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Simple Summary: Co-culture system provides a novel platform to study interaction between dif-
ferent cell types in an in-vitro method. The co-cultures techniques have played key role in the
understanding of cell–cell communication and relevant for drug response analysis. Co-culture
system could influence therapeutic drug response in a dose dependent manner which reflects the
clinical situation in patients. Also, the co-culture system may reflect a more realistic environment
that similar phenotypic and functional characteristics of in vivo conditions. We also suggest that
the co-culture methods as a key tool to study the interaction between adipose and muscle tissue
under various environments including drug responses, production and influence of secretory factors,
cell growth, and development. Therefore, the co-cultures method has been shown wide applications
in cell biology study.

Abstract: A co-culture system allows researchers to investigate the complex interactions between
two cell types under various environments, such as those that promote differentiation and growth
as well as those that mimic healthy and diseased states, in vitro. In this paper, we review the
most common co-culture systems for myocytes and adipocytes. The in vitro techniques mimic the
in vivo environment and are used to investigate the causal relationships between different cell lines.
Here, we briefly discuss mono-culture and co-culture cell systems and their applicability to the
study of communication between two or more cell types, including adipocytes and myocytes. Also,
we provide details about the different types of co-culture systems and their applicability to the study
of metabolic disease, drug development, and the role of secretory factors in cell signaling cascades.
Therefore, this review provides details about the co-culture systems used to study the complex
interactions between adipose and muscle cells in various environments, such as those that promote
cell differentiation and growth and those used for drug development.

Keywords: co-culture; in vitro technique; adipocytes; muscle; secretory factors

1. Introduction

In vitro co-culture techniques can be used to mimic in vivo environments and to ob-
serve interactions among cells (autocrine) and between cells (paracrine) [1]. Co-culture
systems may be used to explore the mechanisms of action of drugs and their potential
targets; they help to bridge the gap between mono-culture methods and animal models.
Co-culture systems can be divided into two main categories, indirect methods and direct
methods [2]. In the indirect methods, cells are physically separated into two different
populations using trans-well inserts and/or overflow culture chambers that allow com-
munication only via secretory factors. On the other hand, direct co-culture methods allow
cell–cell interactions between different type of cells, which is typically achieved by spatially
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controlling the positions of adherent cells within a culture dish [3]. Generally, co-culture
systems are used to study the secretory and transcription factors which are partially/fully
involved in induction of cell differentiation, regulation of cellular proliferation, and pro-
duction of metabolites for signaling cascades. A co-culture system can be used to reduce
the amount of drug needed for a study, identify the target organs of a drug, and predict the
adverse effects of drug metabolites [4]. Thus, this technique shows great potential for cell
toxicological studies in the future and is now used chiefly for pharmacodynamic research.

Co-culture systems are widely used to study cross-talk between different cell lines,
including adipocytes, endothelial cells, fibroblasts, macrophages, and muscle cells. Also,
it is a crucial tool for understanding the various metabolic connections between adipose
and other tissues [5]. The co-culture studies can provide realistic insights on cell–cell
interactions via secretory factors that are effect in various metabolic functions such as
energy homeostasis, muscle atrophy, and obesity and related co-morbidities. Previously,
Ruiz-Ojeda et al. (2016) [6] investigated the co-culture relationship between adipocytes and
macrophages and how they communicate under conditions that mimic obesity, insulin resis-
tance, or inflammation. Similarly, an indirect co-culture system used to study intercellular
communication between muscle and adipocyte cells was developed by Choi et al. (2013) [7].
Pre-adipocyte differentiation is regulated by differentiation myoblasts in the co-culture
system, while pre-adipocytes promote adipogenic gene expression in muscle satellite cells
co-cultured with pre-adipocytes. Muscle and fat tissue are major paracrine and endocrine
organs that communicate with each other regarding muscle development, regulation of en-
ergy homeostasis, and insulin sensitivity [8]. For example, exercise-induced improvements
in muscle function influence carbohydrate and fatty acid metabolism in the whole body as
well as peripheral insulin sensitivity. Skeletal muscle communicates with other tissue types
(i.e., adipose) to regulate, either directly or indirectly, whole-body energy homeostasis
through myokine release [9] (Figure 1). Muscle-derived secretory proteins—including
IL-6, irisin, myostatin—and some peptides, known as myokines, regulate adipogenesis
via paracrine and endocrine effects [10]. Recently, Chu et al. (2016) [11] reported that
porcine pre-adipocyte differentiation was inhibited in a C2C12 co-culture cells and that
the expression levels of early differentiation marker genes in adipocytes were lower than
those in mono-cultured adipocyte cells. Recently, Shahin-Shamsabadi [12] developed a 3D
bio-fabrication method using adipocytes and myoblasts, that analyzed specifically either in
direct physical contact or in close proximity such that the paracrine interaction between
the cells. The physical contact between cells have been flouted in co-culture systems using
transwell inserts and can be used in studies for the development of anti-obesity drugs.
Anan et al. [13] studied the method for analyzing the direct interaction between adipose
tissue and cardiomyocytes. The HL-1 cells suppressed the development of CD44+/CD105+
mesenchymal stem cell-like cells and lipid-laden preadipocytes from ATFs. In addition,
the HL-1 cells stimulated the secretion of adiponectin in adipose tissue fragments (ATF),
whereas they decreased production of leptin in a co-culture experiment.
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Figure 1. Cross-talk between muscle and adipose tissues is regulated by various secretory factors 
(adapted and modified from Li et al. (2017) [14]). WAT: white adipose tissue; TNF-α- tumor necro-
sis growth factor- alpha; FGF21: fibroblast growth factor 21; IL: interleukin. 
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immune cell functions, etc. [15]. Interactions between co-cultured myoblasts and adipo-
cytes have been implicated in facilitation of muscle growth, tissue repair and muscle re-
generation. These findings have led to the discovery of adipo-myokine secretory factors 
(AMSFs), which are produced by adipocytes and myocytes to induce differentiation and 
proliferation. Table 1 summarizes the findings of recent studies in co-culture systems us-
ing adipose and muscle cells. 

At present, our knowledge of the interactions between adipocytes and myocytes 
largely stems from studies of the effects of individual adipokine factors on cultured mus-
cle cells or adipocytes and vice versa. A wide variety of adipocyte mediated secretory 
molecules regulate muscle metabolism without affecting other tissues. Furthermore, in an 
in vitro co-culture system, myocytes were exposed to a group of free fatty acids (FFAs) 
and adipo-myokines [16,17] that communicate signals to other organs. These studies have 
fueled attention towards analyses of metabolic communication between fat and muscle 
cells. Adipose tissue is known to protect other cell types from lipotoxicity by providing a 
safe place to store surplus energy. However, obesity-related dysregulation of adipose tis-
sue promotes lipid oversupply to several non-adipocyte tissue types. This can contribute 
to the development of metabolic diseases, such as cardiovascular disease and liver and 
bone disorders. Adipose tissue is an important endocrine organ that communicates with 
the brain and peripheral tissues to bring about changes in whole-body energy homeostasis 
through a network of circulating adipokines [18]. These signaling factors include peptide 
hormones; chemokines such as leptin, adiponectin, resistin, visfatin, and apelin; and pro-
inflammatory cytokines including interleukins (IL-1β, IL-6 and IL-15) and tumor necrosis 
factor-α (TNF-α). Obesity may lower the levels of circulating insulin-sensitizing adi-
pokines such as adiponectin while increasing the levels of pro-inflammatory response 
molecules such as IL-6 and TNF-α in adipose tissues [19]. 

Figure 1. Cross-talk between muscle and adipose tissues is regulated by various secretory factors
(adapted and modified from Li et al. (2017) [14]). WAT: white adipose tissue; TNF-α- tumor necrosis
growth factor- alpha; FGF21: fibroblast growth factor 21; IL: interleukin.

2. Adipocytes/Muscle Cells Co-Culture Models

Co-culture models have been used to examine diverse cellular functions, such as
interactions between muscle and nerve cells, angiogenesis, adipocyte/muscle cell cross-
talk, immune cell functions, etc. [15]. Interactions between co-cultured myoblasts and
adipocytes have been implicated in facilitation of muscle growth, tissue repair and muscle
regeneration. These findings have led to the discovery of adipo-myokine secretory factors
(AMSFs), which are produced by adipocytes and myocytes to induce differentiation and
proliferation. Table 1 summarizes the findings of recent studies in co-culture systems using
adipose and muscle cells.

At present, our knowledge of the interactions between adipocytes and myocytes
largely stems from studies of the effects of individual adipokine factors on cultured mus-
cle cells or adipocytes and vice versa. A wide variety of adipocyte mediated secretory
molecules regulate muscle metabolism without affecting other tissues. Furthermore, in an
in vitro co-culture system, myocytes were exposed to a group of free fatty acids (FFAs)
and adipo-myokines [16,17] that communicate signals to other organs. These studies have
fueled attention towards analyses of metabolic communication between fat and muscle
cells. Adipose tissue is known to protect other cell types from lipotoxicity by providing
a safe place to store surplus energy. However, obesity-related dysregulation of adipose
tissue promotes lipid oversupply to several non-adipocyte tissue types. This can contribute
to the development of metabolic diseases, such as cardiovascular disease and liver and
bone disorders. Adipose tissue is an important endocrine organ that communicates with
the brain and peripheral tissues to bring about changes in whole-body energy homeostasis
through a network of circulating adipokines [18]. These signaling factors include peptide
hormones; chemokines such as leptin, adiponectin, resistin, visfatin, and apelin; and pro-
inflammatory cytokines including interleukins (IL-1β, IL-6 and IL-15) and tumor necrosis
factor-α (TNF-α). Obesity may lower the levels of circulating insulin-sensitizing adipokines
such as adiponectin while increasing the levels of pro-inflammatory response molecules
such as IL-6 and TNF-α in adipose tissues [19].
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Table 1. Examples of co-culture model systems consisted of adipose and muscle cells.

Co-Culture Model Compounds Used Study Findings Ref.

Pre-adipocytes-myoblasts Arginine and/or trans 10, cis-12 CLA Increased adipogenic gene expression
in myoblasts [7]

Bovine adipocytes and
pre-adipocytes Adipogenic induction medium Increase lipolytic response and

glycerol release [20]

3T3-L1 adipocyte–C2C12 cells Ferulic acid Increase lipolytic profile and glycerol
release [21]

C2C12 myoblasts-3T3-L1 adipocytes Adipocytes medium induced IL-6 Suppress the differentiation of C2C12
cells [22]

Differentiated C2C12 with 3T3-L1
cells Calcitriol Decreased anti-inflammatory

cytokines production [23]

3T3-L1 (adipocyte)-L6 muscle cell line Differentiation media without
additives

Co-culture adipocyte cells increased
GPDH activity [24]

Human fat and skeletal muscle cells Differentiation medium with 1
pmol/L insulin

adipocyte induce a paracrine
perturbation in muscle cells [25]

3T3-L1 preadipocytes-differentiated
C2C12 DMEM differentiation medium

C2C12 suppressed the mRNA,
protein expression of glucocorticoids

receptor
[11]

C2C12 myocytes and 3T3-L1
adipocytes

Adipocyte conditioned medium with
Leucine

Modulation of muscle and adipocyte
energy metabolism [26]

C2C12 myocytes and 3T3-L1
pre-adipocytes Zinc oxide nanoparticles Increased expression of antioxidant

enzymes and mRNA expression [27]

3T3-L1 adipocytes with RAW 264
macrophage Dietary calcium Reduce the inflammatory cytokine

and oxidative stress in adipocytes [28]

3T3-L1 adipocytes with splenocytes
cells Lipopolysaccharides (LPS) Elevated cytokine secretion (TNF-a,

IL-6, MCP-1) [29]

Murine adipocytes-C2C12 cells Leucine and calcitriol
Decrease energy storage in

adipocytes and increasing fatty acid
utilization in C2C12

[30]

3T3-L1 pre-adipocytes and C2C12
muscle cells DMEM/FBS growth medium

Promote the mitochondrial biogenesis
bydirect activation of SIRT1 in both

cells
[31]

3T3-L1 pre-adipocytes and L6 muscle
cells DMEM/F12 supplemented with BSA

Oxygen species production and level
of Glut1 mRNA and protein

increased in L6 cells
[32]

Primary human adipocyte and
skeletal myotubes Low serum differentiation medium

Understating the metabolic function
of intra muscular adipogenesis

(lipolytic activity)
[17]

3T3-L1 cells with J-6 cells Defined Medium for co-cultured cells
Low level of IGF-1 IGF-II are not

likely to play a role in intercellular
communication between these cells

[1]

Porcine pre-adipocytes and muscle
satellite cells DMEM/F12 medium

Induce cell growth and proliferation
meanwhile, inhibited the cell

differentiation
[33]

Skeletal muscle (L6)-adipocyte
(3T3-L1)

Specific differentiation medium for
both cells

IL-6 cytokine plays main role in
cross-talk between these cells [34]

3T3-L1 and L6 cell line Differentiation medium containing
5% HS

Adipocyte differentiation inhibited
and suppress the lipogenic gene

expression
[35]
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3. Monoculture vs. Co-Culture
3.1. Monoculture Techniques

Cell culture techniques permit us to understand development-related diseases, drug ac-
tivity, secretory protein profiles, and different types of cell–cell interactions. These tech-
niques are mainly used to evaluate the preliminary level of drug toxicity in in vitro disease
models, and can be used to identify gene function in the laboratory environment [36].
Though cell culture models are very common, they are limited in their ability to represent
complex in vivo environments, and the results may not be relevant in certain cases [37].
Co-culture models more accurately represent the natural environment. Also, single cell
culture methods are most commonly used to grow a single type of cell, but recently 2D and
3D culture methods have gained popularity due to their diverse biomedical and clinical
applications [38].

3.2. Co-Culture Techniques

Co-cultures models are highly applicable to drug development research as they offer
a more in vivo-like tissue model without the complications associated with animal models.
The cellular growth and differentiation mechanisms in a co-culture system may differ from
those in a mono-culture system [39]. Thus, it is essential to study the mechanisms of cellular
cross-talk between different cell types in co-culture systems [40]. Furthermore, some cells
are not easy to grow in in vitro mono-culture systems and will not exhibit preferred in vivo
physiological behaviors [41], but may be successfully co-cultured or exhibit the behavior of
choice in a co-culture system.

Studies of co-culture-related phenomena are generally kept as simple as possible.
For instance, co-cultured muscle satellite cells were analyzed by determining variations
in cell number, morphological alterations, and the number of cells that differentiated into
multinucleated myotubes [1]. Similarly, pre-adipocyte status in co-culture systems has
been assessed mainly by determining cell growth and morphological changes. Recently,
the importance of complex interactions between muscle and adipose cells has been under-
stood in regard to the pathogenesis of non-communicable metabolic diseases. Adipocytes
are present at different sites (abdomen, hip, thigh, etc.) that are inhomogeneous and differ
quite considerably in their metabolic and inflammatory functions, and can be clearly dif-
ferentiated in part by adipose depot differences. Hence, use of co-culture systems could
advance our understanding of the types of interactions between muscle and fat tissues
and other organs. Also, this system provides a more physiologically accurate picture with
which to examine the role of secreted factors in governing cell–cell interactions [42].

Dietze et al. (2002) [25] reported that co-culture of human myocytes and adipocytes
enhanced adipose-derived secretory factor signaling in cross-talk with skeletal muscle cells,
mainly insulin-stimulated phosphorylation of protein kinase B (Akt) and insulin receptor
substrate 1 (IRS-1) in myocytes. There is sound evidence at the phenotypic and cellular
levels that adipose-mediated secretory factors interfere with muscle insulin signaling and
homeostasis [43]. Endocrine cross-talk between whole fat tissue and whole skeletal muscle
have yet to be examined ex vivo. Furthermore, Tishinsky et al. (2014) [44] studied the effects
on dietary fatty acid consumption on regulation of adipose tissue-skeletal muscle cross-talk
in a co-culture system. The study found that dietary fatty acid intake regulates excess
adipose fat depots. Similarly, Bruckbauer and Zemel (2011) [31] reported on calcitriol and
leucine modulation of sirtuin 1 (SIRT1) in adipose tissue and skeletal muscle, and found
that SIRT1 is the central signaling target that mediates the effects of calcitriol and leucine.
In sum, adiposity is highly related with changes in glucose and fatty acid metabolism.

4. Co-Culture System Advantages and Disadvantages

Co-culture systems are used to culture and differentiate cells in vitro and are of great
importance to the process of the drug development as well as treatment of incurable
pathologies [45]. In vitro monoculture models are commonly used to study complex mech-
anistic aspects of drug response and the paracrine effects of drugs. However, co-culture
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techniques may provide a simplified, more cost-effective, high-throughput technique that
utilizes fewer animals and allows for more focused analysis.

However, as this is a somewhat simplistic approach, these in vitro cell culture systems
may produce inaccurate results; they may, for example, examine an inadequate number of
variables and not include different types of cells and their responses that would be necessary
to authentically duplicate in vivo aspects of the foreign body response (FBR). As a result,
in vitro models may not be able to predict certain in vivo phenotypes. For instance, a major
contradiction between in vitro and in vivo models is the observed lack of inflammatory
stimulation in vitro [46].

2D cell culture has many advantages, e.g., it is relatively simple and easy to handle
cells in vitro and to perform different functional tests. Cellular interactions are responsible
for cell proliferation, differentiation, expression of genes and proteins, responsiveness to
stimuli, drug responses and other cellular metabolic functions [47,48]. Also, changes in
the structure of cells can affect their function and metabolism [49]. Moreover, cells in a
monolayer have unlimited access to the components of the medium—such as O2, nutrients,
metabolites, and signaling molecules—which is not generally the case in 3D systems.

One problem of co-culture systems concerns the many variables, including the compo-
sition of the medium, volume, and duration of culture period and the degree of similarity
and separation between two different cell populations, which need to be optimized [50].

The animal models are used to study the molecular mechanisms of development
and progression of diabetes and cancer and metabolic diseases. However, the transgenic
animal’s experiments are expensive, difficult to visualize, and they are not completely
demonstrative of human physiology or genetics. In addition, it needs to get associated
ethical clearance [51].

5. Secreted Factors in Co-Culture Model

Growth factors are biochemical signals that are naturally produced by cells/tissues
and are responsible for cell growth, development and repair. They include fibroblast
growth factors (FGFs), insulin-like growth factor-1 (IGF-1), β-nerve growth factor (β-NGF),
transforming growth factor-β (TGFβ), etc. For example, the L6 cells were co-cultured
with 3T3-L1 cells for 24 h, followed by their stimulation with insulin (100 ng/mL) showed
increases Akt phosphorylation at both sites (ser473 and ser308) in adipocytes. However,
these effects were partially inhibited by 3T3-L1 co-culture cells [32]. Therefore, the co-
culture system can be potent way to study cell signaling between two different cells like
in vivo model.

Cytokines are a diverse group of secretory substances that play specific roles in
the interactions and/or communications between two or more different type of cells.
They include interleukins (ILs), tumor necrosis factor, etc. Also, the chemokines include
chemerin, resistin, apelin, visfatin, leptin, etc. [52].

The secretory factors play key functions in the metabolism, pathophysiology condi-
tions including cardiovascular complications, diabetes, obesity and some cancers. Secreted
factors may include many cytokines and/or chemokines such as TNF-α, IL-6, -8, as well as
leptin, myostatin, and adiponectin. These secreted factors are secreted by not only adipose
tissues but also present in the other tissues/cells including macrophages and muscle cells
etc. [53]. In particular, the WAT are major endocrine organ and it is increasingly cross
linked with muscle tissue in term of energy homeostasis and maintain the blood glucose
level in the body. The adipocytes and myocytes cells secrete a broad range of bioactive
proteins. In general, the adipocytes secretory proteins are termed as adipokines and
myokines for muscle cells. Myokines and adipokine are important secretory molecules to
be involved in local autocrine/paracrine interactions within muscle and adipose tissue re-
spectively. There are some similar secretory proteins were identified between the myokines
and adipokines, in that both groups can produce some commonality inflammation re-
lated secretory proteins, for example IL-6, Il-8 and MCP-1 (Monocyte Chemoattractant
Protein-1). Trayhurn et al. [54] studied the IL-6 secreted from muscle could enhance the
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lipolysis in adipose tissue, whereas adipocyte derived IL-6 may induce insulin resistance
in muscle cells.

In addition, the adipogenic factors include glucocorticoids, PPAR-γ agonists, insulin,
and basic human fibroblast growth factor (hFGF-B) are often found that to induce cellular
network assembly and/or the communication of muscle and macrophage cells [55]. Recently,
Cui et al. [56] reported the communication between muscle cell and adipocytes of chicken
using a trans-well co-culture chamber. After co-culture, the MSCs in the proliferation stage
(20% confluence) was inhibited the differentiation of intramuscular preadipocytes (IMPs).
On the other hand, the Muscle satellite cells (MSCs) in the stationary phase growth (100%
confluence) would certainly accelerate the differentiation of IMPs. In addition, the gene
expression levels of PPARγ, LPL and ACC accelerated in the treated co-culture cells.

6. Models for Co-Culture System

Muscle-adipocyte interactions involve a complex set of signaling events that act at mul-
tiple levels in the developmental process [57]. Skeletal muscle and fat both originate from
mesenchymal stem cell precursors. That adipocytes and muscle cells have similar origins
might suggest a strong degree of communication between these two cell types (Figure 2).
On the other hand, muscle influences energy metabolism and inflammatory conditions
in the whole body through active metabolism of fuel. During these phenomena, muscle
metabolites and secretory molecules communicate with adipose and other tissues in a com-
plex manner. Physical activity may reduce fat deposition through secretion of beneficial
myokines from muscle tissue and increase insulin sensitivity and muscle mass [58]. Adi-
pose tissue may be affected by muscle inflammation. De Boer et al. (2014) [59] studied the
cross-talk between adipocytes and macrophages in an obese adipose tissue model. The pro-
inflammatory adipokine profile develops through adipocyte-macrophage cross-talk and
leads to decreased insulin sensitivity within adipocytes as well as in other metabolic or-
gans, such as skeletal muscle and liver. In addition, dysfunctional adipose tissue secretes
distress signaling molecules, such as chemokines and free fatty acids, which induce the
pro-inflammatory cytokine production that characterizes obese adipose tissue.

Recently, co-culture techniques have been used to examine the importance of (in)direct
contact between two cell types, such as muscle cells and adipocytes [60,61]. Seo et al. (2019) [22]
found that muscle cell growth is disturbed by adipocytes and dominate the culture muscle
cells when they are co-cultured either muscle or adipocyte cell culture. Adipocytes may
communicate with myocytes to inhibit muscle cell differentiation through paracrine sig-
naling. Mouse 3T3-L1 adipocytes attenuate the differentiation of C2C12 skeletal muscle
cells by downregulating myogenin gene expression and upregulating that of myostatin,
atrogin-1, and MuRF-1. Also, 3T3-L1 adipocytes induce secretion of IL-6 in C2C12 mus-
cle cells. This area of research requires further investigation, including research into the
beneficial effects of individual myokines and the mechanisms underlying muscle-adipose
tissue interactions that could be employed to develop new drugs to treat chronic metabolic
diseases. Also, it is important to carry out clinical studies in order to translate animal data
into novel therapeutic approaches to human system [46,62].
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tact is communicated by autocrine and paracrine approaches (adapted from Borciani et al. (2020) [63]).

6.1. Direct Co-Culture Models

Direct co-culture systems may vary in the conditions of intercellular interactions,
which include cell–cell and/or cell–matrix interactions, release of secretory factors, and a
combination of the above [64]. Direct physical contact promotes cell–cell interactions
through surface proteins that mimics the actual in vivo situation and may increase trans-
duction of cellular signals between various types of cells [65]. A direct co-culture model
may produce different results depending on the number of cells that are seeded and the
nature of the scaffolds that are used. Thus, some authors attempted to determine whether
secreted factors alone, or a combination of secreted factors and other modes of cell–cell
communication, play a predominant role, by controlling a single variable [66]. However,
physical contact between cells may play a role in chondro-induction as compared with
soluble factors alone, and paracrine factors were not shown to be involved in the expression
of chondrogenic genes [67].

6.2. Indirect Co-Culture Models

Co-culture systems with culture inserts can be used to study cell–cell interactions un-
der normal, differentiation, and special development environments [68]. Indirect contact co-
culture models physically separate the different cell types using a trans-well chamber, mem-
brane inserts, and/or a micro-patterned co-culture set up [69]. Two- and three-dimensional
co-culture systems have been used to examine the secretome of obese adipocytes and
to show that it negatively affects the contractile complex of myocytes; this represents
an important advancement in our understanding of adipocyte–myocyte interactions in
metabolic disease states [70]. Notably, co-culture systems are used to study the mechanisms
of two-way communication between two different cell populations, in which different
paracrine factors are secreted by both cell types and equally affect the two cell types. Secre-
tory effects can be investigated using trans-well porous membrane inserts that separate
different populations of cells in co-culture plates/discs (Figure 2). Importantly, indirect
co-culture has been used to determine the importance of trophic factor secretion in cellular
differentiation-related processes [71].

Cells grown in an insert can be co-cultured in a culture dish containing a different cell
type to assess cellular communication through paracrine signaling in the absence of physi-
cal contact between cells. The insert co-culture system provides various benefits over other
co-culture models, i.e., bidirectional signaling, population-specific detection of cellular
changes, conservation of cell polarity, and so on [72]. Moreover, co-culture techniques can
be utilized in cancer, angiogenesis, inflammation and cell differentiation studies. These co-
culture systems are most important for the study of the complex cellular communications
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that exist between different cell types—including nerve, muscle, adipose, and immune
cells—particularly in the contexts of inflammation, regulation of fat deposition and muscle
development. In addition, depending on the co-culture set-up, the cell populations can be
perfectly mixed or partially separated using membrane inserts containing 0.45 µM pores.
Generally, co-culture with inserts is used to divide the cell populations using permeable
membranes to control population interactions, which can be the main factor in achieving a
stable cell culture system [73]. Separation of two different cell populations needs to be done
carefully to ensure that the environment is relevant to the primary aim of the co-culture
experiments. For example, if two cellular populations are dependent on each other for
exchange of substances, the permeability of the materials must be considered, given that
diffusion rates within specific ranges may be required. When diffusion rates are too low,
important nutrients cannot be exchanged between cells. Also, a diffusion rate that is too
high may spoil the whole system [74]. Therefore, it is necessary to take these factors into
consideration when expanding co-culture systems to greater volumes, as diffusion is a
distance-dependent phenomenon [40].

Recently, Saldana et al. (2017) [75] studied co-cultures of MSC and immune cells using
a cell culture insert consisting of a polyester membrane with a 0.4 µm pore size that allows
endocrine contact between the two cell types in the absence of direct cell–cell contact.
Similarly, Nitta et al. (2013) [29] reported on a co-culture of activated splenocytes and
adipocytes without direct cell–cell contact and showed that the co-cultured cells increased
secretion of TNF-α in a time-dependent manner that reached a maximum at 20 h. Co-
cultured splenocytes and adipocytes can communicate via cell surface molecules, which can
in turn activate intracellular signaling pathways via TNF-α receptor signaling cascades.

7. Conclusions

Recently, co-culture systems of myogenic and adipogenic cells have been used to
explore several important phenomena, including whether secretory factors released by
the cells alter the viability and development of pre-adipocytes into mature adipocytes.
Paracrine factors may influence the activity of these co-cultured cells, and significant
differences exist between individual strains of muscle satellite cells and pre-adipocytes.
Continued modification and use of this co-culture model provides a fuller description of the
in vivo environment than is possible with the use of single in vitro cultures. This system
will prove valuable in elucidating the intracellular communication that is necessary for
growth and development of muscle and adipose tissue under different conditions.
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