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ABSTR ACT: Diabetes and its complications are hyperglycemic toxicity diseases. Many metabolic pathways in this array of diseases become aberrant, 
which is accompanied with a variety of posttranslational protein modifications that in turn reflect diabetic glucotoxicity. In this review, we summarize 
some of the most widely studied protein modifications in diabetes and its complications. These modifications include glycation, carbonylation, nitration, 
cysteine S-nitrosylation, acetylation, sumoylation, ADP-ribosylation, O-GlcNAcylation, and succination. All these posttranslational modifications can 
be significantly attributed to oxidative stress and/or carbon stress induced by diabetic redox imbalance that is driven by activation of pathways, such as the 
polyol pathway and the ADP-ribosylation pathway. Exploring the nature of these modifications should facilitate our understanding of the pathological 
mechanisms of diabetes and its associated complications.
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Introduction
Glucose is a fundamental molecule for life, and its combustion 
is exploited in all ways to sustain life. While glucose is essen-
tial for cellular survival, too much of it is detrimental.1–3 This 
is the case in diabetes that either originates from or manifests 
the dysregulation of glucose metabolism.4 In type 1 diabetes, 
pancreatic β-cells are destroyed by autoimmune response, and 
hence no insulin would be available for stimulating glucose 
metabolism, leading to diabetic hyperglycemia.4–6 In type 2 
diabetes, insulin resistance usually precedes β-cell dysfunc-
tion via a failure of compensation mechanism.7–9 Initially, 
insulin resistance would aggravate more insulin secretion by 
increasing β-cell mass.1,8,10–12 However, such an increase has 
a limit and will eventually fail to meet the needs for more 
insulin secretion.9,13,14 Under this circumstance, β-cells die, 
insulin levels decrease, and frank type 2 diabetes mellitus 
develops and progresses.15–18 Regardless of the types of 
diabetes, it is the persistent level of hyperglycemia that causes 
all the metabolic problems manifested by diabetic complica-
tions, such as blindness, peripheral neuropathy, and chronic 
kidney disease.6,19,20 Indeed, all the metabolic problems can be 
attributed to hyperglycemic glucotoxicity.1,2,21–25

Therefore, how glucotoxicity is attained in diabetes? 
Protein modifications induced directly or indirectly by hyper-
glycemia manifest glucotoxicity. In this review, we attempt 

to summarize a variety of protein modifications in diabetes. 
We believe that many of these protein modification pro-
cesses could serve as therapeutic targets or have therapeutic 
values. We focus on diabetic protein modifications, including 
glycation, carbonylation, nitration, nitrosylation, acetylation, 
ADP-ribosylation, and succination. But before expanding 
on these modifications, we would like to briefly overview the 
dysregulated glucose metabolic pathways in diabetes.

Glucose Metabolism and Redox Imbalance 
in Diabetes
When blood glucose level is persistently high, the body will 
attempt to mobilize all the possible pathways involved in 
glucose clearance. One such significant pathway is the polyol 
pathway.26–29 This pathway is usually dormant in nondia-
betic state but can be activated to metabolize up to 30% of 
the glucose pool in diabetes.30 The pathway involves two reac-
tions, catalyzed by aldose reductase and sorbitol dehydroge-
nase, respectively. As shown in Figure 1A, the pathway makes 
excess NADH by consuming NADPH, hence breaking the 
redox balance between NADH and NAD+. As the aldose 
reductase reaction is rate limiting, inhibition of aldose reduc-
tase has been shown to prevent the occurrence of diabetes and 
diabetic complications.31–34 Additionally, glucose is converted 
into fructose, a sugar molecule whose metabolism bypasses 
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glucokinase and phosphorfructokinase-1 in the glycolytic 
pathway and thus is less regulated,35–37 thereby inducing 
metabolic stress.35 Excess NADH can overload the mitochon-
drial electron transport chain and drive overproduction of 
reactive oxygen species (ROS), which can attack proteins and 
induce protein modifications.35,38 Additionally, consumption 
of NADPH by the polyol pathway can impair the function 
of glutathione reductase that uses NADPH to regenerate the 
reduced form of glutathione (GSH) from the oxidized form of 
glutathione (GSSG),39 thus further aggravating cellular redox 
imbalance.40

Also in diabetes, chronic production of ROS can cause 
DNA damage.41–44 This damage will activate poly-ADP-
ribose polymerase that is evolved to repair the damaged 
DNA molecules.45–47 As poly-ADP-ribose polymerase uses 
NAD+ as its substrate (Fig. 1B) and is often overactivated,48 
its activation usually can deplete NAD+ and leads to the fur-
ther accentuation of redox imbalance, thereby, causing cell 
death.49–52 It should be pointed out that while activation of 
both the polyol pathway and the ADP-ribosylation pathway 
by diabetic hyperglycemia initially appears to be defensive 
and adaptive, the eventual consequences are lethal. Therefore, 
diabetes and its complications could be considered as a failure 
of compensation diseases.53–55

Moreover, diabetic hyperglycemia can also activate other 
metabolic or signaling pathways. These are summarized in 
Figure 2, which, in addition to the polyol pathway27,56 and the 

ADP-ribosylation pathway mentioned earlier, also include 
the glycation pathway,57,58 the hexosamine pathway,59,60 and 
the PKC activation pathway.61,62 All these aberrant path-
ways have been shown to eventually elevate cellular ROS 
levels,63,64 hence further aggravating cellular redox imbal-
ance and oxidative stress.38 This redox imbalance is probably 
the driving force for diabetic ROS production and oxidative 
stress, which are involved in a variety of protein posttransla-
tional modifications.63

Protein Modifications in Diabetes
Protein modifications are strategies routinely used by cells to 
expand their function65–67 but can also reflect the status quo 
of struggled cellular functions under stressed conditions.68–71 
Figure 3 summarizes the types of posttranslational protein 
modifications in diabetes that are covered in this review. The 
modifications can be classified into two categories: irrevers-
ible and reversible. Irreversible protein modifications include 
carbonylation, nitration, and glycation, and reversible protein 
modifications include nitrosylation, acetylation, sumoylation, 
O-GlcNAcylation, ADP-ribosylation, and succination.

Advanced glycation end products. Glucose, in its 
reduced form, can directly react with proteins.72,73 The reac-
tion usually takes place between the glucose’s aldehyde 
group and the side chain of lysine residues as well as the 
N-terminal amino groups for given proteins.72,73 The initial 
species is a Schiff base that can rearrange to form an Amadori 

Figure 1. Major enzymatic pathways activated by diabetic hyperglycemia that can impair cellular redox imbalance between NADH and NAD+. The polyol 
pathway (A) produces NADH, while the ADP-ribosylation pathway (B) can potentially deplete NAD+, accentuating the redox imbalance status between 
NADH and NAD+.
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intermediate. This intermediate can further rearrange to form 
varying forms of advanced glycation end products (AGEs).72,73

Glucose can also undergo autoxidation to form ketoal-
dehyde and hydrogen peroxide in the presence of transition 
metals.58,74,75 The resulting ketoaldehyde can further react with 
the amino groups in proteins. This is followed by the formation 
of ketoimine via Schiff’s base. The ketoimine is then involved in 
the formation of protein-linked AGEs.58,75,76 It should be noted 
that fructose can also induce protein glycation.77

Protein can also be modified by methylglyoxal (MGO), 
a reactive product in the glycolytic pathway.78–81 MGO is a 
carbonyl-containing compound and mainly reacts with lysine, 
arginine, and cysteine residues.79,80,82 The eventual protein 
adducts are a variety of AGEs that could be structurally 
distinct.83,84 It has also been reported that MGO can have 
profound detrimental effects in diabetes.79,85 For example, 
MGO can impair mitochondrial function in diabetes via 
modifications of a variety of mitochondrial proteins.83

Figure 2. Pathways that are activated or upregulated by diabetic hyperglycemia. In addition to the two pathways shown in Figure 1, diabetic 
hyperglycemia can also cause activation of the protein kinase C pathway, accumulation of advanced glycation end-products, and upregulation of the 
hexosamine pathway that fuels the substrate for protein GlcNAcylation. All these pathways have been suggested to be involved in reactive oxygen 
species production and oxidative stress in the pathogenesis of diabetes and its complications.64,192,193

Figure 3. Protein modifications in diabetes reviewed in this article. These modifications include carbonylation, nitration, succination, ADP-ribosylation, 
O-GlcNAcylation, glycation (AGEs), sumoylation, acetylation, and nitrosylation. All these protein modifications can manifest glucotoxicity in diabetes.
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Protein carbonylation. Protein carbonylation is an irre-
versible process.39,86 Protein carbonyls can be formed directly 
by ROS attack or indirectly by conjugating to lipid peroxidation 
byproducts, such as hydroxynonenal.20,87,88 Protein carbon-
ylation can be formed on a variety of amino acid residues, 
including histidine, cysteine, lysine, arginine, proline, and 
threonine.87 Protein carbonyls not only have been used as a 
biomarker for protein oxidation in aging and disease89 but have 
also been shown to impair protein structure and function.90,91 
In diabetes, it has been shown that protein carbonylation is 
increased in red blood cell membranes in diabetic retinopathy.92 
It has also been reported that more plasma proteins show 
elevated protein carbonyl content in type 2 diabetes.93 In our 
own studies, we have shown that mitochondrial complex I 
isolated from diabetic kidneys exhibited selective protein car-
bonylation via the conjugation with lipid peroxidation product 
hydroxynonenal that contains a carbonyl group.20 As protein 
carbonyls are toxic protein adducts impairing protein func-
tion and carbonylation can occur to proteins involved in insu-
lin signaling,94 insulin signaling pathways can be disrupted.94 
Indeed, protein carbonylation has been suggested to be impli-
cated in insulin resistance,94–96 which is an early event in the 
development of type 2 diabetes.97–99

Protein nitration. Protein nitration is also an irrevers-
ible protein modification. It occurs on protein tyrosine resi-
dues due to attack by peroxynitrite.100,101 As peroxynitrite is 
formed by reaction between superoxide and nitric oxide,102,103 
this modification is related to both ROS and reactive nitrogen 
species. Glucose is known to be implicated in the formation 
of nitrotyrosine.104,105 Elegant studies by Koeck et al104,105 
have demonstrated that glucose can mediate tyrosine nitration 
in both adipocytes and β-cells, suggesting a role of glucose-
modulated nitration in obesity, insulin resistance, and β-cell 
dysfunction. Importantly, in both adipocytes and β-cells, 
specific proteins that underwent nitration have been identi-
fied; many of them are involved in glucose metabolism and 
bioenergetics.104,105

O-GlcNAcylation. This posttranslational modifi-
cation is a reversible modification occurring on serine or 
threonine residues.106 The substrate for this modification 
is uridine diphospho-N-acetylglucosamine, the end prod-
uct of the hexosamine pathway.59,60,107,108 As glucose level 
becomes higher in diabetes, more glucose is fluxed into the 
hexosamine pathway, resulting in elevated levels of uri-
dine diphospho-N-acetylglucosamine that can attach to 
proteins.107,109 Protein O-GlcNAcylation has been found 
to be involved in numerous biological processes, such as 
transcription, redox signaling, apoptosis, autophagy, and 
protein degradation.110–112 Many proteins involved in 
insulin signaling can undergo this modification. Moreover, 
O-GlcNAcylation can worsen glucotoxicity in the liver. 
For example, O-GlcNAcylation of FoxO1 in hepatocytes 
can increase its transcriptional activity that then upregu-
lates the expression of glucose 6-phosphotase, leading to 

hyperglycemia by increasing hepatic glucose production.113 
Therefore, protein O-GlcNAcylation has been regarded as 
a major factor in the development of insulin resistance and 
diabetes and diabetic complications.109,114,115

Protein S-nitrosylation. This modification occurs 
on cysteine residues and is also a reversible modification.71 
As  cysteine oxidation status can reflect cellular redox sta-
tus, this modification is tightly linked to oxidative stress 
and glutathione content.65 As the modification is revers-
ible, it can regulate protein function either beneficially or 
detrimentally.65,116 In fact, many studies are now being con-
ducted to explore the beneficial role of this modification in 
aging and disease.117–121 Nonetheless, S-nitrosylation can 
play a deleterious role in diabetes.122 For example, it has 
been reported that in the early phase of diabetes, the level 
of protein S-nitrosylation is increased that might lead to 
mitochondrial dysfunction.123 It has also been reported that 
S-nitrosylation is involved in insulin resistance via the modi-
fication and inactivation of protein kinase B.124 It should be 
mentioned that, similar to this modification, other types of 
cysteine modifications, such as S-glutathionylation, have also 
been shown to be involved in the pathogenesis of diabetes 
and its complications.125,126 For example, hemoglobin shows 
increased levels of glutathionylation in type 2 diabetes.127

Protein acetylation. Protein acetylation is the attach-
ment of an acetyl group onto a lysine side chain in a target 
protein, and the acetyl group usually comes from acetyl-
CoA,128,129 which is a central molecule in metabolism. 
As  shown in Figure 4, acetyl-CoA can be derived from 
combustion of glucose, fatty acids, alcohol, and amino acids. 
Under normal condition, acetyl-CoA is channeled into the 
Krebs cycle for ATP production and is also used for the syn-
thesis of cholesterol and fatty acids. Excess acetyl-CoA usu-
ally leads to ketone body production130–132 and nonenzymatic 
protein acetylation.133 This modification often occurs on lysine 
residues134,135 and has been referred to as carbon stress.108,136–138 
Except histone acetylation and enzyme-catalyzed acetylation 
that are well-regulated processes,139 protein acetylation occur-
ring in cytosol and mitochondria has been widely considered 
as a pure chemical, nonenzymatic reaction,128,129,133,140,141 
although the removal of the lysine-conjugated acetyl groups 
requires deacetylating enzymes, such as sirtuins.142–144 When 
the glucose level is high, so is acetyl-CoA that is used as the 
substrate of acetylation. Hence, proteins can be highly acety-
lated under hyperglycemic or overnutritional conditions.145,146 
When cells switch to use fatty acids as their major energy 
source, such as under the condition of insulin resistance, 
whereby glucose cannot enter the cells,147 the levels of acetyl-
CoA can increase dramatically (Fig. 5) and protein acetyla-
tion can concomitantly increase.146 Thus, it has been reported 
that increased fatty acid oxidation leads to elevation in pro-
tein acetylation in the diabetic heart.148 Additionally, over 
consumption of alcohol that fuels the production of acetyl-
CoA can also elevate protein acetylation.133,149 It should be 
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noted that removal of the acetyl group by enzymes, such as 
sirtuins, requires the presence of NAD+, which is used as 
the substrate for deacetylases.150,151 Therefore, a lower level 
of NAD+ would inhibit protein deacetylation and increase 
protein acetylation.152 Hence, protein acetylation is a modi-
fication that is highly governed by the availability of fuels 
and NAD+, the latter being tightly linked to cellular redox 
balance.153–155 In this regard, it is no surprising that aldose 
reductase can increase protein acetylation via diminishing the 
NAD+ levels.156

Protein succination. This modification, along with 
protein acetylation, has also been categorized under carbon 
stress.138 Protein succination is due to a conjugation reaction 
between fumerate and proteins and often occurs on protein 
cysteine residues.157,158 Any fuel source that would elevate 
the level of fumerate, an intermediate in the Krebs cycle, 
would theoretically facilitate protein succination.158–161 Simi-
lar to S-nitrosylation, protein succination has been shown to 
increase in diabetes and its complications.161,162 Protein suc-
cination can also impair protein function and cellular redox 

Figure 4. Fates of acetyl-CoA, a central molecule in fuel metabolism. Acetyl-CoA can be derived by combustion of glucose, fatty acids, proteins or amino 
acids, and alcohol. In normal condition, acetyl-CoA is mainly channeled into the Krebs cycle for energy production. In overnutrition state, acetyl-CoA can 
be used to store excess energy by forming fatty acids. Acetyl-CoA is also the source for cholesterol synthesis. In starved state, acetyl-CoA is converted 
into ketone bodies. Acetyl-CoA is also the substrate used for protein acetylation.

Figure 5. Excess acetyl-CoA drives nonenzymatic protein acetylation. For noninsulin-dependent cells, diabetic hyperglycemia can overload them with 
glucose, causing the oversupply of acetyl-CoA. For insulin-dependent tissues in diabetes, the cell cannot get enough glucose and will have to use fatty 
acids as the source of energy. Because oxaloacetate cannot be continuously formed due to lack of glucose, the level of acetyl-CoA could be extremely 
high, leading to ketone body production and protein acetylation.
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signaling.38,65,71,163–167 Indeed, it has been reported that 
protein succination is a manifestation of glucotoxicity in both 
the glycolytic pathway and the mitochondrial bioenergetics 
pathway.158,161

Protein sumoylation. This posttranslational modifica-
tion refers to the attachment of a small protein, called small 
ubiquitin-like modifier (SUMO) protein.168,169 SUMOs 
are covalently attached onto target proteins and can also be 
detached.170,171 Hence, sumoylation is also a reversible process. 
Protein sumoylation is known to be involved in protein trans-
location, protein stabilization, inflammation, redox imbalance, 
and oxidative stress.172 In diabetes, SUMO-4 has been impli-
cated in the development of diabetes.173 The target proteins 
of SUMO-4 include IKBα, STAT, AP-1, and heat shock 
transcription factors.174 Moreover, SUMO-4 seems to restrict 
its action in pancreas and immune systems as well as in kid-
neys.175,176 With respect to regulation of blood glucose levels, 
sumoylation is known to occur in Glut4, thereby facilitating 
its translocation onto cell membranes.177 Sumoylation is also 
known to occur in protein-tyrosine phosphatase 1B (PTP1B), 
whereby PTP1B function is inhibited.178 As PTP1B is 
involved in a negative regulation of insulin receptor, PTP1B 
sumoylation is considered to positively regulate insulin 
signaling.169 While some of these studies indicate the benefi-
cial role of protein sumoylation, the modification has also been 
shown to be involved in diabetic pathogenesis.176,179,180 For 
example, high glucose has been shown to induce sumoylation 
of Smad4 in mesangial cells, a process likely involved in renal 
fibrosis in diabetic kidney.181 Additionally, protein sumoylation 
has been linked to increased endothelial inflammation, a pro-
cess known to occur in diabetes and its complications.182

Protein ADP-ribosylation. This posttranslational modi
fication occurring in several amino acid residues, such as 
cysteine, arginine, and asparagine, is the transfer of the ADP-
ribose moiety of the NAD+ molecule onto a target protein,183,184 
and either mono-ADP-ribosylation or poly-ADP-ribosylation 
can occur.185 Because NAD+ is used as a substrate for ADP-
ribosylases, the process is also highly dependent on NAD+ 
availability, and activation of ADP-ribosylases can actually 
deplete NAD+.41–44 This is indeed the case in diabetes as over-
activation of poly-ADP-ribosylases and NAD+ depletion have 
been observed.41,186,187 Accordingly, inhibition of poly-ADP-
ribosylases has been demonstrated to prevent the develop-
ment of diabetes and its complications.188–190 As ROS-induced 
DNA damage can activate poly-ADP-ribosylases, ADP-
ribosylation is thought to be deeply involved in oxidative stress 
and glucotoxicity.191

Conclusion
In this review, we have summarized the evidence that post-
translational protein modifications can manifest glucotoxicity 
in diabetes. We have discussed the types of protein modifica-
tions that have been, and are still being, intensively investigated 

in the field of diabetes research. These modifications, including 
carbonylation, nitration, glycation, O-GlcNAcylation, nitro-
sylation, succination, acetylation, and ADP-ribosylation, can 
affect or modulate the function of the modified proteins, with 
consequences that are more often detrimental than beneficial. 
Importantly, the driving force behind all these modifications 
is dysregulation of glucose metabolism in diabetes that results 
in persistent hyperglycemia. Further studies on these protein 
modifications in diabetes will continue to help our under-
standing of the pathogenic mechanisms of diabetes and its 
complications.
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