large caliber peripheral nerves cannot be divided 
into multiple smaller component fascicles because there are 
not enough expendable motor branches in the vicinity to 
perform a multitude of nerve transfers (eg, >10). RPNI sur-
gery does not rely on the limited availability of expendable 

local motor branches but instead is based on the freedom 
to harvest many free muscle grafts. This allows for a much 
greater ability to divide peripheral nerves into smaller com-
ponent fascicles, each with its own free muscle graft. This 
distinct feature of RPNI surgery to harness discrete motor 
and sensory signals through reinnervation of multiple indi-
vidual RPNIs is advantageous when using it as an interface 
for advanced prosthetic limb rehabilitation.38–47,86

There are some limitations with RPNI. Long-term fol-
low-up is still pending. Initial follow-up data has only been 
reported out of a few centers. As previously noted, the 
success of neuroprosthetics mediated via RPNI and ultra-
sound studies support RPNI survival.87 Imaging studies at 
that time were conducted in a small sample, and further 
studies will need to confirm these findings. Additionally, 
the basic science regarding graft survival and reinnerva-
tion has been performed on animal models, thus far neces-
sitating further investigation for confirmation in humans.88

An initial study in a rat model demonstrated that 
smaller grafts perform better.89 Larger grafts lose muscle 
mass in a process consistent with our theory that the por-
tion of the graft receiving plasma imbibition and inoscu-
lation will vascularize, with the rest simply sloughing off. 
Again, this too will need further investigation.

The last limitation of RPNI is the need for a second 
donor site in cases of treating a neuroma in a delayed 
fashion. However, we believe this morbidity is minimal, as 
there is ample redundant muscle for donor, and, in cases 
of pure sensory nerves, dermal grafts have displayed excel-
lent promise.90

CONCLUSIONS
RPNI surgery is safe, straightforward, reproducible, 

reliable, effective, and scalable to many surgical special-
ties. It allows reconstructive surgeons of all types to treat 
and prevent traumatic nerve pain. Moreover, it is a power-
ful tool for enabling the use of advance neuroprosthetics 
and, more recently, sensory feedback.

Garrison A. Leach, MD
200 W Arbor Dr.

MC 8890
San Diego, CA 92103

E-mail: g1leach@health.ucsd.edu

Table 1. Guide and Technique Recommendations for Addressing Thoracic and Abdominal Neuromas
Thoracic nerves (intercostal nerves) There is increasing awareness of postmastectomy pain syndrome stemming from injury to the  

intercostal nerves resulting in neuromas. Injury to the lateral intercostal nerves along the  
midaxillary line is most common, but anterior branches may be transected just lateral to the 
sternum. Again, these neuromas can be identified via patient history and confirmed with physical 
examination and local block. Incisions are made over the intercostal space with dissection through 
the external intercostal muscle. The nerves are dissected proximally to healthy ends, and dermal 
graft is applied. 

Abdominal nerves  
(intercostal/subcosta/ilioinguinal)

Neuroma pain due to mesh placement during hernia repair or injury during placement of  
laparoscopic ports is a common etiology of chronic abdominal pain. History and physical  
examination including interoffice nerve block can readily identify these neuromas. By marking  
the area of pain, an incision is made from this area curving toward the superiolateral flank  
(toward the anterior superior iliac spine in cases of inguinal neuromas). The external oblique  
fascia is divided. The neuroma is identified and excised back to healthy fascicles, which are 
wrapped in a dermal graft.

mailto:g1leach@health.ucsd.edu
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