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It has long been hypothesized that pretend play is beneficial to social and cognitive
development. However, there is little evidence regarding the neural regions that are
active while children engage in pretend play. We examined the activation of prefrontal
and posterior superior temporal sulcus (pSTS) regions using near-infrared spectroscopy
while 42 4- to 8-year-old children freely played with dolls or tablet games with a social
partner or by themselves. Social play activated right prefrontal regions more than solo
play. Children engaged the pSTS during solo doll play but not during solo tablet play,
suggesting they were rehearsing social cognitive skills more with dolls. These findings
suggest social play utilizes multiple neural regions and highlight how doll play can achieve
similar patterns of activation, even when children play by themselves. Doll play may
provide a unique opportunity for children to practice social interactions important for
developing social-emotional skills, such as empathy.

Keywords: development, social processing, empathy, play, fNIRS (functional near infrared spectroscopy)

INTRODUCTION

Although children’s play is studied extensively, a definition as to what play is has not yet reached
consensus (for a review, see Lillard, 2014). When children are asked, they describe playing as
simply something they find fun (Downey et al., 2007). It is however generally agreed that play
appears in many different forms including pretend or symbolic play, games with rules, language
play, rough-and-tumble play, and construction play (Burghardt, 2010).

One of the more recognized and researched forms of play is ‘‘pretend play’’ (or symbolic play
or fantasy play), where children playfully distort reality to behave in a nonliteral, ‘‘as if’’ mode
(Fein, 1981). A common element of children’s pretend play is the presence of toys and dolls which
act to encourage children’s pretense (Singer and Singer, 1990). Pretend play was originally argued
to emerge when children reach the age of two and thereafter declines between the ages of four
and seven (Piaget, 1962). However, it is increasingly recognized that play, and pretend-play in
particular, continues beyond this age (e.g., Singer and Singer, 2005; Lillard, 2014).

Pretend play is argued to provide benefits in the development of social processing (Lillard,
2017) and executive function (see Carlson and White, 2013; Sachet and Mottweiler, 2013). Regular
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play with others provides advantages in aspects of social
understanding, in terms of references to the thoughts and
feelings of others (Youngblade and Dunn, 1995; Howe et al.,
2014; Tessier et al., 2016), perspective taking (Dunn and
Cutting, 1999; Harris, 2000), and empathy (Brown et al.,
2017). However, the correlational nature of these studies limit
conclusions regarding causation (see Lillard et al., 2013). In
terms of children’s executive function, evidence from both
correlational and intervention studies have found ‘‘pretend-
play’’ to be associated with improvements in executive function
skills (Albertson and Shore, 2009; Kelly and Hammond, 2011;
Thibodeau et al., 2016), as children must inhibit reality to
maintain the imagined components of play (Carlson et al., 2014),
and use their working memory to retain and recall information
regarding their play (Pierucci et al., 2014).

Although, play is considered a largely social activity (Lillard,
2017), pretend play can occur in both social contexts with a play
partner and in the solitary form (Garvey, 1974), and solitary
play is considered to be a preference for some children (Coplan
et al., 2014; Ooi et al., 2018). Indeed, in one survey of children
between the ages of 4 and 12, over a third of children reported
playing with dolls and toys as one of their favorite activities, but
only when playing alone, and this was mostly reported by the
younger children (Downey et al., 2007). However, Piaget (1962)
contended that all pretend play activities are social to an extent, as
even solitary pretend play is a performance to an imaginary other.

Play in the Brain
Limited research has investigated brain activation during
children’s play. Due to the practical challenges of measuring
brain activity during natural play, most research into the neural
correlates of social interactions has used highly controlled tasks
that have examined electrical activity (electroencephalography,
EEG) or blood flow (functional near infrared spectroscopy,
fNIRS) during episodes of brief social interaction or observation
of social stimuli (e.g., mutual gaze or infant-directed speech)
vs. lack of social interaction or observation of social stimuli
(e.g., lack of eye contact or non-social stimuli). For example,
Lloyd-Fox et al. (2009, 2015) have found activation in fNIRS
optodes consistent with posterior superior temporal sulcus
(pSTS) activation during processing of social and communicative
stimuli, relative to non-social and non-communicative stimuli in
infants and toddlers (Hakuno et al., 2018). These findings are
consistent with pSTS being recruited during social interactions
and social processing (e.g., the theory of mind) in functional
magnetic resonance imaging (fMRI) studies in adults (Redcay
et al., 2010; Lahnakoski et al., 2012; Deen et al., 2015). Whether
naturalistic play activates these same brain regions is, as yet,
unknown. Given that the pSTS is active during minimal social
interactions in lab settings (e.g., shared attention on a toy), one
would expect that active and natural play with another person
would activate this region, especially when engaging in pretend
play that enables social perspective-taking and representation of
others’ emotions and thoughts.

The neural correlates of executive function are relatively
well established across paradigms and ages. fMRI, EEG, and
fNIRS research all indicate that the prefrontal cortex (PFC)

is activated during executive functioning tasks that include
inhibition and working memory (Burgess and Stuss, 2017).
In preschool-aged children, for whom executive functioning
skills are still emerging, individual differences in executive
functioning correlate with differences in brain activation of this
region. For example, in an fNIRS study with 3- and 5-year-
olds, Moriguchi and Hiraki (2009) found that prefrontal areas
were only activated during executive function tasks for those
children who successfully performed the task and not those
who made errors. Similar findings of individual differences in
executive function skills relating to cortical activation of the
PFC region have been found in adults using fNIRS (Yasumura
et al., 2014). As far as we are aware, direct measurement of
prefrontal activity during natural play that involves executive
function skills like planning and inhibition has not been
carried out.

The orbitofrontal cortex (OFC) is associated with reward
processing and positive affect (Berridge and Kringelbach, 2008).
For example, Minagawa-Kawai et al. (2009) found greater
OFC activation (using fNIRS) when infants viewed their own
mothers’ smiles than when they viewed an unfamiliar mother’s
smile. In mothers, OFC activation was specific to viewing
their infants, relative to unfamiliar infants, and was related
to behavioral ratings of pleasant mood. Similar effects of
rewarding and motivating stimuli on OFC have been found
across multiple methodologies and ages (e.g., May et al., 2004;
Kida and Shinohara, 2013). If children find certain kinds of play
particularly rewarding and motivating, OFC activation should
evidence this.

Current Research
In the current research, we investigate the unique neural
correlates of pretend play (in the form of doll play) relative
to other play (tablet games) in a naturalistic setting. We
collected fNIRS data from 4- to 8-year-old children while
they engaged in varying forms of play either alone or with
a social partner (i.e., an experimenter). Children in this age
range were old enough to follow directions, play on their own,
and maintain attention for the duration of the task but were
young enough to engage in natural play in these settings. As
a contrast to doll play, tablet games were chosen that allowed
creative and open play (i.e., no set rules or objectives) and
were suitable for this age range but did not involve doll play.
In the chosen tablet games (described in more detail in the
‘‘Materials and Methods’’ section), children cut and styled
hair or built towns. We included both solo and joint play to
examine whether brain activity was different when children
engaged in these forms of play by themselves or with a social
partner. Our regions of interest (ROIs) covered elements of
functional networks related to empathy and perspective taking
(pSTS; Hakuno et al., 2018), executive function (PFC; Moriguchi
and Hiraki, 2009), and reward-seeking (OFC; Minagawa-Kawai
et al., 2009). Our key questions concerned which brain areas
would be selectively engaged during doll play, relative to tablet
play, and whether this was consistent across the solo and
joint play.
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MATERIALS AND METHODS

Participants
Forty-two typically developing children aged between 4- and 8-
years-old (M = 5.5 years, SD = 1.2; 22 females) were recruited
via a participant database of volunteer families interested in
participating in research in the local region. We were able to
acquire full fNIRS data from 33 of the participants. Participants
were excluded because of insufficient data (n = 5), experimenter
or equipment failure resulting in bad fNIRS recordings (n = 3),
or a statistical outlier in hemoglobin concentrations (>2 SD in
multiple channels; n = 1). The excluded participants were noted
to have touched the cap frequently or to have pulled sensors out
during testing.

Participants were excluded from recruitment if their parents
had described them as having neurological abnormalities,
developmental delays, or special education needs. Written
informed consent was obtained from the participant’s parent or
caregiver before the start of the experiment. Participants were
given a certificate and a prize worth approximately £10 for
their participation. The ethical review panel in the School of
Psychology at Cardiff University reviewed and approved all
procedures and written informed consent to participate in this
study was provided by the participants’ legal guardian (approval:
EC.19.06.11.5641RA).

Procedure
Before the start of the experiment, children were given the chance
to familiarize themselves with an experimenter by playing with
them in a reception area. The child’s head was then measured to
ensure that the correct cap size was set-up. The parent and child
were then guided to the testing room where the child was asked
to sit on a carpet square on the floor and to face a wall-mounted
computer monitor.

Once seated, children were capped and the lighting in the
room was dimmed to allow for better data acquisition. While
the primary experimenter carried out capping and calibration of
the fNIRS equipment, the familiar experimenter briefly showed
the child how to play the two tablet games to ensure that children
knew how to play the games without assistance. Once the primary
experimenter had achieved a good signal quality, the parent or
caregiver was encouraged to observe from an adjoining room. If
a parent preferred to stay in the room, they were prompted not to
interact with their child, and to sit on a chair in the corner of the
room; we confirmed via a video recording that parents did not
interfere with the task.

The fNIRS testing session began with the child sitting quietly
and watching a 5-min space video. Then the play blocks began.
In the first two blocks, the child and the familiar experimenter
played together with dolls and with the tablet. The child then
played by themselves for the next six blocks, alternating between
doll-play and tablet-play. The session concluded with two blocks
while the child and familiar experimenter played together with
the dolls and tablet. The order of presentation of tablet games and
doll sets was counterbalanced barring the last two blocks where
the child got to choose their favorites to play with a second time.

Children were allowed to take breaks during testing or could
stop the session early if desired. The entire testing session lasted
approximately 60 min.

Materials
Parent Questionnaire
While children were engaged in the task, parents were asked to
complete a short questionnaire regarding their child’s experience
with tablets and dolls. Parents reported whether or not their
children played with tablet devices and dolls at home and
school/daycare. They were asked open questions about how often
their child played with the toys, whether they play independently
or socially, and what forms of toys (tablet games and types of
dolls) children played with at home. They were asked to rate how
much their child enjoyed each type of play on a Likert scale from
1 (not at all) to 5 (very much).

Task and Stimuli
Timing and order of the play blocks were controlled by E-Prime
3.0 (Psychological Software Tools, Sharpsburg, PA, USA) and
stimuli were presented on an IIyama ProLite 24 "LCD monitor.
The primary experimenter controlled the beginning of each block
with a button press once the child was ready to begin. During
each play session, either doll or tablet, the screen was black with
small text in the corner indicating the current block and what
the next block would be; to prepare and minimize transition time
between blocks. Before each play block, a 10-s baseline video
of five pseudorandom images of clipart vegetables (broccoli,
onions, carrots, pumpkin, eggplant, radishes, and cucumber) on
a black background was presented on the center of the screen for
1.5 s each, interspersed with a white fixation cross on for 0.5 s
(Figure 1). Following the baseline video, thematerials for the play
block were then set up in the room.

Joint Play
At the beginning and end of the session, participants engaged
in joint play sessions with the experimenter. Each play session
lasted 4 min and the order in which the child engaged in doll
vs. tablet play session was counterbalanced between participants.
The first doll block was always the family set. Following the
solo play blocks, the child was prompted to again play with the
experimenter. For these blocks, the child chose their favorite set
of dolls and tablet games to play with them again. During all joint
play sessions, the second experimenter allowed the child to lead
the play session.

Solo Play
The joint play sessions were followed by six solo play sessions,
each lasting 4 min. The sessions alternate between doll and tablet
play and the order in which the different doll sets and the two
tablet games were presented was randomly determined. During
solo play sessions, the secondary experimenter sat behind the
participant and did not engage with them. A similar method
has been used in previous research and has been found not to
influence children’s play (Krafft and Berk, 1998). If participants
attempted to engage them, they responded as briefly as possible.
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FIGURE 1 | Experimental paradigm for the testing session. Between every play block, there was a 10-s baseline of vegetables that flashed on the screen. The
session began with one joint play block of tablet and doll play. Three blocks of solo tablet and three blocks of solo doll play alternated before the session ended with
one joint tablet and one joint doll play blocks.

Tablet Games
Toca Hair Salon 3 (Toca Boca, Stockholm, Sweden) and Hoopa
City 2 (Dr. Panda, Chengdu, China) were selected because they
were engaging, open-ended, and did not involve any stringent
rules. These criteria were chosen to align tablet-play style with
doll-play on creativity and child guided play. Toca Hair Salon
3 is a hairdressing game in which players can wash, cut, and style
one of four character’s hair. Hoopa City 2 is a city-building game
in which players can place roads, buildings, and parks onto a
map (Figure 1). The tablet games were played on a 12-inch iPad
3 IOS 9.3.5.

Doll Sets
Four different sets of dolls were used in the current experiment:
the family set, the careers set, the estate set, and the animals set
(see Supplementary Materials). The sets weremade up of several
Barbie (Mattel Co., El Segundo, CA, USA) playsets and additional
individual dolls. Before each participant, the dolls were checked
and returned to their starting positions to ensure consistency
across participants.

Video Recording
The experiment was recorded using both a Logitech C270 720p
Webcam attached to the monitor and a Canon LEGRIA HF
R706 camera mounted on a tripod in the corner of the room
to view play over the child’s shoulder. This allowed the capture
of both the child’s facial expressions and actions during play.
The cameras were adjusted before the start of each experiment
to ensure that the child was captured.

fNIRS Data Acquisition
The measurement of the concentration changes in oxygenated
hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-
Hb) was carried out via the NIRScout fNIRS system and NIRStar
software (NIRX, Medizintechnik, GmbH, Berlin, Germany). The
system operated at both 760 and 850 nmwavelengths, with a scan

rate of 3.91 Hz. Sixteen sources and 16 detectors were used for
this experiment, making a total set of 41 source-detector pairs.
The sources and detectors were inserted into a flexible nylon
NIRScap (NIRX) worn by the participant for the duration of the
experiment. The distance between the sources and detectors was
fixed at 3 cm.

The positioning of the source-detector pairs was customized
for this experiment, with the optode pairs covering the frontal,
temporal, and parietal cortices (Figure 2). The optodes were
positioned in such a way to record oxy-Hb and deoxy-Hb
concentrations in the following ROIs: orbitofrontal (OFC) and
prefrontal (PFC) cortices in the front and bilateral pSTS in the left
and right hemispheres. The cap was placed so that the front seam
rested just above the participant’s eyebrows and the participant’s
ears pulled through the earholes on both sides maintaining a
consistent cap placement.

fNIRS Data Processing
Processing of the fNIRS data was carried out via nirsLAB
v.2019.04 (NIRX, Medizintechnik, GmbH, Berlin, Germany)
following the reporting recommendations by Pinti et al. (2019).
Brief spikes or discontinuities (i.e., <1 s in duration) in the
raw optical time-series data were manually identified and
interpolated in all channels. Each channel with a gain setting
greater than 6 (maximum system gain = 7) was then visually
inspected and channels with excessive noise were removed from
further analysis. A finite impulse response bandpass filter from
0.03 to 0.8 Hz was then applied to the optical data with a 15%
roll-off. These filter cutoffs were based on previous research with
similar designs (Gervain et al., 2008; Perdue et al., 2014; Ravicz
et al., 2015) and were aimed to remove slow drift and higher
heart rate fluctuations. The optical data were then converted into
hemodynamic states using the modified Beer–Lambert Law.

Hemodynamic data were baseline corrected to the preceding
20-s before the onset of each play block (including baseline
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FIGURE 2 | Schematic of optode placement on the scalp and the estimated channel locations used for data analysis. Bilateral panels of five sources (red) and
four detectors (blue) separated by 3 cm were placed centered on the international 10-20 system sites CP5 and CP6 resulting in 12 channels (white) per hemisphere.
A frontal panel of six sources and eight detectors separated by 3 cm was placed with the bottom row of optodes over the Fp1, Fpz, and Fp2 sites.

and set up for subsequent block). Mean Oxy-Hb and deoxyHb
concentrations were first averaged across similar blocks of joint
and solo doll or tablet play, then the concentrations were
averaged across the 4-min blocks. Finally, because we did not
measure the precise placement of the optodes, we averaged the
activity in clusters of optodes overlying our ROI: left OFC (25,
28, 30), right OFC (27, 32, 33), left PFC (34, 35), right PFC (40,
41), left pSTS (14, 18, 19, 20, 21, 22), and right pSTS (2, 6, 7,
8, 9, 10). These regions were defined based on previous fNIRS
research and research that co-registered MRIs with fNIRS to
identify underlying regions (Lloyd-Fox et al., 2009, 2014).

Statistical Analysis
To examine the differences in neural activation during joint
or solo play with dolls or tablet games, we conducted
separate analyses using a within-subjects 2 Social Context
(Joint/Solo) × 2 Play Type (Doll/Tablet) × 2 Hemisphere
(Left/Right) repeated measures ANOVA (rmANOVA). We
measured activation in anatomical fields covering elements of
functional networks related to empathy and perspective taking
(pSTS), executive function (PFC), and reward-seeking (OFC).
For all tests, α < 0.05 was considered significant. We also
included child sex as a between-subjects factor in all models to
explore whether brain activation is consistent between boys and
girls. In preliminary analyses, we also included age as a covariate.
As no main effects or interactions with age emerged, we removed
this variable from subsequent analyses because it reduced power.
All significant interactions were examined using post hoc t-tests.

Statistical tests were conducted for both oxy-Hb and
deoxy-Hb and results from the deoxy-Hb can be found in
Supplementary Materials.

RESULTS

Questionnaire Responses
Thirty (90.91%) of the 33 children had parents complete the
questionnaire on their experience with tablets and dolls. Of these,
29 (96.67%) parents reported that their children used a tablet

at home and 22 (73.33%) reported that their child played with
dolls at home. Twenty-two (73.33%) parents reported that their
children used a tablet at school [two (6.67%) reported they did
not; six (20%) reported that they did not know], and 12 (40%)
reported that they played with dolls at school [seven (23.33%)
reported they did not; 11 (36.67%) reported that they did not
know]. The one parent who reported that their child did not play
with a tablet device at home reported that their child did use a
tablet at school. Based on this evidence, we were confident that
children would be proficient in using a tablet during both solo
and joint play and that a lack of familiarity with either type of toy
would not drive any differences between conditions.

Posterior Superior Temporal Sulcus
To examine whether or not doll play activates more social
regions of the brain relative to tablet play, we conducted a
2 Social Context × 2 Play Type × 2 Hemisphere rmANOVA
using oxy-Hb concentrations from the pSTS regions. Results
revealed a significant interaction between Social Context and
Play Type (F(1,31) = 5.242, p = 0.029, η2p = 0.145). Post hoc
analyses revealed no differences in pSTS activation during joint
play (doll: M = 3.00, SD = 0.057; tablet: M = 3.01, SD = 0.074;
t(31) = 0.667, n.s.). During solo play, dolls (M = 3.02, SD = 0.045)
elicited significantly greater activation than tablet play (M = 2.97,
SD = 0.107; t(31) = 2.368, p = 0.024; Figures 3A, 4). There were no
significant effects or interactions involving the child’s sex.

Prefrontal Cortex
To examine whether or not tablet play activates regions of the
brain associated with behavioral control (i.e., executive function),
we conducted a 2 Social Context × 2 Play Type × 2 Hemisphere
rmANOVA using oxy-Hb concentrations from the PFC region.
Results revealed a significant main effect of Hemisphere
(F(1,31) = 5.995, p = 0.020, η2p = 0.162) qualified by a significant
Social Context × Hemisphere interaction (F(1,31) = 6.161,
p = 0.019, η2p = 0.166). Post hoc analyses of the interaction
revealed significantly greater activation in the right PFC during
joint play (M = 3.034, SD = 0.057) relative to solo play (M = 3.003,
SD = 0.068; t(31) = 2.583, p = 0.015) and relative to activity in the
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FIGURE 3 | Oxygenated hemoglobin (Oxy-Hb) concentrations during Joint
and Solo play. (A) Activation in the posterior superior temporal sulcus (pSTS)
for doll and tablet blocks. (B) Activation in prefrontal cortex (PFC) in the left
and right hemispheres. (C) Activation in the orbitofrontal cortex (OFC)
between males and females.

left PFC (joint:M = 3.003, SD = 0.068; t(31) = 3.00, p = 0.005; solo:
M = 3.000, SD = 0.074; Figure 3B) across both doll and tablet
play. There were no significant effects or interactions involving
the child’s sex.

Orbitofrontal Cortex
To examine whether doll or tablet play activates regions of
the brain associated with processing rewarding events, we
conducted a 2 Social Context × 2 Play Type × 2 Hemisphere
rmANOVA using oxy-Hb concentrations from the OFC region.
Results revealed a significant Social Context × Sex interaction
(F(1,31) = 4.283, p = 0.047, η2p = 0.121). Post hoc analyses of the
interaction suggest females (M = 3.036, SD = 0.096) had greater
OFC activation relative to boys (M = 2.983, SD = 0.130) during

solo play, however, the contrast was not significant (t(31) = 1.893,
p = 0.068). There were no differences between girls (M = 2.997,
SD = 0.113) and boys (M = 3.034, SD = 0.147) in OFC during
joint play (t(31) = 1.121, n.s.) or between joint and solo play in
either group (Figure 3C).

DISCUSSION

This is the first experiment to directly test the neural correlates
of play in young children. We found that the pSTS, a brain
region associated with social processing and empathy, is activated
when children play with a social partner, regardless of whether
that play is with dolls or a tablet. Interestingly, however, when
playing alone, this region is more engaged during doll play
than tablet play. This supports behavioral findings that pretend
play supports social processing and empathic reasoning (Dunn
and Cutting, 1999; Brown et al., 2017) and raises new queries
regarding the benefits of solo vs. social play.

That pSTS activity did not differ between play forms when
children played with a social partner suggests that children can
rehearse social perspective-taking and empathy when playing
with a partner, regardless of whether that play takes the form
of pretend play with dolls or creative play on a tablet. This
is consistent with findings suggesting that screen-time is most
beneficial for social and cognitive development when carried out
interactively (e.g., Supanitayanon et al., 2020).

The interaction between social context and play type was
driven by the fact that, when playing alone, there was more pSTS
activity for a doll than tablet play. This provides support for
Piaget’s (1962) classic claim that all pretend play is inherently
social in that it allows the rehearsal of social interactions and
social perspective taking (Harris, 2000). Pretend play with dolls
therefore provides a unique outlet for practicing social and
empathic skills even when playing by oneself.

There were no differences in terms of PFC activation,
associated with executive functioning, between doll and tablet
play. This implies that children did not recruit executive function
skills differentially when playing with different toys. Although
these findings contrast previous research finding associations
between executive function and pretend play in preschool-aged
children (e.g., Albertson and Shore, 2009; Kelly and Hammond,
2011), they are in line with research findings in older children
where these associations are not found (Hoffman and Russ,
2012). An interaction between the hemisphere and social context
of play indicated that the right PFC was more activated during
joint than solo play (but this was not the case for left PFC). This
suggests that social play requires more behavioral control than
solo play, but why this effect is specific to the right hemisphere is
an open question.

In terms of reward processing, no difference in OFC
activation was found between different forms of play, but a
gender by social context interaction indicated that there was
marginally less activation for boys than girls during solo play.
This implies that boys might find solo play less rewarding
than joint play, whereas girls find solo and joint play equally
rewarding. This should be interpreted with caution, however,
given that the post hoc tests were only marginally significant.
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FIGURE 4 | The difference in cortical activation between doll and tablet play in the solo social context. Greater values represent more oxygenated (above) and
deoxygenated (below) hemoglobin in the doll relative to the tablet play.

The findings from this experiment are unique in that they
measured brain activity during live, natural play. The play was
open-ended and no instructions were given to children except
to play how they would like. The fact that the pSTS, a social
processing region, was activated during open-ended play thus
bolsters previous laboratory-based findings indicating that this
region is important for social interactions, social processing,
and empathy (Lloyd-Fox et al., 2009, 2015; Redcay et al., 2010;
Lahnakoski et al., 2012; Deen et al., 2015; Hakuno et al., 2018).
Doll and tablet play sessions were designed such that both would
allow free, creative play with no set goals or objectives. Although
doll play is often categorized as an activity for girls rather than
boys, we found no gender differences in brain activity when
playing with either dolls or tablets. This suggests that the benefits
of play are not unique to either gender.

These findings have implications for potential interventions.
Previous research in 4- to 7-year-old children has found that a
preference for playing alone in various play activities is associated
with teachers’ ratings of the children’s behavior as asocial,
experiencing peer exclusion, and is negatively associated with
mother’s ratings of their social engagement (Coplan et al., 2014;
Ooi et al., 2018). Whilst it could be that children prefer to play
alone because they experience peer exclusion, it could also be
that those who prefer solitary play do not gain the advantage

in social skills afforded by social play. If pretend play with dolls
does help children practice these social skills without the threat of
exclusion or rejection, this could be one avenue to improve social
functioning in these children.

Although measuring brain activity during natural play has
many advantages, it also limits the conclusions we can draw from
the current findings. Whether particular brain activity reflects
rehearsal of the skills typically associated with that region cannot
be directly assessed in the current experiment. Future research
should build on the current findings by assessing whether
individual differences in brain activity related to variability
in behavior that reflects practicing these skills (e.g., empathy,
perspective-taking, and executive function), and whether there
is a subsequent improvement in these skills.

This research provides the first evidence that social processing
brain regions are similarly active during pretend play with
dolls both when playing alone or with a social partner.
The fact that pSTS activation is stronger for doll play than
tablet play specifically when playing alone is consistent with
the notion that pretend play allows children to practice
social interactions even when playing by themselves. The
implications of these findings for those interested in play,
neuroscience, and social development are far-reaching and are
suggestive that research investigating the short- and long-term
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consequences of pretend play on both brain and behavior will
be fruitful.
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