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Simple Summary: Tetranychus urticae Koch is a difficult-to-control pest due to its short life cycle and
rapid resistance development. Strains exhibiting resistance to etoxazole or pyridaben exposure have
been identified over the past 16 years We collected 8 T. urticae field populations from Korea. The
resistance ratios of the etoxazole- and pyridaben-resistant (ER and PR) strains were significantly
higher than the susceptible strain. The ER and PR strains showed cross-resistance to several acaricides.
In addition, the point mutations of the target site were detected in resistant populations.

Abstract: The two-spotted spider mite Tetranychus urticae Koch is a major agricultural pest worldwide
and is known to rapidly develop resistance to pesticides. In the present study, we explored a field
strain that was collected in 2000 and 2003 and has been exhibiting resistance to etoxazole and
pyridaben over the last 16 years. The resistance ratios of the etoxazole- and pyridaben-resistant
strains (ER and PR) to etoxazole or pyridaben were more than 5,000,000- and 4109.6-fold higher
than that of the susceptible strain, respectively. All field-collected populations showed resistance
to etoxazole and pyridaben. The ER and PR strains showed cross-resistance to several acaricides.
Both I1017F and H92R point mutations were detected in 7 out of 8 field groups. Spirodiclofen and
spiromesifen resulted in more than 77.5% mortality in the 8 field groups. In addition, the genotype
frequency of the I1017F point mutation was 100.0% in the ER strain, and that of the H92R point
mutation was 97.0% in the PR strain. All of the field populations were found to have a high frequency
of I1017F. These results suggest that the observation of resistance patterns will help in designing a
sustainable IPM program for T. urticae.

Keywords: Tetranychus urticae; etoxazole; pyridaben; point mutation; resistance

1. Introduction

Tetranychids or spider mites belong to a family of phytophagous mites that cause
severe economic effects on agriculture [1]. In Korea, Tetranychus urticae has been known as
an important pest and has been causing economic damage since the 1950s [2]. Tetranychus
urticae control is largely based on the use of acaricides in the field; therefore, it rapidly
develops resistance due to its short life cycle and high reproductivity [3–6]. Additionally,
resistance of T. urticae to various acaricides has become a problem in South America,
North America, Asia, Austria, and Europe [7–10]. Among the acaricides to which this pest
has developed resistance, etoxazole was developed in the 1980s by Yashima, a company
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located in Japan, and was commercialized in 1998 [11,12]. Etoxazole is an oxazoline
compound and provides effective control during the egg–nymph stage and is an insect
growth regulator that exerts insecticidal activity by inhibiting chitin biosynthesis [13]. The
target site is glycosyltransferase chitin synthase 1 (CHS1) [13,14]. Etoxazole resistance
was first reported in Japan in 1997 before its commercialization [7,15–18]. Pyridaben was
developed at approximately the same time as etoxazole. It is a pyridazine compound
and was discovered in 1984 by Nissan Chemical and was commercialized in 1991 [11].
It inhibits NADH:CoQ, oxidoreductase activity, and provides good efficacy against all
developmental stages of various mite species [19,20]. In addition, pyridaben was commonly
used in 32 countries until 1994 because it is fast-acting, stable, and biodegrades relatively
quickly [21]. However, due to the use of many acaricides, METI (Mitochondrial Complex
Electron Transport Inhibitor)-resistant T. urticae has been reported since the 1990s [22,23].
Tetranychus urticae can be resistant to one acaricide or exhibit multiple or cross resistance
to various other acaricides [24–26]. The I1017F point mutation is located within the last
transmembrane helix and was found to be related to etoxazole resistance [7,14]. The H92R
point mutation is located within the PSST homolog in mitochondria complex I and was
found to be related to pyridaben resistance [27]. Rapid molecular diagnostics for detecting
single resistant and multi-resistant populations primarily identify mutations in the T. urticae
genes associated with acaricide resistance.

The objective of this study was to evaluate the susceptibility to acaricides in etoxazole-
and pyridaben-resistant (ER and PR) strains and in field-collected populations of T. urticae.
Furthermore, the frequencies of the I1017F and H92R point mutations were investigated to
identify potential resistance mechanisms.

2. Materials and Methods
2.1. Mites

The susceptible (S) strain was first collected in 2005. This strain had never been
exposed to acaricides. Resistant strains were treated once a week with the LC30~LC50 of
etoxazole or pyridaben. Information on the eight field populations and resistant strains
is shown in Table 1. The mites were reared at 25–27 ◦C with a 16 L: 8 D photoperiod and
40~60% relative humidity. Kidney beans (Phaseolus vulgaris L.) were used as a host.

Table 1. Collection data of mite populations included in this study.

Populations Date
Collected Region Host Collection Locations

(South Korea)

Lab-selected
Etoxazole resistant (ER) Aug 2000 Buyeo Rose
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Field-collected

Cheongju (CJ) Mar 2020 Cheongju Melon
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Gumi-1 (GM-1) Aug 2019 Gumi Rose
Gumi-2 (GM-2) Aug 2019 Gumi Rose
Okcheon (OC) Feb 2020 Okcheon Rose
Peongtaek (PT) Mar 2020 Pyeongtaek Rose

Yongin (YI) Oct 2019 Yongin Strawberry

2.2. Acaricides

Commercially formulated abamectin (10% SC), acequinocyl (15% SC), bifenazate
(13.5% SC), cyenopyrafen (25% SC), cyflumetofen (20% SC), etoxazole (10% SC), fluxam-
etamide (9% EC), pyflubumide (10% SC), pyridaben (20% WP), spirodiclofen (22% WP),
spiromesifen (20% SC), and spirotetramat (22% SC) were purchased from a farm supply
store (Cheongju, Korea).
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2.3. Laboratory Toxicology Assays
2.3.1. Eggs

Kidney bean leaf discs (approximately 35 mm in diameter) were used as substrates
for oviposition. Ten mated females (2- to 3-day-old) were transferred on the ventral side
of a bean leaf disc placed on cotton soaked in water in a Petri dish (60 mm diameter) and
given a 24-h period in which to lay eggs. After 24 h, the adults were removed, and the eggs
were counted. The leaf discs with eggs were treated with the selected pesticide (1/8-, 1/4-,
1/2-, 1-, 2-, and 4 times the recommended concentration) suspension using a sprayer and
were then dried in the dark for 30 min. The recommended concentration of each pesticide
was only used to treat the field-collected populations. Control groups were sprayed with
distilled water only. All leaf discs were examined daily for 7 days. The numbers of hatched
and unhatched eggs were recorded. The dishes were incubated at 25–27 ◦C under 40–60%
relative humidity and a 16 L:8 D photoperiod. All experiments were replicated three times.

2.3.2. Adult Females

Adult females (2 to 3 days old, avg. 20–150/experiment) were transferred to bean
leaf discs (35 mm in diameter) on wet cotton wool using a brush. Solutions diluted to
various concentrations (1/8-, 1/4-, 1/2-, 1-, 2-, and 4 times the recommended concentration
of pesticide) were sprayed (3 mL each) onto the discs, which were then dried in the dark
for 30 min. The recommended concentration of each pesticide was only used to treat the
field-collected populations. The dishes were incubated at 25–27 ◦C under 40–60% relative
humidity and a 16 L:8 D photoperiod. Mortality was evaluated at 48 h after treatment.
Control groups were sprayed with distilled water only, and the control mortality in all tests
never exceeded 5%. All experiments were replicated three times.

2.4. General Sequencing and Pyrosequencing of CHS1 and PSST in T. urticae

Genomic DNA was extracted from 200 mites from each T. urticae strain using the
G-spin™ Total DNA Extraction Mini Kit (Intron, Seongnam, Korea) according to the manu-
facturer’s instructions. Approximately 100 ng of DNA was used as template DNA for PCR.
The reactions were performed using a PCR Premix kit (HotStart, Bioneer Co., Daejeon,
Korea) and the primers listed in Table 2. The resulting PCR products were purified and
directly sequenced using Bioneer Co. The pyrosequencing protocol consisted of 45 PCR
cycles performed with the forward primer and biotinylated reverse primer at 0.5 µM, each
in 20 µL reaction mixture containing 1× Taq enzyme reaction mix (Enzynomics, Daejeon,
Korea). The following cycling conditions were used: one cycle at 95 ◦C for 15 min; 45 cycles
at 94 ◦C for 30 s, 60 ◦C for 30 s, and 72 ◦C for 30 s; and a final step at 72 ◦C for 10 min.
The reactions were performed using a PyroGold reagent kit and a PyroMark ID system
(Qiagen, Germantown, MD, USA).

Table 2. Primers used for PCR amplification.

Reaction Target Name Sequence

General sequencing

CHS1
Demaeght-F AGATCCTTTACGTCTGGGGC

Demaeght-R CAATTGGGACTCGTTTCTTTTCA

PSST
PSST-F ACAGGTCAGCCAATCGAATC

PSST-R ATACCAAGCCTGAGCAGTGG

Pyrosequencing

CHS1
CHS-F GTCTTTTGTAGTGGCGGCATT

CHS-R TCCCCAAGTAACAACGTTCAAGT

PSST
PSST-F TGACTTTTGGATTAGCCTGTTGTG

PSST-R AGGACTTGCTCTGAATAACATACCA
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2.5. Data Analysis

To estimate the parameters of a concentration–mortality line for each leaf-dip bioassay,
replicate data were collected and analyzed using the probit model in the SAS program [28].
Two LC50 values were considered different at p < 0.01.

3. Results
3.1. Resistance Ratios (RRs) to Etoxazole and Pyridaben

Bioassays were conducted using etoxazole and pyridaben in etoxazole-resistant (ER)
and pyridaben-resistant (PR) strains of T. urticae. When the eggs were treated with etoxa-
zole, the ER strain showed an RR that was > 5,000,000-fold higher than that of the S strain
(Table 3). The RR of PR strain was 9.5-fold. However, the ER strain had a low RR of 3.6-fold
to pyridaben. The PR strain had an RR that was over 4109.6-fold higher than the S strain
to pyridaben. As already reported, etoxazole had no effect on the adults. Additionally,
pyridaben was not treated with concentrations above 400 ppm (4 times recommended
dose) because it showed a repellent characteristic towards adults.

Table 3. Susceptibility to etoxazole and pyridaben in S, ER and PR strains of T. urticae.

Acaricide Stage Strain n LC50 (ppm) (95% CL a) Slope ± SE RR b

Etoxazole

S 1780 0.02 (0.02–0.03) 1.95 ± 0.16 1

Egg ER 1075 >100,000 - >5,000,000

PR 1846 0.19 (0.04–0.67) 2.36 ± 0.45 9.5

S 266 >100,000 - No effect

Adult ER 107 >100,000 - -

PR 93 >100,000 - -

Pyridaben

S c 462 0.73 (0.31–1.48) 0.91 ± 0.10 1.0

Egg ER 1826 2.65 (1.27–4.16) 0.61 ± 0.10 3.6

PR c 619 >3000 - >4109.6

S 90 >400 Not
measurable

Adult ER 90 >400 -

PR 98 >400 -
a Confidence limits. b RR, resistance ratio = LC50 of resistant strain/LC50 of susceptible strain. c Choi et al. [29].

3.2. Cross-Resistance to 10 Acaricides in the S, ER, and PR Strains

Cross-resistance to 10 acaricides with different modes of action was determined in the
S, ER, and PR strains of T. urticae eggs and adults. First, eggs from the ER strain of T. urticae
showed resistance to abamectin, bifenazate, cyenopyrafen, cyflumetofen, fluxametamide,
pyflubumide, and spirotetramat, with RRs of 10.6, >10.7, 20.2, >378.7, 10.5, 682.8, and
>1612.9, respectively (Table 4). Eggs from the PR strain of T. urticae showed resistance to
bifenazate, fluxametamide, pyflubumide, and spirotetramat, with RRs of >10.7, 11.4, 54.1,
and >1612.9, respectively. Next, adults from the ER strain of T. urticae were resistant to
cyenopyrafen, cyflumetofen, pyflubumide, and spirotetramat (Table 5). Adults from the
PR strain of T. urticae had resistance to cyflumetofen, with an RR of 40.6.



Insects 2021, 12, 660 5 of 12

Table 4. Susceptibility to acaricides in the eggs of S, ER, and PR strains of T. urticae.

Acaricide Strain n LC50 (ppm) (95% CL a) Slope ± SE RR b

Abamectin

S 720 0.87 (0.34–2.82) 1.72 ± 0.24 1.0

ER 496 9.24 (8.71–15.62) 1.64 ± 0.25 10.6

PR 642 8.52 (5.64–11.84) 1.34 ± 0.38 9.8

Acequinocyl

S 1230 8.02 (6.91–9.53) 2.14 ± 0.19 1.0

ER 1719 12.59 (4.92–37.54) 1.94 ± 0.51 1.6

PR c 881 1.47 (0.53–3.10) 1.42 ± 0.21 0.2

Bifenazate

S 1780 65.21 (23.60–136.91) 0.45 ± 0.11 1.0

ER 2391 >700 - >10.7

PR 378 >700 - >10.7

Cyenopyrafen

S 496 1.68 (0.87–2.63) 2.65 ± 0.47 1.0

ER 2306 33.85 (20.23–45.74) 1.73 ± 0.26 20.2

PR 1024 1.32 (0.85–2.54) 1.35 ± 0.28 1.3

Cyflumetofen

S 732 0.79 (0.29–0.99) 1.83 ± 0.31 1.0

ER 988 >300 - >379.7

PR 865 4.57 (1.38–10.32) 1.56 ± 0.19 5.8

Fluxametamide

S 962 4.62 (1.46–14.73) 1.24 ± 0.22 1.0

ER 477 48.32 (39.12–56.25) 1.56 ± 0.33 10.5

PR 884 52.64 (27.86–79.19) 2.88 ± 0.37 11.4

Pyflubumide

S 517 0.08 (0.01–0.25) 1.23 ± 0.16 1.0

ER 727 54.62 (40.07–86.89) 0.94 ± 0.19 682.8

PR 875 4.33 (2.21–12.36) 1.95 ± 0.14 54.1

Spirodiclofen

S 857 18.23 (12.78–21.38) 1.56 ± 0.28 1.0

ER 1549 18.02 (12.87–24.33) 2.31 ± 0.13 1.0

PR 984 19.32 (12.64–32.54) 1.35 ± 1.25 1.1

Spiromesifen

S 909 0.74 (0.38–1.79) 1.85 ± 0.37 1.0

ER 698 0.33 (0.25–0.43) 1.71 ± 0.16 0.4

PR 921 0.94 (0.31–2.54) 1.34 ± 0.25 1.3

Spirotetramat

S 873 0.31 (0.08–0.40) 1.22 ± 0.24 1.0

ER 1733 >500 - >1612.9

PR 932 >500 - >1612.9
a Confidence limits. b RR, resistance ratio = LC50 of resistant strain/LC50 of susceptible strain. c Choi et al. [29].
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Table 5. Susceptibility to acaricides in adults of the S, ER, and PR strains of T. urticae.

Acaricide Strain n LC50 (ppm) (95% CL a) Slope ± SE RR b

Abamectin

S 134 0.21 (0.08–0.82) 1.27 ± 0.18 1.0

ER 192 0.10 (0.09–0.12) 1.02 ± 0.15 0.5

PR 245 0.23 (0.01–0.75) 1.84 ± 0.32 1.1

Acequinocyl

S c 225 2.78 (1.48–6.58) 0.51 ± 0.07 1.0

ER 545 20.38 (17.31–23.87) 1.72 ± 0.14 7.3

PR c 225 13.41 (10.06–21.94) 0.92 ± 0.10 4.8

Bifenazate

S 359 5.08 (2.84–10.90) 1.37 ± 0.23 1.0

ER 363 23.39 (19.44–28.70) 1.19 ± 0.10 4.6

PR 256 4.76 (2.62–8.29) 1.25 ± 0.33 0.9

Cyenopyrafen

S 182 1.32 (0.54–4.72) 1.37 ± 0.18 1.0

ER 208 70.61 (54.39–93.28) 1.02 ± 0.13 53.5

PR 243 6.51 (3.01–17.86) 1.31 ± 0.12 4.9

Cyflumetofen

S 68 0.58 (0.29–0.99) 1.83 ± 0.31 1.0

ER 212 >1000 - >1724.1

PR 135 23.54 (14.81–25.66) 1.35 ± 0.10 40.6

Fluxametamide

S 362 2.26 (1.66–3.09) 2.54 ± 0.32 1.0

ER 121 1.96 (1.42–5.07) 1.68 ± 0.23 0.9

PR 253 2.12 (1.73–4.62) 1.26 ± 0.33 0.9

Pyflubumide

S 180 2.75 (1.32–5.31) 1.27 ± 0.14 1.0

ER 181 >2000 - >727.3

PR 183 0.72 (0.34–0.62) 1.16 ± 0.15 0.3

Spirodiclofen

S 67 >1800 - No effect

ER 167 >1800 - -

PR 108 >1800 - -

Spiromesifen

S 75 >1000 - No effect

ER 131 >1000 - -

PR 109 >1000 - -

Spirotetramat

S 332 32.62 (21.81–57.43) 1.95 ± 0.31 1.0

ER 221 354.01 (69.44–3345) 0.17 ± 0.06 10.9

PR 192 262.13 (142.54–1283) 0.67 ± 0.11 8.0
a Confidence limits. b RR, resistance ratio = LC50 of resistant strain/LC50 of susceptible strain. c Choi et al. [29].

3.3. Acaricide Susceptibility of 8 Field-Collected Populations

Of the twelve acaricides, spirodiclofen and spiromesifen had acaricidal activity in all
of the field population eggs. Spirodiclofen and spiromesifen resulted in mortality rates
of more than 77.5% and 82.5%, respectively (Table 6). Twelve acaricides did not cause
mortality of more than 80% in all field adults. OC and CJ had mortality rates greater than
90% with fluxametamide, and CJ had mortality rates greater than 90% with abamectin
(Table 7). The LC50 value for all field populations was more than 500 ppm when they were
treated with etoxazole, and the RR was > 25,500 (Table 8). For pyridaben, seven of the eight
field populations, CJ being the exception, had LC50 values greater than 4000 ppm, and the
RR was > 5480. The LC50 value for the CJ population was 103.26 ppm, and the RR was
144.5 (Table 9).
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Table 6. Mortality of T. urticae eggs of eight field populations in response to 12 acaricides.

Acaricide
% Mortality a (Mean ± SE)

n CJ n GH-1 n GH-2 n GM-1 n GM-2 n OC n PT n YI

Abamectin 124 3.4 ± 3.2 135 3.1 ± 3.0 111 3.8 ± 2.5 82 13.0 ± 2.2 82 12.5 ± 5.3 314 11.2 ± 0.1 97 15.1 ± 8.4 219 15.7 ± 1.6
Acequinocyl 86 17.1 ± 3.1 94 9.2 ± 1.5 80 20.0 ± 5.2 101 15.7 ± 3.0 103 11.5 ± 6.0 287 12.3 ± 6.2 79 12.9 ± 5.5 233 18.2 ± 2.2
Bifenazate 108 5.0 ± 6.3 93 15.7 ± 5.7 77 16.5 ± 8.4 78 19.5 ± 4.1 76 14.9 ± 7.3 197 12.3 ± 3.3 105 21.6 ± 8.7 216 14.7 ± 6.7

Cyenopyrafen 97 17.7 ± 6.2 129 7.0 ± 1.3 76 11.7 ± 1.3 111 12.6 ± 2.1 102 11.0 ± 3.7 372 1.4 ± 2.4 111 9.2 ± 2.5 80 3.7 ± 2.8
Cyflumetofen 177 11.9 ± 3.0 104 3.8 ± 0.7 86 9.3 ± 0.9 83 8.5 ± 2.5 113 7.6 ± 4.7 481 2.8 ± 2.1 96 3.3 ± 2.6 79 8.6 ± 4.4

Etoxazole 330 33.9 ± 4.0 126 0.0 ± 0.0 164 16.9 ± 6.1 320 0.0 ± 0.0 114 0.0 ± 0.0 262 0.0 ± 0.0 149 2.1 ± 2.2 463 3.0 ± 2.8
Fluxametamide 339 60.2 ± 3.9 172 16.5 ± 7.7 106 23.5 ± 4.9 128 48.2 ± 6.1 103 47.6 ± 5.2 405 41.4 ± 1.1 149 2.1 ± 2.2 80 24.0 ± 5.8
Pyflubumide 149 22.6 ± 4.9 109 6.5 ± 1.0 357 11.2 ± 1.6 94 12.3 ± 2.5 90 9.4 ± 3.2 457 3.6 ± 2.3 110 4.7 ± 1.9 113 6.4 ± 4.13

Pyridaben 308 63.5 ± 3.4 269 2.7 ± 2.2 431 0.0 ± 0.0 268 0.4 ± 0.8 285 2.1 ± 0.9 220 1.3 ± 1.3 323 2.1 ± 0.7 401 29.7 ± 10.2
Spirodiclofen 232 100.0 ± 0.0 94 82.7 ± 3.6 278 84.5 ± 5.7 101 91.1 ± 1.6 76 89.1 ± 5.1 462 85.0 ± 3.6 93 77.5 ± 4.3 102 100.0 ± 0.0
Spiromesifen 254 98.8 ± 0.1 116 82.8 ± 1.4 82 82.5 ± 1.7 94 95.8 ± 0.3 109 95.5 ± 2.1 467 94.8 ± 2.2 116 89.8 ± 5.2 94 89.8 ± 5.0
Spirotetramat 113 18.5 ± 6.2 153 7.9 ± 0.2 72 10.4 ± 1.0 114 13.9 ± 5.0 89 25.7 ± 3.7 314 0.0 ± 0.0 104 18.6 ± 2.5 127 0.0 ± 0.0

a % Mortality stands for the % mortality at the field recommended dose.

Table 7. Mortality of T. urticae adults of eight field populations in response to 12 acaricides.

Acaricide
% Mortality a (Mean ± SE)

n CJ n GH-1 n GH-2 n GM-1 n GM-2 n OC n PT n YI

Abamectin 75 90.8 ± 2.0 81 16.5 ± 4.5 80 10.0 ± 5.8 84 13.7 ± 3.0 67 12.5 ± 3.0 80 13.3 ± 3.3 83 11.8 ± 2.6 80 24.7 ± 4.4
Acequinocyl 86 100.0 ± 0.0 65 6.4 ± 3.6 84 14.6 ± 7.9 98 2.6 ± 2.6 80 20.0 ± 5.1 96 10.7 ± 3.0 67 27.7 ± 1.4 92 50.0 ± 4.8
Bifenazate 76 73.3 ± 8.2 81 22.7 ± 3.7 78 19.9 ± 3.9 92 11.1 ± 2.8 81 23.0 ± 2.0 90 65.9 ± 6.5 80 6.7 ± 3.3 86 51.5 ± 3.0

Cyenopyrafen 76 78.5 ± 5.5 80 13.3 ± 3.3 86 9.1 ± 5.3 92 13.9 ± 2.8 80 11.7 ± 3.3 78 14.1 ± 7.1 88 13.9 ± 7.4 90 0.0 ± 0.0
Cyflumetofen 85 30.5 ± 4.4 86 38.7 ± 4.7 92 0.0 ± 0.0 86 11.9 ± 2.4 73 20.3 ± 5.9 82 18.7 ± 4.1 84 6.1 ± 6.1 80 10.0 ± 5.8

Etoxazole 75 0.2 ± 2.2 76 0.0 ± 0.0 75 0.0 ± 0.0 75 0.0 ± 0.0 70 0.0 ± 0.0 85 1.3 ± 3.9 64 0.0 ± 0.0 62 0.0 ± 0.0
Fluxametamide 81 94.3 ± 1.5 82 41.7 ± 4.8 70 52.4 ± 4.0 72 47.6 ± 2.4 71 43.1 ± 2.1 68 94.4 ± 5.6 98 25.6 ± 7.8 79 54.7 ± 1.6
Pyflubumide 82 13.0 ± 4.4 80 16.7 ± 4.8 86 0.0 ± 0.0 88 17.8 ± 4.9 74 5.4 ± 3.4 80 0.0 ± 0.0 82 6.7 ± 6.7 78 3.3 ± 3.3

Pyridaben 70 2.7 ± 2.7 75 2.6 ± 2.3 60 1.0 ± 3.3 63 2.3 ± 2.9 72 6.4 ± 3.2 68 3.5 ± 3.1 67 16.0 ± 4.3 67 5.3 ± 1.9
Spirodiclofen 86 2.1 ± 3.5 0 0.0 ± 0.0 88 5.4 ± 8.9 76 0.0 ± 0.0 80 8.3 ± 9.2 80 10.2 ± 7.1 83 6.3 ± 3.3 81 9.5 ± 6.9
Spiromesifen 83 3.5 ± 5.3 81 3.1 ± 1.6 80 0.0 ± 0.0 80 0.0 ± 0.0 90 5.4 ± 8.7 93 8.6 ± 5.1 81 3.1 ± 3.6 81 7.3 ± 8.4
Spirotetramat 76 29.7 ± 5.2 84 18.5 ± 5.0 84 0.0 ± 0.0 96 36.8 ± 4.8 75 12.6 ± 1.2 82 15.8 ± 8.2 80 20.0 ± 5.8 82 9.7 ± 0.3

a % Mortality stands for the % mortality at the field recommended dose.
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Table 8. Toxicity to etoxazole in susceptible and field-collected populations of T. urticae eggs.

Populations n %Mortality a LC50 (ppm a.i.)
(95% CL b) Slope ± SE RR c

S 1780 100.0 0.02 (0.02–0.03) 1.95 ± 0.16 1.0
CJ 1647 33.9 >500 - >25,500

GH-1 479 0.0 >500 - >25,500
GH-2 904 19.6 >500 - >25,500
GM-1 1687 0.0 >500 - >25,500
GM-2 369 0.0 >500 - >25,500

OC 1153 0.0 >500 - >25,500
PT 339 2.1 >500 - >25,500
YI 1127 3.0 >500 - >25,500

a % Mortality stands for the % mortality at field recommended dose. b Confidence limits. c RR represents
resistance ratio = LC50 of resistant strain/LC50 of susceptible strain.

Table 9. Toxicity to pyridaben in susceptible and field-collected populations of T. urticae eggs.

Populations n %Mortality a LC50 (ppm a.i.)
(95% CL b) Slope ± SE RR c

S 462 100.0 0.73 (0.31–1.48) 0.91 ± 0.10 1.0
CJ 2243 63.5 103.26 (76.59–150.66) 1.32 ± 0.12 144.5

GH-1 1449 2.7 >4000 - >5480
GH-2 1819 0.0 >4000 - >5480
GM-1 887 0.4 >4000 - >5480
GM-2 778 2.1 >4000 - >5480

OC 2227 1.3 >4000 - >5480
PT 1073 2.1 >4000 - >5480
YI 1533 29.7 >4000 - >5480

a % Mortality stands for the % mortality at field recommended dose. b Confidence limits. c RR represents
resistance ratio = LC50 of resistant strain/LC50 of susceptible strain.

3.4. Genotypes of Point Mutations (I1017F and H92R)

Using pyrosequencing, the frequencies of I1017F in CHS1 and H92R in the PSST
subunit of mitochondrial electron transport complex I were identified (Table 10). The
I1017F point mutation was found in the ER strain but not in the S and PR strains. The
H92R point mutation in the PSST gene was present in the PR strain but not in the S and ER
strains. The sequencing results from the eight field populations showed that the I1017F
mutation was present in all of the groups. The H92R point mutation was present in seven
field populations. Five of them had a homozygous allele for histidine (H). The OC and YI
populations showed heterozygous alleles for H and R (arginine). The genotype frequency
of a phenylalanine (F) at the 1017th amino acid position of CHS1 was 100% in the ER strain.
In the eight field populations, it was 72~99.0%. However, in the S and PR strains, it was
0.0% and 2.0%, respectively. The genotype frequency of an arginine (R) on the 92th amino
acid position of PSST was 99.0% in the PR strain. However, in the S and ER strains, it was
11.0% and 29.0%, respectively.
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Table 10. Genotypes of point mutations in the CHS1 and PSST genes of T. urticae.

Population n Predominant
Genotype

CHS1 Genotypes (%)
Predominant

Genotype

PSST Genotypes (%)

I1017F H92R

I F H R

S 200 I 100.0 0.0 H 89.0 11.0
ER 200 F 0.0 100.0 H 71.0 29.0
PR 200 I 98.0 2.0 R 3.0 97.0
CJ 200 F 28.0 72.0 H 70.0 30.0

GH-1 200 F 9.0 91.0 R 13.0 87.0
GH-2 200 F 3.0 97.0 R 6.0 94.0
GM-1 200 F 1.0 99.0 R 8.0 92.0
GM-2 200 F 11.0 89.0 R 7.0 93.0

OC 200 F 20.0 80.0 H/R 63.0 37.0
PT 200 F 3.0 97.0 R 9.0 91.0
YI 200 F 15.0 85.0 H/R 55.0 45.0

4. Discussion

The controlling of two-spotted spider mites mainly depends on chemical control
methods, and there are many reports on the development of resistance to acaricides due to
their short lifespan and high fecundity. In this study, we determined the cross-resistance of
ER and PR strains and the complex resistance of the field-collected populations. We also
observed the frequency of point mutations in the etoxazole resistance- (I1017F of CHS1)
and pyridaben resistance-related gene (H92R of PSST). As a result, the resistance ratio of
the ER and PR strains was less than 10, and there was no cross-resistance. In previous
studies, ER strains also showed low cross-resistance to pyridaben [30]. Our results were
also similar to that research. However, the PR strain was shown to have cross-resistance
to etoxazole by Choi et al. [29]. Since the PR strain used in this study is a more carefully
selected strain, this result is considered to be more reliable. In addition, both strains
showed a high resistance ratio because they had been exposed to etoxazole or pyridaben
for a long period of time (more than 16 years), and the possibility of cross-resistance is low
(Table 3). In order to find effective acaricides against etoxazole- and pyridaben-resistant
strains, we performed sensitivity evaluation using 10 pesticides. As a result of treatment
with ER eggs, the pesticides that showed less than 70% acaricidal effect were abamectin,
bifenazate, cyflumetofen, fluxametamide, pyflubumide, and spirotetramat. In PR eggs,
the pesticides that showed less than 70% acaricidal effect were abamectin, bifenazate,
cyflumetofen, fluxametamide, and spirotetramat (Table 4). Abamectin, bifenazate and
pyflubumide were less effective for eggs than adults in a recent study [31,32]. P450s are
known to be related to cyflumetofen resistance [33]. Additionally, P450s are known to
be related to pyridaben and etoxazole resistance, so the ER and PR strains showed cross
resistance to cyflumetofen [33,34]. Fluxametamide has a similar mode of action to diamide.
Diamides are more effective in larvae than in the eggs of Lepidopterans, and they seem
to have worked similarly in T. urticae [35]. Spirodiclofen and spiromesifen showed high
acaricidal effects in both resistant strains, but spirotetramat, insecticides belonging to the
same chemical class, had a low effect. In a previous study, spirotetramat showed an LC50
value 34 times higher than that of spirodiclofen in Panonychus citri eggs [36]. Since T. urticae
and P. citri belong to the same family, similar results seem to have been obtained. Therefore,
acequinocyl, spirodiclofen, and spiromesifen could be used to the control eggs from the ER
and PR strains. Additionally, cyenopyrafen was effective against eggs from the PR strain.

When adults from the ER strain were treated with ten acaricides, the mortality due
to cyenopyrafen, cyflumetofen, pyflubumide, spirodiclofen, and spirotetramat was less
than 70%. Adults from the PR strain showed resistance to spirotetramat (Table 5). Khalighi
et al. [37] reported that etoxazole-resistant strains did not have cross-resistance to cyenopy-
rafen and cyflumetofen. Cyflumetofen and cyenopyrafen show an increased acaricidal
effect when P450 activity is inhibited. P450s and glutathione-S-transferases have been
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related to the acaricidal effect of cyflumetofen [33,38]. Pyflubumide is classified in the
new subgroup 25B (carboxanilide) in the IRAC (Insecticide Resistance Action Committee)
MoA classification as a novel inhibitor of mitochondrial complex II on the respiratory
chain and has a similar mechanism to cyenopyrafen and cyflumetofen, so resistance to this
compound may have developed via the same factors [39,40]. Spirodiclofen, spiromesifen,
and spirotetramat have sterility effects on adult females and ovicidal effects on eggs but
do not have a control effect on adults [41]. Therefore, abamectin, acequinocyl, bifenazate,
and fluxametamide will be effective in controlling adults that have developed resistance to
etoxazole and pyridaben. In a previous report, Marcic et al. showed that the toxicity of
spirotetramat to eggs is most likely caused by its residual effect on hatching larvae [42].

We also compared the acaricidal activities of etoxazole and pyridaben in resistant
groups and field populations. As a result, all field populations showed resistance to the two
acaricides (Tables 6 and 7). Etoxazole has been used for over 20 years since its registration
in Korea in 1998, and pyridaben has been used for nearly 30 years since its registration
in Korea in 1992 [30,43]. Resistance to the two acaricides began to be reported in the late
1990s [11,15,22]. All field populations had some level of resistance because resistance has
steadily developed with the long-term use of these chemicals [7,16–18]. Based on this
result, we treated resistant groups and eight field populations with ten different acaricides
on. Since the pesticides used in each region may be different, there may be differences
in the degree of resistance development to each pesticide. In all of the field populations,
spirodiclofen and spiromesifen had an acaricidal effect of more 77.5% in eggs.

The results of the genotype frequency analysis of the H92R point mutation showed
that the OC and YI populations had a lower frequency than the other populations, but
the bioassays showed that the resistance ratio was more than 5480-fold (Table 9). In this
regard, it has been reported that cyflumetofen and cyenopyrafen-resistant mites have cross
resistance to pyridaben [37,43]. Additionally, the mutation frequency of the I1017F gene
was different for each region, and the resistance ratio was the same by more than 25,500
times. The reason for this is that although there is a difference in the degree of resistance
by region, it seems that the same result appeared because it was not treated at a dose of 500
ppm or more. All field populations had resistance to most of the acaricides used in this
experiment. Spirodiclofen and spiromesifen showed excellent effects in the eggs of field
populations with complex resistance and may be effective in controlling T. urticae.

5. Conclusions

To control T. urticae effectively, the alternation of acaricides is necessary, and indis-
criminate pesticide use should be avoided. Before applying an acaricide, the degree of
resistance development should be checked. The development of resistance to etoxazole
and pyridaben can be diagnosed using the I1017F and H92R point mutations as resistance
diagnostic markers. Almost all field populations have multiple resistance genes; therefore,
continuous research on the development of resistance is needed.
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