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Abstract: In human activity recognition (HAR), activities are automatically recognized and classified
from a continuous stream of input sensor data. Although the scientific community has developed
multiple approaches for various sports in recent years, marginal sports are rarely considered. These
approaches cannot directly be applied to marginal sports, where available data are sparse and costly to
acquire. Thus, we recorded and annotated inertial measurement unit (IMU) data containing different
types of Ultimate Frisbee throws to investigate whether Convolutional Neural Networks (CNNs)
and transfer learning can solve this. The relevant actions were automatically detected and were
classified using a CNN. The proposed pipeline reaches an accuracy of 66.6%, distinguishing between
nine different fine-grained classes. For the classification of the three basic throwing techniques, we
achieve an accuracy of 89.9%. Furthermore, the results were compared to a transfer learning-based
approach using a beach volleyball dataset as the source. Even if transfer learning could not improve
the classification accuracy, the training time was significantly reduced. Finally, the effect of transfer
learning on a reduced dataset, i.e., without data augmentations, is analyzed. While having the same
number of training subjects, using the pre-trained weights improves the generalization capabilities
of the network, i.e., increasing the accuracy and F1 score. This shows that transfer learning can be
beneficial, especially when dealing with small datasets, as in marginal sports, and therefore, can
improve the tracking of marginal sports.

Keywords: inertial measurement unit; activity recognition; sensor-signal-based machine learning;
convolutional neural network; deep learning; wearable sensors; marginal sports; transfer learning

1. Introduction

Monitoring athletes has been in the interest of players and coaches for a very long
time. As early as the 1930s, two Germans used heart rate observations of middle-distance
runners to improve the training procedure of their athletes. The proposed interval training
has been adopted worldwide and has enabled athletes to set new records. The hunt for
new training strategies based on scientific data of athletes has continued ever since [1].
Traditionally, monitoring was done by manually observing the athletes, which was time-
consuming and needed many experts in the field. With the increasing computational
capacities of computers, smaller and more affordable hardware, and the development
of powerful algorithms, monitoring athletes has become feasible for a broad spectrum
of protagonists [1]. A highly objective and reliable qualitative analysis using wearable
sensors is an accepted alternative to traditional lab-based assessment. Wearable sensors are
portable, low-cost, easy to use, and usually do not limit athletes in their movement [2]. Their
success has opened the path for commercial use, for example, at pro soccer clubs, whose
players wear sensors even during competitive matches [3]. However, the development of
more advanced systems classifying distinctive movement patterns is still an active research
topic [2].
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Another important goal of monitoring athletes is the prevention of injuries. Even
though most acute injuries occur in contact sports like American football, injuries resulting
from overuse often happen in non-contact sports. A study amongst collegiate athletes
revealed that over 29 % of the injuries result from overuse, with a much higher estimated
number of unreported cases [4]. Fine-grained monitoring of players’ actions can help to
detect high training loads for specific body parts, which have been linked to injuries, thus
allowing the coach to adjust the training individually [5].

In the literature, a great variety of sport-specific activity recognition systems exists,
which can be used for fine-grained, athlete-specific monitoring [6]. To detect actions reliably,
a sufficient amount of training data needs to be recorded, which is not only cumbersome
but sometimes not possible at all, especially in marginal sports. To combat the lack of data,
transfer learning approaches use data from another domain for pre-training. In a second
step, model parameters are fine-tuned on the target dataset [7].

Our research contributes in the following ways. Firstly, we developed the first activity
recognition system for Ultimate Frisbee. Therefore we trained a Convolutional Neural
Network CNN to distinguish seven different throwing techniques plus catches. Secondly,
we pre-trained the same architecture on an existing volleyball dataset [8] to investigate the
potential of transfer learning for marginal sports. Thirdly, we explored the generalization
capabilities of transfer learning when dealing with small-scale datasets.

A graphical summary of the procedure in this work is shown in Figure 1.

Volleyball data Frisbee data

Preprocessing Preprocessing

Data augmentation Data augmentation

Training from scratch Training from scratch

Trained model

Fine-tuning

Trained model

Performance evaluation

parameter
transfer

Figure 1. A visual summary of the workflow of our paper. We developed the first human activity
recognition system for Ultimate Frisbee. Therefore, we use a convolutional neural network. Addi-
tionally, we investigated the possible improvement of the classification using a network pre-trained
on volleyball activities.
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2. Related Work
2.1. Sensor Based Human Activity Recognition in Sports

The scientific and commercial interest in HAR has been growing in recent years,
leading to extensive research [9]. Traditionally, vision-based solutions have been used for
activity recognition. However, those come with the disadvantages of being expensive,
causing privacy issues, and having to be mounted at specific positions, which may not
be feasible for minor sports outside of huge stadiums [10]. On the other hand, sensor-
based systems using IMUs like accelerometers, gyroscopes, and magnetometers have
been adopted in the research community [6]. Historically, accurate sensors had to be
custom-built for each application. Smaller, cheaper, and better availability of sensors
have made it possible to analyze numerous different sports and movements in recent
years [9]. Cust et al. [6] provide a broad overview of machine and deep learning for sport-
specific movement recognition. Their review includes a comparison of several sensor- and
vision-based solutions for HAR in sports. Even though the respective authors used many
different methods for their HAR systems, the general workflow included: preprocessing,
segmentation, feature extraction, dimensionality reduction, and classification. During the
preprocessing step, many authors propose low pass filters to remove unwanted noise [10].
There has been successful work with transforming the signal into the frequency domain,
such as applying a wavelet transformation [11] or a fast Fourier transform [12]. The trend
for the classification task is more and more towards neural networks, specifically to CNNs
and long short-term memory (LSTM) [13], due to their good performance. CNNs have
been initially used for image detection tasks because they preserve the spatial information
of neighboring pixels [14]. Time series data also include spatial information between
subsequent measurements [15]. In addition, deep learning-based approaches have the
advantage of skipping the feature extraction step. Chen et al. [16] proved that CNNs can
compete with other algorithms, reaching an accuracy of 93.8% when classifying eight tasks
of daily living.

By now, the research community has developed a variety of classification pipelines
that specifically target one discipline of sports. Anand et al. make use of the better
availability of sensors and use smartwatches to classify strokes in swing sports, like tennis
or badminton, and give the players feedback on their technique [17]. Using a bi-directional
long short-term memory network, they achieve accuracies between 78.9% and 94.6%
depending on the swing sport. Brock et al. classify common errors of ski jumpers and
chose IMUs over a vision-based solution to account for bad weather conditions and to
get numerically comparable data [18]. They achieve error recognition rates between 60%
and 75%. Kautz et al. classified actions from beach volleyball players using data from a
wrist-worn accelerometer. Amongst others, they programmed a deep convolutional neural
network, which reached an accuracy of 83% [8].

2.2. Transfer Learning

Transfer learning refers to the technique of using knowledge gained in one domain
(source domain) and applying it in another domain (target domain). Its advantages over
training a classifier without prior knowledge include shorter training durations and the
ability to solve previously unsolvable tasks.

Transfer learning has been applied to CNNs in various domains. This includes, among
others, image classification [19–23] and image segmentation [24,25]. In order to improve their
accuracy, some of the studies used several data pre-processing and augmentation techniques.

Apart from this, the review by Cook et al. [26] provides a broad general overview
of transfer learning for activity recognition. Instance-based transfer learning can be used
when the source and target domain are the same or very similar, but the task differs.
Training samples are reweighted and directly fed into the classifier for the target task [27].
Tommasio et al. [28] use a form of parameter transfer where they split the parameters of
a Support Vector Machine (SVM) w into two parts, where one is shared by the two tasks.
Fawaz et al. [29] investigated transfer learning for time series classification and came to the
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conclusion that the choice of the source dataset heavily influences the success or failure of a
transfer learning-based approach. Better generalization capabilities can be reached with a
suitable dataset for the target task. There has also been work on transfer learning applied
to HAR. Morales et al. [30] were the first with the idea of transferring low-level features,
learned in the lower layers of a CNN for an HAR task.

3. Materials and Methods

The following chapter describes the setup and methods used in this work. First, the
activity detection pipeline is explained, which is used to extract relevant samples from the
continuous sensor data stream. Then, the labeling procedure and the utilized augmentation
techniques are presented. Next, the classification pipeline is described. The classifier
was trained from scratch and compared to a network pre-trained on a beach volleyball
dataset as a source domain. This transfer learning approach is explained, followed by the
evaluation techniques.

3.1. Datasets

This section describes the two datasets used as a source and target dataset. Further-
more, we will explain how the studies to record the data were conducted and how actions
were detected. The description of the volleyball dataset by Kautz et al. [8] is followed by a
short introduction to Ultimate Frisbee. Afterward, we present the frisbee dataset recorded
for this work.

3.1.1. Volleyball Dataset

This dataset consists of three-dimensional acceleration data of common actions in
beach volleyball. It was acquired by Kautz et al. for their paper on “Activity recognition in
beach volleyball using a Deep Convolutional Neural Network” [8]. Each of the 30 partici-
pants was outfitted with a wrist-worn accelerometer, which sampled at 39 Hz. The signal
was recorded with 14 bits per axis and truncated at ±16 g. Note that the axis x, y, and z
refer to the sensor’s coordinate system. There was no transfer to real-world coordinates.
The players’ experience ranged from beginners to professional level athletes. The overall
goal was to develop a recognition and classification system which extracts relevant sections
from the continuous input and assigns them to a class. The classification incorporates ten
different volleyball activities, including, among others, the underhand serve, block, and
dig. Table 1 shows a summary of the two datasets.

Table 1. Summary of the volleyball and frisbee dataset used in this study.

Dataset Volleyball Frisbee

Actions of interest (without null class) 4284 3695
Subjects (female/male) 30 (11/19) 14 (2/12)
Skill Level Beginner to professional Experienced amateurs
Sensor BMA280 Portabiles NilsPod
Sampling rate 39 Hz 512 Hz downsampled to 39 Hz
Sensor placement Wrist of dominant hand
Reference Manually labeled video

The first step of the processing pipeline, the detection of potentially relevant signal
segments, was done directly on the worn microcontroller. Since relevant actions include a
ball contact, the idea was to detect the high-frequency spikes in the acceleration data. This
was achieved by passing the signal through a high-pass filter, computing the L1 norm, and
smoothing the signal using a low-pass filter. If the signal does not exceed a certain threshold,
it is rejected. However, this approach was not sufficient to detect actions accurately. To
further refine the process, the authors calculated the swing movement by averaging the
absolute acceleration in all three directions for 200 ms before the impact. With the swing
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movement and the amplitude at the peak, Kautz et al. trained a decision tree to discard
irrelevant actions. For a more detailed description of the action detection pipeline and the
recorded dataset, see the original publication [8]. We use the extracted actions of interest
from the dataset for our work.

The classification task used multiple feature-based classifiers: support vector machine,
k-nearest-neighbor, Gaussian naive Bayes, decision tree, random forest, and VOTE as a
meta classifier. A deep convolutional neural network (DCNN) outperformed all classifiers
with hand-crafted features.

3.1.2. Ultimate Frisbee Dataset

In recent years, Ultimate Frisbee has been one of the fastest-growing sports globally. It
has its origins in the 1950s in the United States and has since spread worldwide [31].

Ultimate Frisbee is played seven vs. seven on a field with the length of a soccer field
and half its width. There are 15 to 18 m deep endzones comparable to American Football
at both ends. A player can score a point for their team by catching the frisbee in the
endzone. Teammates can pass the frisbee to each other as they please. After a catch, there
is a ten-second time limit to get rid of the frisbee. A failure to do so, or an incomplete pass,
results in a turnover. Travelling is—except for a basketball-style pivot step—forbidden. As
a non-contact sport, every kind of physicality is illegal.

This work focuses on three basic throws: backhand throws, forehand throws, and
overheads—sometimes called a hammer. Figure 2 shows a sketch of the basic throwing
techniques. Depending on the release angle, the frisbee moves on a different trajectory.
Therefore, forehand and backhand throws are further separated by the frisbee’s path:
flat, outside-in, and inside-out. An example of the variety of backhand throws by a
right-handed player is depicted in Figure 3. Table 2 shows a description of all throwing
techniques together with the number of samples per class contained in our frisbee dataset.

Figure 2. The three main throwing techniques in Ultimate Frisbee are, from left to right, forehand,
overhead and backhand. The sensor is placed at the wrist of the dominant hand. The sensor (white)
is fixed with a wristband (black).
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Figure 3. Depending on the angle of the release, the frisbee moves on a different trajectory. The
different throwing types are shown for backhand throws.

Table 2. Description of the Ultimate Frisbee action classes used in this study for throwing with the
right hand. The different angles of the frisbee during the release affect the trajectory of the frisbee,
which are the namesakes for the throwing technique. Additionally, the number of samples of the
respective class is specified.

Type of Action Description Number of Samples

Backhand flat

The athlete is standing with the shoulder axis pointing to the throwing
target. The frisbee is moved from the back shoulder towards the target
in front of the body. The frisbee is flat during the release. It is the most
common frisbee throw.

346

Backhand
outside-in

The basic movement is the same as the backhand flat but with the top
of the disc facing towards the thrower during the release. 295

Backhand
inside-out

The basic movement is the same as the backhand flat but with the top
of the disc facing away from the thrower during the release. 305

Forehand flat
The athlete is standing with the shoulder axis perpendicular to the
target. The frisbee is moved on the side of the throwing hand next to
the torso. The frisbee is flat during the release.

324

Forehand
outside-in

The basic movement is the same as the forehand flat but with the top
of the disc facing towards the thrower during the release. 313

Forehand
inside-out

The basic movement is the same as the forehand flat but with the top
of the disc facing away from the thrower during the release. 307

Overhead The athlete stands with the shoulder axis perpendicular to the target.
The frisbee is moved over the head, similar to a slap shot. 341

Catch The athlete catches the frisbee with the dominant hand or both hands. 1556

Attempted catch The athlete tries to catch the frisbee with the dominant hand or both
hands, but the frisbee bounces off or falls to the ground. 148

Null class Non-frisbee actions during the data acquisition like running, clapping,
and undefined motions. 631

Since we wanted our classifier to distinguish between flat, outside-in, and inside-out
throws, which require players to have an advanced level of skill, we recruited most of
the players from a local Ultimate Frisbee team. We recorded 14 participants (12 male,
2 female) who throw mainly with their right hand. The mean age of the players was
31 years (standard deviation: 7 years). Everyone except one participant reports at least four
years of experience in Ultimate Frisbee (mean: 11 years). Except for one player, everyone
has played Ultimate Frisbee competitively in any form of club or association. Two players
have participated in the world championships.

Each player was outfitted with an IMU (Portabiles NilsPod) at the wrist of their
dominant hand (see Figure 3). The sensor initially sampled at 512 Hz and recorded
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acceleration and gyroscope data in all three dimensions. The sensors write the recorded
data to the built-in memory. The measurement range for the accelerometer is ±16 g and
±2000◦ per second for the gyroscope.

One recording session featured two players at once. After a couple of throws to warm
up, the players positioned themselves at a predefined distance. The distances visually
marked by pylons were ten meters in round one, 15 m in round two, and 25 m in round
three. Some of the participants also did a fourth-round with 30 m distance. Each player
threw each kind of throw at least five times in each round. Table 2 lists the types of actions
and the number of occurrences in the dataset. For labeling the activities, the data acquisition
was filmed using a tripod-mounted wide-angle action camera.

3.2. Activity Detection

In order to classify the different throws, potentially relevant actions had to be detected
first. Comparing the acceleration and gyroscope plots with the reference video reveals that
actions involve high-frequency peaks in the plots. Furthermore, it was essential to exclude
another ordinary and somewhat similar-looking but uninteresting activity: Running to
retrieve a not caught frisbee. For the action detection, the gyroscope data was disregarded.
For this purpose, we first calculated the acceleration norm and used the z-score algorithm
to detect peaks [32]. We used a window size of 1.6 s, a threshold of 3.5, and an influence
of 0.5.

During continuous actions (like running), the moving standard deviation of the signal
is higher than when the subject is in an idle state. This property helps to more accurately
detect throws because they usually follow a situation where the player is, by rule, not
moving. It can also detect catches because even though the participant might run to make
a catch, the frisbee’s abrupt deceleration transfers much energy to the player’s hand and
thus creates very high-frequency peaks.

Since this first step has the issue of recognizing multiple peaks for only one action,
peaks were forced to be at least 400 samples (0.78 s) apart. If this condition was not
met, only the first peak gets included due to the assumption that the first high-frequency
peak indicates the initial action, whereas the latter ones are only post-pulse oscillations.
The gyroscope data were disregarded for the activity detection and only used during the
classification. After the peak detection, we resampled the IMU data to 39 Hz to match the
volleyball data.

3.3. Augmentation Techniques

In order to get a more robust classifier and achieve better generalization results, we
employed three random-based augmentation techniques. Each peak corresponds to one
detected action, and the classifier works with samples of a fixed length. The continuous
stream of acceleration and gyroscope data is cut into windows of a fixed length which
serve as an input feature vector x ∈ R6×l with l being the number of samples in the
window. The window starts 0.8 seconds before the peak and lasts until 1.0 s after the
peak (l = (0.8 s + 1.0 s) · 39 Hz). Augmented samples are then generated by adding three
randomly moved windows per detected action. The maximum shift of the peak thereby is
0.2 s.

Furthermore, we tripled the number of samples by rotating existing ones around a
random angle in 3D space. During the training phase, a normally distributed noise is added
to each channel as the third augmentation technique. All these techniques are applied to
both the source and the target dataset.

Additionally, we rebalanced the datasets by a combination of the synthetic minority
over-sampling technique (SMOTE) and a clean-up by the edited nearest neighbor (ENN)
algorithm. Since SMOTE can use marginal outliers, which generates unsatisfactory training
samples, ENN is used to remove the generated samples, which are in the feature space far
away from the majority of the class [33,34].
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3.4. Classification

For classification, a CNN was developed. The architecture was partly adapted from
Fawaz et al. [29]. It consists of two input layers: One for the acceleration data and one for
the gyroscope data. Three convolutional layers follow each input layer. Batch normalization
is used after each convolutional layer in order to reduce the training times and achieve
better results [35].

The widths of the kernels of the convolutional layers are from the first to the last layer:
eight, five, and three. After the convolutional layers, a global maximum pooling layer is
used. Global average pooling has the same effect on the accuracy but has severe disadvan-
tages concerning the training times [36]. In contrast to the findings of Boureau et al. [36], no
improvement in accuracy could be observed when using maximum pooling. The results of
the pooling layers are concatenated and passed via one fully connected layer with 64 neu-
rons to the output layer. The convolutional and fully connected layers use the rectified
linear unit (ReLU) as an activation function. The last layer uses the softmax function to
assign probabilities to each class. The architecture of the network is depicted in Figure 4.
Additionally, in Table 3 the network architecture is described in detail.

Figure 4. The architecture of the convolutional neural network, which was used in this work. The
output dimensions of the layers are given at the top right of each row. The connections of the last two
fully connected layers were omitted for better readability. The architecture was partly adapted from
Fawaz et al. [29].

During the training procedure, an optimizer implementing Adam’s algorithm is
used [37]. Even though Adam computes individual adaptive learning rates for different
weights, the implementation has shown more stable results when gradually decreasing the
initial learning rate η over the epochs. Therefore, we used early stopping with a patience of
10, restoring the best weights and reducing the learning rate via the inverse decay function.
The training was performed on an NVIDIA GeForce RTX 2080 Ti.

We use a leave-one-subject-out cross-validation for network performance evaluation
investigating the accuracy, and the macro averaged F1 score, which combines the class-wise
F1 scores. Therefore, we investigate the accuracy, F1 score, and training time per fold
averaged over 14 folds.
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Table 3. Detailed description of the convolutional neural network used in this study. The first
convolutional together with the batch normalization layers are used once for the acceleration data
and once for the gyroscope data.

Layer Type Hyperparameter Output Shape # of Parameters

1D Convolution Filter: 128, kernelsize: 8 (64, 128) 3200
Batch Normalization Momentum: 0.9, epsilon: 0.001 (64, 128) 256
1D Convolution Filter: 256, kernelsize: 5 (60, 128) 164,096
Batch Normalization Momentum: 0.9, epsilon: 0.001 (60, 128) 240
1D Convolution Filter: 128, kernelsize: 3 (58, 128) 98,432
Batch Normalization Momentum: 0.9, epsilon: 0.001 (58, 128) 232
Global max-pooling (128) 0
Fully Connected (64) 16,448
Dropout dropout: 0.2 (64) 0
Dense (5) 325

3.5. Transfer Learning

The volleyball dataset obtained by Kautz et al. [8] served as the source domain in our
transfer learning approach. Participants of both studies were equipped with a comparable
sensor at the same position at their wrist. Kautz et al. [8] have already done the activity
detection for the volleyball dataset, which means that our work is based on annotated
samples of a fixed length that contain relevant actions from the domain. At first, the network
(compare Figure 4) is trained on the volleyball dataset. Since this dataset lacks gyroscope
data, only one input layer and subsequent convolutional, normalization, and pooling layers
are used. During each run, the samples of 25 participants serve as training data, and the
samples of two participants as validation data. The samples of three participants are used
as test data. The weights of the convolutional layers from the best fold are saved and will
be reused for subsequent transfer learning approaches.

The model is evaluated using a 3-fold-cross validation following the work of the
original authors, which ensures good comparability. Note that Kautz et al. [8] used a
slightly different architecture than what is used in this work.

The second step of the transfer learning approach is to train the actual network on
the frisbee dataset. Therefore, the previously saved weights of the convolutional layers
are loaded into the network. Depending on the exact configuration, those layers may be
frozen, which means their weights will not be updated during the backpropagation phase.
Due to the sharp peaks in gyroscope and acceleration data, we assume that the kernels
for both network inputs are similar in the first convolutional layers. Therefore, we use
the pre-trained weights for both acceleration and gyroscope data even though only the
acceleration data was used for the training.

The remaining layers are initialized using Glorot’s initializer to combat the problem
of vanishing gradients. Glorot et al. [38] showed that when going through the layers of
a neural network, the variance in the layer’s output increases, and thus the gradients for
the lower layers become very small when initializing the weights with a Gaussian normal
distribution. Thus, the lower layers are only receiving minimal to almost no updates [39].

3.6. Experiments

The classification task on the frisbee dataset was conducted using both the detailed
and aggregated labels. The first task features nine distinct classes (see Table 2). The latter
one features five classes aggregating the different forehand and backhand throws. We
then look at the performance of transfer learning, varying the number of pre-trained and
frozen layers. Finally, we will resolve whether transfer learning can improve generalization
capabilities when fewer training samples are available. This represents a smaller dataset
due to a smaller study design. It might be cumbersome to acquire study participants
in marginal sports, especially for individual sports. For comparability to the previous
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experiments, we did not decrease the total number of participants used for training but
instead omitted the data augmentation steps. In general, a decrease in performance is
expected for smaller datasets.

4. Results

The following paragraphs present the results obtained from the experiments described
in the previous chapter. We start with the results of our architecture on the volleyball dataset,
since its performance influences the performance of the transfer learning experiments. We
then present the results of the frisbee dataset and the transfer learning results on the
network’s performance.

4.1. Volleyball Dataset

The leave-three-out cross-validation on the volleyball dataset resulted in a mean
accuracy of 86.6% over all folds surpassing the accuracy of Kautz et al. [8] by 3.45 percentage
points. The average F1 score is 68.7%.

4.2. Frisbee Dataset

The training from scratch on the frisbee dataset yields an overall accuracy of 66.6%
and a macro averaged F1 score of 52.3%. Figure 5 shows the confusion matrix of the
classification performance. The values are normalized along the true classes. The confusion
matrix clearly shows block matrices for the different forehand (classes 0 to 2) and backhand
(classes 3 to 5) throws.

Furthermore, some overheads (class 6) have been misclassified as one of the forehand
throws (3 to 5).

If we drop the distinction between flat, outside-in, and inside-out throws and focus on
the aggregated classes backhand and forehand, the leave-one-subject-out cross-validation
results in a mean accuracy of 89.9% and a macro averaged F1 score of 88.4%. The corre-
sponding confusion matrix is shown in Figure 6.

Figure 5. Confusion matrix of classification performance. The backhand throws are abbreviated as
bh and the forehand throws as fh. The true class is given on the left and the predicted class on the
bottom. Each entry is normalized according to its true class and denoted in percentage. Thus, the
highest possible value is 100, and the smallest value is zero.
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Figure 6. Confusion matrix for the aggregated class problem (no distinction between flat, outside-
in and inside-out throws). Each entry is normalized according to the true class and denoted in
percentage. Thus, the highest possible value is 100, and the smallest possible value is zero.

4.3. Transfer Learning

As described previously, transfer learning is realized by freezing or fine-tuning the
weights of the first few layers after the initial training of the network on a source domain.

Figure 7 shows the mean training time per fold, F1 score, and accuracy for different
training configurations. The training time is measured, including balancing operations and
the patience of early stopping. Using the pre-trained weights for all three convolutional
layers, but without freezing these layers, the accuracy drops from 66.6% with randomly
initialized weights to 66.2%. In contrast, the F1 score slightly improves to 52.9%. The
training time per fold decreases from 217.6 s to 198.6 s.

An increased number of frozen layers leads to a decrease in both accuracy and F1
score. While the training time per fold is only slightly shorter for one layer frozen (205.2 s)
for the two layers initialized and frozen, the training time is considerably shorter (119.7 s).

4.4. Transfer Learning with Smaller Dataset

Looking at the transfer learning performance using the reduced training dataset, we
generally see a drop in performance compared to the network trained on the entire dataset,
i.e., with all data augmentations. Figure 8 shows the mean training time per fold, F1 score,
and accuracy for this training scenario. With randomly initialized weights, the network
achieves an accuracy of 52.0% and an F1 score of 31.8%, which takes 8.6 s per fold. Using the
pre-trained weights for all three convolutional layers and not freezing them, the accuracy
increases to 60.5% and an F1 score of 36.8% while also increasing the training time to 9.8 s.
Having one or two layers initialized and frozen increases accuracy and F1 score compared
to the random initialization. The performance with random initialization of weights is
slightly worse than without freezing the layers. However, it leads to shorter training times.
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Figure 7. Comparison of the accuracy, F1 score, and training time for different transfer learning
configurations. The scale for the accuracy and F1 score is shown on the left y-axis, and for the training
time on the right y-axis. In the configuration of the pre-trained weight, all three convolutional layers
were initialized with the weights of the network trained on volleyball data but not frozen. For the
random weights configuration, all layers were randomly initialized. For the configurations with one
or two frozen layers, the model is initialized with pre-trained weights, and the weights are frozen in
the later training procedure.

Figure 8. Comparison of the accuracy, F1 score, and training time for different transfer learning
configurations for a reduced dataset, i.e., without data augmentation. The scale for the accuracy and
F1 score is shown on the left y-axis and for the training time on the right y-axis. In the configuration
of the pre-trained weights, all three convolutional layers were initialized, with the weights of the
network trained on volleyball data but not frozen. For the random weights configuration, all layers
were randomly initialized. For the configurations with one or two frozen layers, the model is
initialized with pre-trained weights, and the weights are frozen in the later training procedure.
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5. Discussion

The goal of this work was to create the first HAR system for different throws in
Ultimate Frisbee using a convolutional neural network and study the effects of transfer
learning from a beach volleyball action recognition task.

5.1. Study

The data recording took place at the end of March 2021, where the participants who
practiced regularly multiple times a week were not allowed to do so for roughly five months
due to COVID-19 restrictions in Germany. Even though most of the players met privately
to practice throws, the intensity and complexity of the throws increases during competitive
matches. The players were aware of this issue since they reported that the lack of practice
negatively influenced their throwing capabilities. This decline in capabilities is not only a
perceived effect as Korkmaz et al. [40] have shown. Their study conducted with amateur
football players found that the months-long detraining process during the pandemic led to
a significant deterioration in players’ physical and motoric abilities.

The data have been recorded with only two players at a time in a controlled envi-
ronment. Future work has to investigate whether the proposed pipeline works under
competitive conditions during a match. Stoeve et al. [41] investigated the transferability of
a football activity recognition pipeline from controlled conditions to real-world scenarios.
They observed a decrease in performance for a feature-based approach, whereas perfor-
mance was comparable for the proposed CNN, thus indicating good generalization to
complex scenarios [41].

5.2. Activity Recognition

The network achieved an accuracy of 89.9% in the 5 class problem without favoring
the majority class, which supports the evidence that CNNs work well for time series
classification. To put these numbers into perspective, Anand et al.’s CNN for stroke
classification reached accuracies between 77.2% (badminton) and 93.8% (tennis) [17].

The decreased performance for the 9 class problem shows that separating flat, outside-
in and inside-out throws is a tough challenge. The confusion matrix (Figure 5) reveals block
matrices for the different forehand and backhand classes. Inside these sub-matrices, the
error rate of the classifier was very high, the network did not predict reliable results, and
one could argue that the classifier can not distinguish the detailed classes. Due to better
applicability in a real-world scenario using smartwatches or fitness trackers, we fixed the
IMUs at the wrist of the dominant hand. However, future work should consider placing the
sensor at the back of the hand since the subtle differences in movement between performing
flat, outside-in, and inside-out throws originate mainly from the wrist’s movement. A
sensor placed above the wrist has disadvantages in recording these small changes and,
therefore, worsens the classifier’s performance. Since many frisbee players wear gloves for
better friction, a sensor could be fixed on the glove.

We also tested the classification using other architectures, including a ResNet archi-
tecture [42]. The tested networks achieved lower or, at most, comparable accuracies. The
disadvantage of the architectures achieving the same accuracy as, e.g., the ResNet architec-
ture is the much longer training time. In our case, using only three ResNet blocks already
doubles the training time.

5.3. Transfer Learning

With the transfer learning approach, the accuracy and F1 score could not be improved.
The reason for this is probably, as already mentioned, that the minor differences between
the detailed forehand and backhand throws are not represented in the IMU data.

Nevertheless, transfer learning decreases the training time while maintaining similar
performance results. Therefore, depending on the individual application and focus, it
might be beneficial to use transfer learning to achieve faster training times.
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One drawback of the employed source dataset is the missing gyroscope data. We used
the weights of the convolutional layers pre-trained on the acceleration of the volleyball data
as initialization for the layers of the frisbee gyroscope data. Since we achieve comparable re-
sults, our assumption that both acceleration and gyroscope have similar low-level features
stands. While the focus on only acceleration data may have been sufficient for classifying
beach volleyball actions, investigations including multiple architectures revealed the neces-
sity of including gyroscope data for frisbee activity recognition. Therefore, disregarding
the gyroscope data has never been an option in our research.

5.4. Transfer Learning with Smaller Dataset

As expected, reducing the dataset leads to a general drop in performance in all training
configurations. However, transfer learning improves both accuracy and F1 score in all
tested training configurations. The training time slightly increases or decreases depending
on the exact transfer learning setup. Overall, the results show that transfer learning can
improve the network’s generalization capabilities when using small datasets.

The performance improvement through transfer learning was not the case for the
entire dataset. In general, transfer learning may improve the performance depending on the
specific dataset and training configuration. Therefore, it is beneficial to test transfer learning
and data augmentation techniques to improve a network’s generalization capabilities.

Marginal sports in particular can benefit from a transfer learning approach, since
acquiring study participants is cumbersome.

This might also make activity recognition in marginal sports more interesting for
smartwatches or fitness trackers, since the amount of data to build a solid activity recogni-
tion system is relatively small. Using activity recognition in marginal sports also increases
professionalism and may thus lead to better performances in marginal sports.

6. Conclusions

The goal of this work was to create the first HAR system, which can classify different
throwing techniques of Ultimate Frisbee players. Therefore we recorded 14 participants
who performed seven different throws using a wrist-worn accelerometer and gyroscope.
In order to establish a ground truth, the signal was manually annotated using a video
reference. Following the action detection, a CNN was used to classify the throws and
catches, and assign the false positives of the action detection to a null class. A leave-one-
subject-out cross-validation resulted in a mean accuracy of 66.6%. However, the macro
averaged F1 score of 52.3% is more meaningful for the imbalanced dataset. We found that
separating flat, outside-in and inside-out throws is a tough challenge, and the network
could not solve this task reliably. If we drop the distinction between these detailed classes
and focus on the main throwing techniques and catches, the CNN reaches a macro averaged
F1 score of 88.4%.

Furthermore, we studied the effects of transfer learning, using the beach volleyball
dataset by Kautz et al. [8] as a source domain. We used the weights of the lower con-
volutional layers of a network pre-trained on the volleyball data. With all of the three
convolutional layers pre-trained but not frozen, the CNN reached a comparable perfor-
mance concerning the accuracy and F1 score, but achieved faster training times. Freezing
more layers resulted in even shorter training times but had a slight negative impact on the
prediction capabilities of the network.

Another question was whether transfer learning could improve classification tasks if
only very few data samples were available. Therefore, we dropped the data augmentation
steps to simulate a smaller dataset. While the smaller training dataset led to a general
decrease in accuracy, the transfer learning approach improved both accuracy and F1 score.
The training time slightly increases or decreases with transfer learning depending on the
training configuration.

To conclude, transfer learning can be a powerful tool to combat long training times for
HAR. Despite this, it should be considered in addition to data augmentation techniques to
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improve the generalization capabilities, especially when dealing with small datasets, which
is often the case in marginal sports.

Author Contributions: Conceptualization, J.L., T.P. and M.S.; methodology J.L., T.P. and M.S.; soft-
ware, T.P.; validation, J.L., T.P. and M.S.; formal analysis J.L., T.P. and M.S.; investigation J.L., T.P. and
M.S.; resources B.M.E.; data curation, J.L., T.P. and M.S.; writing—original draft preparation, J.L., T.P.
and M.S.; writing—review and editing, J.L., T.P., M.S. and B.M.E.; visualization, J.L., T.P. and M.S.;
supervision, B.M.E.; project administration, B.M.E.; funding acquisition, B.M.E. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by German Research Foundation (DFG) grant number Heisen-
berg: 434/8-1.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Ethics Committee of the Friedrich-Alexander-
Universität Erlangen-Nürnberg (number 106_13B).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data is available from the authors on reasonable request.

Acknowledgments: Bjoern Eskofier gratefully acknowledges the support of the German Research
Foundation (DFG) within the framework of the Heisenberg professorship programme (grant number
ES 434/8-1). Furthermore, we would like to thank Unwucht Erlangen for the help acquiring the
participants of the study and Jonas Muschiol (www.jonas-muschiol.de/, accessed on 28 February
2022 ) for the graphic of frisbee throwing techniques.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network

ENN edited nearest neighbor

HAR human activity recognition

IMU inertial measurement unit

LSTM long short-term memory

ReLU rectified linear unit

SMOTE synthetic minority over-sampling technique

SVM Support Vector Machine

References
1. Foster, C.; Rodriguez-Marroyo, J.A.; De Koning, J.J. Monitoring training loads: The past, the present, and the future. Int. J. Sport.

Physiol. Perform. 2017, 12, S2–S28. [CrossRef] [PubMed]
2. Tedesco, S.; Alfieri, D.; Perez-Valero, E.; Komaris, D.S.; Jordan, L.; Belcastro, M.; Barton, J.; Hennessy, L.; O’Flynn, B. A Wearable

System for the Estimation of Performance-Related Metrics during Running and Jumping Tasks. Appl. Sci. 2021, 11, 5258.
[CrossRef]

3. Barça Innovation Hub. Monitoring Technologies for Sports Analysis. 2021. Available online: https://barcainnovationhub.com/
monitoring-technologies-for-sports-analysis/ (accessed on 28 February 2022).

4. Yang, J.; Tibbetts, A.S.; Covassin, T.; Cheng, G.; Nayar, S.; Heiden, E. Epidemiology of overuse and acute injuries among
competitive collegiate athletes. J. Athl. Train. 2012, 47, 198–204. [CrossRef] [PubMed]

5. Hulin, B.T.; Gabbett, T.J.; Blanch, P.; Chapman, P.; Bailey, D.; Orchard, J.W. Spikes in acute workload are associated with increased
injury risk in elite cricket fast bowlers. Br. J. Sport. Med. 2014, 48, 708–712. [CrossRef] [PubMed]

6. Cust, E.E.; Sweeting, A.J.; Ball, K.; Robertson, S. Machine and deep learning for sport-specific movement recognition: A systematic
review of model development and performance. J. Sport. Sci. 2019, 37, 568–600. [CrossRef] [PubMed]

7. Ng, H.W.; Nguyen, V.D.; Vonikakis, V.; Winkler, S. Deep learning for emotion recognition on small datasets using transfer
learning. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, Seattle, WA, USA, 9–13
November 2015; pp. 443–449.

www.jonas-muschiol.de/
http://doi.org/10.1123/IJSPP.2016-0388
http://www.ncbi.nlm.nih.gov/pubmed/28253038
http://dx.doi.org/10.3390/app11115258
https://barcainnovationhub.com/monitoring-technologies-for-sports-analysis/
https://barcainnovationhub.com/monitoring-technologies-for-sports-analysis/
http://dx.doi.org/10.4085/1062-6050-47.2.198
http://www.ncbi.nlm.nih.gov/pubmed/22488286
http://dx.doi.org/10.1136/bjsports-2013-092524
http://www.ncbi.nlm.nih.gov/pubmed/23962877
http://dx.doi.org/10.1080/02640414.2018.1521769
http://www.ncbi.nlm.nih.gov/pubmed/30307362


Sensors 2022, 22, 2560 16 of 17

8. Kautz, T.; Groh, B.H.; Hannink, J.; Jensen, U.; Strubberg, H.; Eskofier, B.M. Activity recognition in beach volleyball using a deep
convolutional neural network. Data Min. Knowl. Discov. 2017, 31, 1678–1705. [CrossRef]

9. Qi, W.; Su, H.; Yang, C.; Ferrigno, G.; De Momi, E.; Aliverti, A. A fast and robust deep convolutional neural networks for complex
human activity recognition using smartphone. Sensors 2019, 19, 3731. [CrossRef]

10. Avci, A.; Bosch, S.; Marin-Perianu, M.; Marin-Perianu, R.; Havinga, P. Activity recognition using inertial sensing for healthcare,
wellbeing and sports applications: A survey. In Proceedings of the 23th International Conference on Architecture of Computing
Systems 2010, Hannover, Germany, 22–23 February 2010; pp. 1–10.

11. He, H.; Tan, Y.; Zhang, W. A wavelet tensor fuzzy clustering scheme for multi-sensor human activity recognition. Eng. Appl.
Artif. Intell. 2018, 70, 109–122. [CrossRef]

12. Mashita, T.; Shimatani, K.; Iwata, M.; Miyamoto, H.; Komaki, D.; Hara, T.; Kiyokawa, K.; Takemura, H.; Nishio, S. Human activity
recognition for a content search system considering situations of smartphone users. In Proceedings of the 2012 IEEE Virtual
Reality Workshops (VRW), Costa Mesa, CA, USA, 4–8 March 2012; pp. 1–2.

13. Inoue, M.; Inoue, S.; Nishida, T. Deep recurrent neural network for mobile human activity recognition with high throughput.
Artif. Life Robot. 2018, 23, 173–185. [CrossRef]

14. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten
zip code recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

15. Ding, R.; Li, X.; Nie, L.; Li, J.; Si, X.; Chu, D.; Liu, G.; Zhan, D. Empirical study and improvement on deep transfer learning for
human activity recognition. Sensors 2019, 19, 57. [CrossRef]

16. Chen, Y.; Xue, Y. A deep learning approach to human activity recognition based on single accelerometer. In Proceedings of the
2015 IEEE International Conference on Systems, Man, and Cybernetics, Hong Kong, China, 9–12 October 2015; pp. 1488–1492.

17. Anand, A.; Sharma, M.; Srivastava, R.; Kaligounder, L.; Prakash, D. Wearable motion sensor based analysis of swing sports. In
Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico,
18–21 December 2017; pp. 261–267.

18. Brock, H.; Ohgi, Y. Assessing motion style errors in ski jumping using inertial sensor devices. IEEE Sens. J. 2017, 17, 3794–3804.
[CrossRef]

19. Ho, N.; Kim, Y.C. Evaluation of transfer learning in deep convolutional neural network models for cardiac short axis slice
classification. Sci. Rep. 2021, 11, 1839. [CrossRef] [PubMed]

20. Zhu, Y.; Chen, Y.; Lu, Z.; Pan, S.J.; Xue, G.R.; Yu, Y.; Yang, Q. Heterogeneous transfer learning for image classification. In
Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 7–11 August 2011.

21. Hussain, M.; Bird, J.J.; Faria, D.R. A study on cnn transfer learning for image classification. In Proceedings of the UK Workshop
on Computational Intelligence, Nottingham, UK, 5–7 September 2018; Springer: Cham, Switzerland, 2018; pp. 191–202.

22. Quattoni, A.; Collins, M.; Darrell, T. Transfer learning for image classification with sparse prototype representations. In
Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008;
pp. 1–8.

23. Han, D.; Liu, Q.; Fan, W. A new image classification method using CNN transfer learning and web data augmentation. Expert
Syst. Appl. 2018, 95, 43–56. [CrossRef]

24. Van Opbroek, A.; Ikram, M.A.; Vernooij, M.W.; De Bruijne, M. Transfer learning improves supervised image segmentation across
imaging protocols. IEEE Trans. Med. Imaging 2014, 34, 1018–1030. [CrossRef] [PubMed]

25. Ghafoorian, M.; Mehrtash, A.; Kapur, T.; Karssemeijer, N.; Marchiori, E.; Pesteie, M.; Guttmann, C.R.; Leeuw, F.E.d.; Tempany,
C.M.; Ginneken, B.V.; et al. Transfer learning for domain adaptation in MRI: Application in brain lesion segmentation. In Medical
Image Computing and Computer Assisted Intervention—MICCAI 2017, Proceedings of the International Conference on Medical Image
COMPUTING and Computer-Assisted Intervention, Quebec City, QC, Canada, 11–13 September 2017; Springer: Cham, Switzerland,
2017, pp. 516–524.

26. Cook, D.; Feuz, K.D.; Krishnan, N.C. Transfer learning for activity recognition: A survey. Knowl. Inf. Syst. 2013, 36, 537–556.
[CrossRef] [PubMed]

27. Hachiya, H.; Sugiyama, M.; Ueda, N. Importance-weighted least-squares probabilistic classifier for covariate shift adaptation
with application to human activity recognition. Neurocomputing 2012, 80, 93–101. [CrossRef]

28. Nater, F.; Tommasi, T.; Grabner, H.; Van Gool, L.; Caputo, B. Transferring activities: Updating human behavior analysis. In
Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain,
6–13 November 2011; pp. 1737–1744.

29. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Transfer learning for time series classification. In Proceedings of
the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 1367–1376.

30. Morales, F.J.O.; Roggen, D. Deep convolutional feature transfer across mobile activity recognition domains, sensor modalities
and locations. In Proceedings of the 2016 ACM International Symposium on Wearable Computers, Heidelberg, Germany, 12–16
September 2016; pp. 92–99.

31. Bahl, J. Ultimate—Eine Sportart mit Zukunft. Master’s Thesis, Universität Bayreuth, Bayreuth, Germany, 2001.
32. van Brakel, J. Robust Peak Detection Algorithm Using z-Scores, 2014. Available online: https://stackoverflow.com/questions/22

583391/peak-signal-detection-in-realtime-timeseries-data/ (accessed on 8 November 2021).

http://dx.doi.org/10.1007/s10618-017-0495-0
http://dx.doi.org/10.3390/s19173731
http://dx.doi.org/10.1016/j.engappai.2018.01.004
http://dx.doi.org/10.1007/s10015-017-0422-x
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.3390/s19010057
http://dx.doi.org/10.1109/JSEN.2017.2699162
http://dx.doi.org/10.1038/s41598-021-81525-9
http://www.ncbi.nlm.nih.gov/pubmed/33469077
http://dx.doi.org/10.1016/j.eswa.2017.11.028
http://dx.doi.org/10.1109/TMI.2014.2366792
http://www.ncbi.nlm.nih.gov/pubmed/25376036
http://dx.doi.org/10.1007/s10115-013-0665-3
http://www.ncbi.nlm.nih.gov/pubmed/24039326
http://dx.doi.org/10.1016/j.neucom.2011.09.016
https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data/
https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data/


Sensors 2022, 22, 2560 17 of 17

33. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

34. Wilson, D.L. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man, Cybern. 1972, 3, 408–421.
[CrossRef]

35. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 448–456.

36. Boureau, Y.L.; Ponce, J.; LeCun, Y. A theoretical analysis of feature pooling in visual recognition. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 111–118.

37. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
38. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010; pp. 249–256.
39. Géron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems;

O’Reilly Media: Sebastopol, CA, USA, 2017.
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