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Irisin, a myokine released during exercise, promotes browning of subcutaneous adipose tissue and regulates en-
ergy homeostasis. Although exercise constantly reduces blood cholesterol, whether irisin is involved in the reg-
ulation of cholesterol remains largely unknown. In the present study, subcutaneous infusion of irisin for 2 weeks
induced a reduction in plasma and hepatic cholesterol in high fat diet-induced obese (DIO) mice. These alter-
ations were associated with an activation of 5 AMP-activated protein kinase (AMPK) and inhibition of sterol reg-
ulatory element-binding transcription factor 2 (SREBP2) transcription and nuclear translocation. In primary

ﬁg‘:oms' hepatocytes from either lean or DIO mice, irisin significantly decreased cholesterol content via sequential activa-

AMPK tion of AMPK and inhibition of SREBP2. Suppression of AMPK by compound C or AMPKa:1 siRNA blocked irisin-

SREBP2 induced alterations in cholesterol contents and SREBP2. In conclusion, irisin could suppress hepatic cholesterol

Cholesterol production via a mechanism dependent of AMPK and SREBP2 signaling. These findings suggest that irisin is a
Liver promising therapeutic target for treatment of hypercholesterolemia.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction 2014; Liu et al., 2013; Duran et al., 2015; Moreno-Navarrete et al.,

Irisin was recently identified as a myokine proteolytically cleaved
from fibronectin type (3 domain containing 5 (FNDC5) (Bostrom et al.,
2012). Exercise could induce irisin expression and secretion into circu-
lation to exert its effects on browning of subcutaneous adipose tissue
(Bostrom et al., 2012; Wu et al., 2014; Shan et al., 2013; Rodriguez
et al, 2015; Lee et al., 2014; Wu et al., 2012), as well as subsequent im-
provement of obesity (Huh et al., 2014; Miyamoto-Mikami et al., 2015)
and its related disorders such as type 2 diabetes (Xiong et al., 2015;
Bostrom et al,, 2012; Vaughan et al., 2014). These observations suggest
that irisin may contribute to the regulation of energy homeostasis and
thus is the potential target for therapy of metabolic dysfunction associ-
ated with obesity. This concept is further supported by clinical observa-
tions. Circulating irisin was found to be reduced in obese human (Yan
et al., 2014; Moreno-Navarrete et al., 2013; Duran et al., 2015; Hou
et al.,, 2015) and rodents (Bilski et al., 2015) and in patients with diabe-
tes (Espes et al.,, 2015; Li et al., 2015a; Choi et al., 2013; Xiang et al.,
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nase; SREBP2, sterol regulatory element-binding transcription factor 2; FNDC5, fibronectin
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BW, body weight; WAT, white adipose tissue; CC, compound C; siRNA, small interfering
RNA.
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2013; Kurdiova et al., 2014), or chronic kidney disease (Wen et al.,
2013; Ebert et al., 2014). Conversely, it was positively associated with
endothelium-dependent vasodialation (Xiang et al., 2014; Hou et al.,
2015; Zhu et al., 2015) and myocardiac infraction in type 2 diabetes
(Aronis et al., 2015; Hou et al,, 2015).

The relationship between irisin and lipid metabolism has been con-
troversial. Evidence suggesting a negative relation between irisin and
lipid dysregulation has been emerging. Circulating levels of irisin were
negatively correlated with total cholesterol, LDL cholesterol and triglyc-
eride (Huh et al,, 2012; Zhang et al,, 2013; Ebert et al,, 2015; Duran et al.,
2015) and intrahepatic triglyceride contents in obese adults (Zhang
et al,, 2013), while positively correlated with HDL cholesterol. In obese
human, diet intervention-induced reduction in glucose and triglyceride
was greater in those with higher baseline irisin levels (Lopez-Legarrea
et al., 2014). Lentivirus-mediated overexpression of FNDC5 or subcuta-
neous perfusion of irisin reduced blood triglyceride, cholesterol, free
fatty acid and glucose in obese mice (Xiong et al,, 2015). Further studies
in vitro showed an inhibitory effect of irisin on palmitic acid (PA)-in-
duced lipid accumulation and lipogenic markers via inhibition of pro-
tein arginine methyltransferase-3 in AML12 cells and mouse primary
hepatocytes (Park et al., 2015). Other studies have suggested a positive
relation between irisin and lipid dysfunction. Circulating irisin levels
were positively associated with total cholesterol, LDL cholesterol and
fasting fatty acids in a Chinese population independent of BMI (Tang
et al,, 2015) and in women with polycystic ovary syndrome (Li et al.,
2015b). Energy restriction induced depletion of irisin was associated
with decrease in total cholesterol, total cholesterol/HDL-cholesterol
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ratio, LDL-cholesterol and apolipoprotein B, independent of changes in
body weight (de la Iglesia et al., 2014). In adults at higher cardiovascular
risk, irisin was negatively associated with HDL cholesterol and large
HDL particles (Panagiotou et al., 2014). In addition, serum irisin was sig-
nificantly higher in patients with nonalcoholic fatty liver disease (Choi
et al,, 2014) and in patients with portal inflammation (Polyzos et al.,
2014). Moreover, plasma irisin was positively related to total cholester-
ol in adults with Prader-Willi Syndrome (Hirsch et al., 2015). Neverthe-
less, other studies have found no significant association of irisin with
raised triglyceride and reduced HDL in obese adults with metabolic syn-
drome (Yan et al., 2014) or with NAFLD (Polyzos et al., 2015). In addi-
tion, irisin has been demonstrated to exercise no effect on either
lipolysis in 3T3-L1 adipocytes or fatty acid metabolism in HepG2 hepa-
tocytes (Wang et al., 2015). Therefore, further investigation is necessary
to define the role of irisin in lipid metabolism.

Here we reported that irisin suppressed cholesterol synthesis in he-
patocytes through the activation of 5° AMP-activated protein kinase
(AMPK) and subsequent inhibition of transcription and nuclear translo-
cation of sterol regulatory element-binding transcription factor 2
(SREBP2).

2. Materials and Methods
2.1. Materials

Antibodies used in the study were: pAMPKa Thr172 (2535, CST,
Beverly, MA, USA) and AMPKa (2532, CST), SREBP2 (ab30682,
Abcam, Cambridge, MA, USA) and p-actin (AT 0001, Milwaukee,
WI). Donkey-anti-rabbit Alexa Fluor® 488-IgG (711-545-152) was
from Jackson ImmunoResearch (West Grove, PA, USA). IRDye-
conjugated affinity purified anti-rabbit and anti-mouse IgGs were
purchased from Rockland (Gilbertsville, PA, USA). Irisin (067-16)
was from Pheonix (Burlingame, CA, USA). Recombinant irisin-Fc
and Fc control were expressed in HEK293 cells (Abgent, Nanjing,
China) and purified by high-performance liquid chromatography.
Oleic acid (OA), collagenase IV and compound C were purchased
from Sigma Aldrich (St. Louis, MO, USA). Alzet microosmotic
pumps (1002) were from DURECT Corporation (Cupertino, CA,
USA). Aprotinin was purchased from Amersham Biosciences (Pitts-
burgh, PA, USA). Triglyceride and cholesterol Colorimetric Assay
Kits were from Cayman Chemical Company (Ann Arbor, MI, USA).
BCA protein quantitative assay kit was from Applied Gene (Beijing,
China).

2.2. Animals

Animals were handled in accordance with the Guide for the Care
and Use of Laboratory Animals published by the US National Insti-
tutes of Health (NIH publication no. 85-23, revised 1996). All exper-
imental protocols were approved by the Animal Care and Use
Committee of Peking University. Mice were housed in standard plas-
tic rodent cages and maintained in a regulated environment (24 °C,
12-h light and 12-h dark cycle with lights on at 7 AM and off at
7 PM). Four-week-old male C57BL/6] mice were fed a normal chow
diet (NCD) or a high-fat diet (HFD) (60% fat, D12492; Research
Diets, New Brunswick, NJ, USA) ad libitum for 14 weeks followed
by 2-week subcutaneous perfusion of irisin-Fc or Fc control at a
dose of 12 nmol/d-kg body weight (BW). Food intake was measured
and averaged for 2 mice in one cage. Mice were sacrificed without
fasting after anesthesia by intraperitoneal injection of pentobarbital
sodium at 70 mg/kg BW. Liver was frozen in liquid nitrogen and
stored in —80 °C freezer for future experiments. Blood samples
were transcardially collected and immediately transferred to chilled
polypropyrene tubes containing EDTA-Na, (12.5 mg/mL) and
aprotinin (1000 units/mL) and centrifuged at 4 °C. The plasma was
separated and stored at — 80 °C before use.

2.3. Implantation of Osmotic Minipumps

The minipumps were placed in a Petri dish with sterile 0.9% saline
at 37 °C for at least 4 h, then filled with the test agent before implan-
tation. Mice were anesthetized with pentobarbital sodium and a
1 cm incision was made in the back skin through which an Alzet os-
motic minipump (model 1002) filled with irisin-Fc or Fc control was
implanted subcutaneously.

2.4. Isolation and Culture of Primary Hepatocytes

Twelve-week old lean or diet-induced-obese (DIO) C57BL/6]
mice were anesthetized with pentobarbital sodium at 60 mg/kg
BW and injected intraperitoneally with 1000 IU heparin. After lapa-
rotomy, the portal vein was cannulated. The liver was perfused
with 20 mL of pre-warmed 37 °C Hanks buffer, followed by 20 mL
of 0.02% collagenase IV at a flow rate of 2 mL/min. After perfusion,
liver tissues were removed and washed with warm Hanks buffer.
Liver capsule was removed, and hepatic tissues dispersed and incu-
bated in 20 mL of 0.01% collagenase IV in a shaking water bath at
37 °C for 20 min. Cell suspension was then filtered through 80-pm
nylon mesh twice, centrifuged at 500 rpm [SorvallRT7 Benchtop Cen-
trifuge with RTH 250 rotor (Ramsey, MN)] and washed twice with
DMEM to remove tissue dissociation enzymes, damaged cells, and
nonparenchymal cells. Dispersed hepatocytes were counted and
seeded at a concentration of 1-2 x 10° cells per well in a 6-well
plate containing 2 mL of high glucose DMEM supplemented with
10% (vol/vol) FBS. Cells were cultured at 37 °C in a humidified atmo-
sphere of 5% (vol/vol) CO,. Culture medium was changed to high
glucose DMEM supplemented with 2% (vol/vol) FBS 24 h later. Hepa-
tocytes were then treated with 10 nM irisin for 20 min or 3, 6, 12 and
24 h as indicated in the absence or presence of 125 uM OA. Where in-
dicated, compound C was added 1 h prior to the addition of irisin and
OA.

2.5. Cell Culture and siRNA Transfection

HepG2 cells were cultured with high glucose DMEM supplemented
with 10% (vol/vol) FBS at 37 °C in a humidified atmosphere of 5% (vol/
vol) CO,. Cells were seeded in a 12-well plate at 30-50% confluency.
siRNA was transfected using siRNA-Mate (G04002, GenePharma,
Shanghai, China) following the manufacturer's instructions. Culture me-
dium was changed to high glucose DMEM supplemented with 2% (vol/
vol) FBS 48 h later. Cells were stimulated with 10 nM irisin for 12 h or
24 h as indicated. siRNA sequences were for Scrambled sense: 5’'-
UUCUCCGAACGUGUCACGUTT-3’, antisense: 5’-ACGUGACACGUUCG
GAGAATT-3’; for siAMPKa 1 sense: 5'-CGGGAUCAGUUAGCAACUATT-
3, antisense: 5'-UAGUUGCUAACUGAUCCCGTT-3".

2.6. Measurements of Triglyceride and Cholesterol Content

Twenty milligram liver tissues were homogenized in 1 mL of 2:1 chlo-
roform/methanol mix on ice and placed at 4 °C for 18 h. Two hundred mi-
croliters of distilled water was added to the homogenates. The mixture
was vortexed, then centrifuged for 10 min at 3000 rpm, 4 °C. The lower
phase was collected, lyophilized and resolved in 5% Triton X-100 in PBS
for measurements of lipids. Primary hepatocytes were homogenated ac-
cording to manufacturer's instructions, and the supernatant was used
for lipid detection. Plasma, hepatic and primary hepatocytes triglyceride
and cholesterol were measured according to the manufacturer's instruc-
tions. Values were normalized to protein concentration.

2.7. Western Blot Analysis

Liver tissues and primary hepatocytes were homogenized in
RIPA lysis buffer. Proteins were subjected to SDS/PAGE separation
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Fig. 1. Effects of irisin on adiposity. Four-week-old C57 BJ/L6 mice were fed NCD or HFD for 16 weeks. During the last 2 weeks, irisin was infused into mice subcutaneously at a dose of
12 nmol/d- kg body weight via an osmotic pump. a. Body weight. b. Cumulative food intake. c. Organ mass. d. HE staining of eWAT and sWAT. e. OGTT and ITT. #P < 0.05 vs HFD Fc.

N =6.

with a 8-10% running gel, then transferred to a nitrocellulose mem-
brane. Membranes were incubated for 1 h at room temperature with
5% fat-free milk in Tris-buffered saline containing Tween 20, followed
by incubation overnight at 4 °C with primary antibodies. Specific reac-
tion was detected by using IRDye-conjugated second antibody and visu-
alized using the Odyssey infrared imaging system (LI-COR Biosciences,
Lincoln, NE, USA).

2.8. Gene Expression Analysis

For analyses of gene expression, RNA was extracted from mouse
liver or primary hepatocytes using RNATrip (Applied Gene, Beijing,
China) and reverse-transcribed into cDNAs using the First-Strand Syn-
thesis System for RT-PCR kit (Fermentas, Lafayette, CO, USA). SYBR
Green-based quantitative real time-PCR was performed using the
Mx3000 multiplex quantitative PCR system (Stratagene, La Jolla, CA,
USA). Triplicate samples were collected for each experiment to deter-
mine relative expression levels. All gene expression levels were normal-
ized by p-actin. Sequences for the primer pairs used in this study are
listed in Supplemental Table 1.

2.9. Immunofluorescent Staining

Liver frozen sections and isolated hepatocytes were washed with
PBS three times and fixed in 4% paraformaldehyde for 20 min, followed
by permeabilization with 0.05% Triton X-100 in PBS for 20 min. Nonspe-
cific binding were blocked by 4% goat serum for 1 h. Liver slides or hepa-
tocytes were then incubated with anti-SREBP2 (1:100) overnight at
4 °C. After 3-time wash in PBS, the liver slides or hepatocytes were incu-
bated with anti-rabbit Alex fluor488-conjugated IgG (1:500) at room
temperature for 1 h followed by incubation of Hoechst for 15 min. Fluo-
rescent signals were observed and captured under a confocal laser-
scanning microscope (Leica). The signal intensity was analyzed by soft-
ware Leica Qwin 2.6.

2.10. Nuclear Fraction Extraction

Primary hepatocytes cultured in a 6-well plate were washed twice
with cold PBS and collected in 100 pL of 1 x hypotonic buffer containing
20 mM Tris-HCl of pH 7.4, 10 mM NaCl and 3 mM Mg(l, followed by in-
cubation on ice for 15 min. Five microliter detergent (10% NP40) was
added and vortexed for 10 s, then centrifuged for 10 min at 3000 rpm
at 4 °C. The supernatant contained the cytoplasmic fraction. The
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Fig. 2. Effects of irisin on plasma and hepatic lipid contents. C57 BJ/L6 mice fed NCD or HFD for 14 weeks were infused with irisin at a dose of 12 nmol/d-kg body weight for two weeks. a.
Plasma cholesterol and triglyceride contents and FPLC-separated lipoprotein fractions. b. Hepatic total and esterified- cholesterol and triglyceride contents. c. Oil red O staining of liver and
lipid area quantification. d. HE staining of liver. *P < 0.05 vs NCD Fc; #P < 0.05, ##P < 0.01, ###P < 0.001 vs HFD Fc. N = 6. See also Supplemental Fig. 1.

remained nuclear pellets were re-suspended in 50 pL cell extraction
buffer (containing 100 mM Tris-HCl of pH 7.4, 2 mM Na3VO,4, 100 mM
NaCl, 1% Triton X-100, 1 mM EDTA, 10% glycerol, 1 mM EGTA, 0.1%
SDS, 1 mM NaF, 0.5% deoxycholate and 20 mM Na4P,07) pre-
supplemented with 1 mM PMSF and protease inhibitor cocktail and
ultrasonicated, followed by centrifugation for 30 min at 14,000 g, 4 °C.
Supernatant was collected as the nuclear fraction.

2.11. Fast-protein Liquid Chromatography Fractionation of Lipoproteins

Two hundred microliter of plasma aliquots were pooled from 6 mice
per group and applied to Tricorn high-performance Superose S-6 10/
300GL columns using a fast-protein liquid chromatography system
(Amersham Biosciences, Marlborough, MA, USA), followed by elu-
tion with FPLC buffer (pH 7.4, containing 8.775 g NaCl, 3.58 g
Na,HPO4-12H,0 and 37.2 g EDTA in 1 L distilled water) at a constant
flow rate of 0.75 mL/min. Eluted fractions (500 pL) were assayed for
triglyceride and cholesterol concentrations.

2.12. Oil Red O Staining

Liver frozen sections were rinsed in PBS three times, then fixed with
4% paraformaldehyde for 10 min. After washing, slices were incubated

in 0.3% oil-red staining solution for 1 h at room temperature. Samples
were then counterstained with hematoxylin for 30 s, followed by
wash in running water for 60 min. All slides were mounted with 90%
glycerol and stored at 4 °C before observation. The signal intensity was
analyzed by software QWin 2.6.

2.13. Glucose Tolerance Test and Insulin Tolerance Test

For oral glucose tolerance tests, mice were fasted for 16 h
followed by intragastric administration of glucose (3 g/kg BW)
by gavage. For insulin tolerance tests, mice were fasted for 6 h,
followed by intraperitoneal injection of insulin (1 IU/kg BW).
Blood was drawn from the tail vein at 0, 15, 30, 60, 90 and
120 min, and blood glucose concentrations were detected
immediately.

2.14. Statistical Analysis
All data are expressed as mean + SEM. Statistical difference was

determined by Student's t test or two-way ANOVA and post-hoc
Bonferroni test. P < 0.05 was considered significant.



H. Tang et al. / EBioMedicine 6 (2016) 139-148 143

a
w5' NCD Fc [ NCD Irisin
B4+ [ HFDFc @ HFD Irisin
Q@
2’
€ 24
[
-% 14 # . # o«
@
X Q-
Srebf2 Hmgcr Hmgcs Nr1h3
b 03]
[4]
>
Q@
% 2" *
& #
£
2R M2
@
[4]
o o
Ldir Abcgb Abcg8 Cyp7al Cyp8b1
C w20
[3)
>
g 1.5
2 1-0 #
DE: fiaid
0 05
=
% 0.0
i Srebfic Gpam Dgat1
d 2y
]
% 3
r 2
E
(]
=
By
& Acc Fasn Scd1 Ppara  Cptia

Fig. 3. Effects of irisin on cholesterol metabolism related genes in mouse liver. Four-week-
old C57 BJ/L6 mice were fed NCD or HFD for 16 weeks. During the last 2 weeks, irisin was
infused into mice subcutaneously at a dose of 12 nmol/d- kg body weight via an osmotic
pump. Hepatic mRNA expression was analyzed via real-time PCR. a. mRNA levels of
cholesterol synthesis related genes. b. mRNA levels of cholesterol transport and
degradation related genes. c. mRNA levels of triglyceride synthesis related genes. d.
mRNA levels of fatty acid synthesis and oxidation related genes. *P < 0.05, **P < 0.01 vs
NCD Fc; #P < 0.05, ##P < 0.01, ###P < 0.001 vs HFD Fc. N = 6.

3. Results
3.1. Amelioration of Obesity by Irisin

Four-week-old C57 BJ/L6 mice were fed NCD or HFD for 16 weeks.
During the last 2 weeks, irisin was infused into mice subcutaneously
at a dose of 12 nmol/d-kg BW via an osmotic pump. As shown in Fig.
1, irisin decreased body weight of DIO mice relative to animals receiving
vehicle control (Fig. 1a), while demonstrated no effect on food intake
(Fig. 1b). Organ mass for liver, epididymal white adipose tissue
(eWAT) and subcutaneous WAT (sWAT) was also decreased by irisin
in DIO mice (Fig. 1c). The reduction in WAT mass was associated with
a decrease in the size of adipocytes in eWAT and sWAT, especially in
the DIO group (Fig. 1d), as well as induction of multilocular lipid drop-
lets in adipocytes in animals fed NCD (Fig. 1d). Interestingly, glucose in-
tolerance in DIO mice was ameliorated by irisin, whereas insulin
sensitivity remained unaltered (Fig. 1e).

3.2. Effect of Irisin on Plasma and Hepatic Cholesterol Contents

Since irisin improved adiposity in mice, we next examined the
change of lipid levels. As shown in Fig. 2, irisin significantly decreased

plasma total, VLDL-, LDL-, HDL-cholesterol, and hepatic levels of total
and esterified cholesterol in DIO mice, while demonstrated no consis-
tent effect on plasma and hepatic triglyceride (Fig. 2a, b). Consistently,
Oil red O staining showed reduced fat deposition in hepatocytes in
mice treated with irisin relative to the control (Fig. 2¢). Histological ex-
amination demonstrated a significant reduction of vacuolation in the
liver of DIO mice (Fig. 2d). Similar results were observed for synthetic
irisin (Supplemental Fig. 1). Collectively, irisin reduced plasma and he-
patic cholesterol contents in DIO mice.

3.3. Effect of Irisin on Cholesterol Metabolism Related Genes in Mouse Liver

Genes related to lipid synthesis, transport and degradation in the
liver were next determined. As shown in Fig. 3a, mRNA levels of
SREBP2 (Srebf2), 3-hydroxy-3-methylglutaryl-CoA reductase (Hmgcr),
3-hydroxy-3-methylglutaryl-Coenzyme A synthase (Hmgcs) and the
liver X receptor o (LXRat, Nr1h3)), which are all important in cholester-
ol synthesis, were significantly decreased by irisin treatment. In addi-
tion, peripheral infusion of irisin significantly suppressed mRNA levels
of low density lipoprotein receptor (Ldlr) that recognizes and uptakes
LDL-cholesterol, while increased mRNA levels of ATP-binding cassette
gene 5 (Abcg5) and Abcg8 which form a heterodimer to mediate choles-
terol secretion (Fig. 3b). No significant effect was observed for Cyp7al
and Cyp8b1 which are critical for bile acid synthesis from cholesterol
(Fig. 3b). Further, no change in Fgf21 mRNA expression (Supplemental
Fig. 2a) and AKT phosphorylation (Supplemental Fig. 2b) were detected
after irisin infusion. As for genes related to triglyceride metabolism,
irisin demonstrated only modest inhibition for triglyceride synthesis-
related genes such as SREBP1c (Srebfic), glycerol-3-phosphate acyl-
transferase (Gpam), and diacylglycerol O-acyltransferase 1 (Dgat1)
(Fig. 3c). mRNA levels of genes critical for fatty acid synthesis including
acetyl-Coenzyme A carboxylase alpha (Acaca), fatty acid synthase
(Fasn), and stearoyl-Coenzyme A desaturase 1 (Scd1), and (3-oxidation
such as peroxisome proliferator-activated receptor o (Ppara) and carni-
tine palmitoyltransferase 1A (Cptlc) remained unchanged (Fig. 3d).
Therefore, irisin decreased mRNA expression of genes related to the
synthesis of cholesterol, while increased those genes related to choles-
terol excretion.

3.4. Direct Effects of Irisin on Cholesterol Synthesis in Cultured Primary
Hepatocytes

To determine whether irisin directly acts on hepatocytes to regulate
cholesterol synthesis, we treated the primary hepatocytes isolated from
either lean (Fig. 4a-d) or DIO (Fig. 4e-g) mice with irisin. OA was previ-
ously reported to increase cholesterol synthesis and HMGCR activity in
hepatocytes (Goh and Heimberg, 1976; Gibbons et al., 1986). We thus
treated the cultured hepatocytes with OA in our experiment. OA-
induced increase in cholesterol content was reversed by irisin treatment
in primary hepatocytes from either lean (Fig. 4a) or DIO (Fig. 4e) mice,
while no significant change was observed for triglyceride in hepatocytes
from DIO mice (Fig. 4e). We next examined the mRNA expression of
genes related to cholesterol metabolism in hepatocytes from lean
mice. Consistent with the alteration in mouse liver, mRNA levels of
Srebf2, Hmgcr, Hmgcs and Ldlr were decreased by irisin treatment in
the presence or absence of OA in cultured hepatocytes (Fig. 4b). Howev-
er, mRNA levels of LXRa, Abcg5, Abcg8, Cyp7al and Cyp8b1 were not af-
fected (Fig. 4c). mRNA levels of genes related to triglyceride metabolism
including Srebfic, Dgat1, and Cpt1a were not affected (Fig. 4d). Similar
observation was detected in hepatocytes from DIO mice. mRNA levels
of Srebf2, Hmgcr, Hmgcs and LXRo were decreased by treatment of hepa-
tocytes with irisin in the presence or absence of OA (Fig. 4f). However,
genes related to cholesterol uptake (Ldlr, Pcsk9 and ApoB), secretion
(Abcal, Abcg5 and Abcg8) and bile acid synthesis (CypZal and Cyp8b1)
remained largely unaltered (Fig. 4g). Furthermore, conditioned medium
from C2C12 myotubes infected with Ad-FNDC5 blocked the OA-induced
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of at least 3 experiments.

increment of cholesterol in hepatocytes isolated from either lean or DIO
mice, while demonstrated negligible effect on triglyceride (Fig. 4h). All
these results indicated that irisin inhibited the cholesterol synthesis in
hepatocytes.

3.5. AMPK-SREBP2 Dependent Effects

AMPK-SREBP2 signaling is critical for the regulation of cholesterol
metabolism (Quan et al., 2013; Elhanati et al., 2013). We thus investi-
gated whether this signaling mechanism mediates the suppression of
cholesterol synthesis induced by irisin in hepatocytes. As shown in Fig.
53, irisin at a dose of 10 nM significantly increased the phosphorylation

of AMPKa Thr172 in a time-dependent manner. This alteration was as-
sociated with a decrease in the nuclear translocation of SREBP2 in hepa-
tocytes isolated from mice fed either NCD (Fig. 5b, ¢) or HFD (Fig. 5d, e).

To determine whether AMPK is required for the effects of irisin on
cholesterol synthesis in hepatocytes, compound C was used to block
the activation of AMPK. As shown in Fig. 6a, treatment of hepatocytes
with compound C for 1 h dose-dependently blocked the activation of
AMPK induced by irisin. The blockade of AMPK subsequently reversed
irisin-induced reduction of cholesterol contents in hepatocytes isolated
from both lean and DIO mice (Fig. 6b). Again, triglyceride was not affect-
ed by irisin despite that it was dose-dependently increased by com-
pound C (Fig. 6b). Compound C at a dose of 10 uM was used in the
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rest of experiments. Consistently, compound C reversed the inhibitory
effects of irisin on mRNA levels of Srebf2, Hmgcr and Hmgcs (Supplemen-
tal Fig. 3). As shown in Fig. 6¢ and d, blockade of AMPK activity by com-
pound C completely attenuated the inhibition of SREBP2 nuclear
translocation induced by irisin in the presence or absence of OA as re-
vealed by Western blot analysis of the cytosolic and nuclear fractions
of hepatocyte proteins and immunofluorescent staining. Consistently,
knockdown of AMPKa1 abolished the repression of nuclear SREBP2
translocation (Fig. 7a) and cholesterol accumulation (Fig. 7b) evoked
by irisin in HepG2 cells. Consistently, the inhibitory effect of irisin on
mRNA expression of SREBF2, HMGCR and HMGCS was significantly
blocked by inhibition of AMPK by AMPKa 1 knockdown (Fig. 7c). There-
fore, blockade of irisin-induced activation of AMPK reversed its inhibi-
tion on SREBP2 nuclear translocation and subsequent suppression of
cholesterol synthesis.

4. Discussion

Our study demonstrated that irisin could inhibit hepatic cholesterol
synthesis via AMPK-dependent inhibition of SREBP2 and its down-
stream target genes. Irisin increased the phosphorylation of AMPKa in
hepatocytes. Blockage of irisin-induced AMPK activation by compound
C or knockdown of AMPKa1 reversed the suppressive effects of irisin
on: 1) hepatic cholesterol synthesis; 2) mRNA expression of SREBP2

and its downstream target genes critical for cholesterol synthesis; and
3) nuclear translocalization of SREBP2.

Previous studies have indicated that irisin could improve dyslipid-
emia and hepatic steatosis in mice (Xiong et al., 2015). The decrement
of lipid accumulation in hepatocytes was proposed to result mainly
from the suppression of triglyceride synthesis (Park et al., 2015). In cul-
tured AML12 hepatocytes, recombinant irisin significantly reduced the
PA-induced lipid accumulation, and inhibited the PA-induced increase
in lipogenic markers ACC and FAS at the mRNA and protein levels
(Park et al., 2015). Our studies identified suppression of cholesterol syn-
thesis as an alternative pathway for irisin to reduce lipid content in he-
patocytes. This conclusion is supported by following observations:
1) Administration of irisin reduced the hepatic lipid contents measured
by Oil-red staining in lean and obese mice; 2) In mice and cultured he-
patocytes, irisin decreased levels of hepatic cholesterol, while demon-
strated no effect on triglyceride contents; 3) Irisin inhibited SREBP2
and its target genes HMGCS2 and HMGCR, a key transcriptional factor
and the rate-limiting enzymes for cholesterol synthesis respectively;
4) The effects of irisin on genes related to triglyceride synthesis and -
oxidation were negligible in hepatocytes. There exist two possible ex-
planations for the conflicting observations: different cell models and
sources of irisin used. In the studies by Park et al. (Park et al., 2015),
AML12 mouse hepatocyte cell line was used. This cell line expresses
high levels of human transforming growth factor oc (TGFat). Whether
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the high expression of TGFa in AML12 cells accounts for the distinct re-
sponse to irisin remains to be explored. Theoretically, the preparation of
irisin may affect its biological functions. This potential is unlikely be-
cause we observed no difference in the suppression of cholesterol syn-
thesis between recombinant irisin-Fc and synthetic irisin.

While good progress has been made in identifying the physiological
actions of irisin, its receptor and intracellular signaling pathway remains

largely unknown. Previous studies have shown that irisin may activate
AMPK, PI3K/AKT, or p38 MAPK and ERK (Liu et al., 2015b; Yang et al.,
2015; Zhang et al., 2014; Lee et al., 2015) in skeletal muscle cells, hepa-
tocytes and adipocytes. Our studies also suggest the presence of a
functional receptor for irisin in hepatocytes. Activation of this receptor
by irisin may stimulate AMPK activity, leading to the subsequent sup-
pression of SREBP2 expression and nuclear translocalization. This
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observation is consistent with previous report demonstrating that
AMPK could phosphorylate SREBP2 to reduce SREBP2 precursor cleav-
age and nuclear translocalization (Liu et al., 2015a). Although activation
of AMPK has been demonstrated to suppress hepatic lipid synthesis and
to promote fatty acid B-oxidation by phosphorylating SREBP1c¢ (Liu
et al., 2015a; Ma et al., 2015; Elhanati et al., 2013; Samovski et al.,
2015; Chen et al., 2014; Lee et al,, 2012), our studies did not detect con-
sistent change in the levels of triglyceride, SREBP1c and its downstream
target genes. A much higher dose of irisin may be required for its effect
on triglyceride synthesis. Instead, SREBP2 transcription and nuclear
translocalization in hepatocytes were significantly attenuated upon ac-
tivation of AMPK by irisin. The molecular mechanism underlying the se-
lection of SREBP2 over SREBP1 upon activation of irisin receptor in
hepatocytes is currently unknown.

Emerging evidence has indicated that cross talks between organs are
critical for energy homeostasis. The present studies suggest a direct
communication between the skeletal muscle and liver via irisin. Our
study also provides significant evidence that hepatocytes are targets
for irisin in term of the regulation of hepatic cholesterol metabolism.
Conditioned medium from C2C12 myocytes overexpressing FNDC5 sig-
nificantly attenuated cholesterol synthesis in cultured hepatocytes.
Other studies also support the concept that irisin may serve as an im-
portant cross-organ messenger linking skeletal muscle with the brain,
adipose tissue and the cardiovascular system to integrate the exercise
with the physiological activities in these organs (Wrann et al., 2013;

Huh et al., 2014; Xiong et al., 2015; Song et al., 2014; Wu et al., 2015;
Zhu et al., 2015; Zhang et al., 2015). Importantly, irisin acts in concert
with fibroblast growth factor 21 to promote adipocyte browning and
thermogenesis in humans (Lee et al., 2014). This result indicates that
cross talk between skeletal muscle and adipose tissue may be critical
for the control of adiposity. Taken together, all these observations sug-
gest that irisin is an important molecule linking the skeletal muscle
with the adipose tissue and liver to integrate lipid metabolism.

Despite the significant reduction in hepatic cholesterol, irisin at the
dose used in the study demonstrates no effect on the insulin sensitivity
in either lean or high fat diet induced obese mice. The mechanism un-
derlying the dissociation effects of irisin on hepatic cholesterol and glu-
cose metabolism is currently unknown. Whether the dose of irisin
contributes to this discrepancy remains to be explored.

In conclusion, our studies indicate that irisin inhibits hepatic choles-
terol synthesis via the mechanism dependent of AMPK-SREBP2 signal-
ing. This finding may shed light on the treatment of diseases related to
hypercholesterolemia, such as atherosclerosis.
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