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Abstract
Background: Total lung volume is an important quantitative biomarker and is
used for the assessment of restrictive lung diseases.
Purpose: In this study,we investigate the performance of several deep-learning
approaches for automated measurement of total lung volume from chest radio-
graphs.
Methods: About 7621 posteroanterior and lateral view chest radiographs (CXR)
were collected from patients with chest CT available. Similarly, 928 CXR stud-
ies were chosen from patients with pulmonary function test (PFT) results. The
reference total lung volume was calculated from lung segmentation on CT or
PFT data, respectively. This dataset was used to train deep-learning architec-
tures to predict total lung volume from chest radiographs.The experiments were
constructed in a stepwise fashion with increasing complexity to demonstrate
the effect of training with CT-derived labels only and the sources of error. The
optimal models were tested on 291 CXR studies with reference lung volume
obtained from PFT.Mean absolute error (MAE),mean absolute percentage error
(MAPE), and Pearson correlation coefficient (Pearson’s r) were computed.
Results: The optimal deep-learning regression model showed an MAE of
408 ml and an MAPE of 8.1% using both frontal and lateral chest radiographs as
input. The predictions were highly correlated with the reference standard (Pear-
son’s r = 0.92). CT-derived labels were useful for pretraining but the optimal
performance was obtained by fine-tuning the network with PFT-derived labels.
Conclusion: We demonstrate, for the first time, that state-of -the-art deep-
learning solutions can accurately measure total lung volume from plain chest
radiographs. The proposed model is made publicly available and can be used
to obtain total lung volume from routinely acquired chest radiographs at no addi-
tional cost.This deep-learning system can be a useful tool to identify trends over
time in patients referred regularly for chest X-ray.
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1 INTRODUCTION

Chest radiography (CXR) remains the most commonly
performed imaging technique and one of the most often
repeated exams because of its low cost, rapid acquisi-
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tion, and low radiation exposure.1 It was estimated that
129 million chest radiographs were performed in 2006,
in the United States alone.2 Chest radiographs play an
important role in screening, monitoring, diagnosis, and
management of thoracic diseases.
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Wide availability of CXR has motivated researchers
to build artificial intelligence (AI) systems that can
automatically detect a variety of abnormalities3–5 and
extract quantitative clinical measurements from them.6,7

AI systems have potential use for routine quantifi-
cation of numerous biomarkers related to lung dis-
eases, cardiac health, or osteoporosis. Applying such
systems, whenever a chest radiograph is acquired,
would be a step toward routine quantitative radiology
reporting.

This work focuses on an important quantitative
biomarker, total lung volume (TLV), and investigates
whether it can be measured automatically from plain
chest radiographs using state-of -the-art deep-learning
approaches. Total lung volume is used for assessing
severity, progression, and response to treatment in
restrictive lung diseases.8,9 Specific temporal changes
in TLV can be identified in patients with obstructive
and restrictive lung diseases, such as emphysema,
pulmonary fibrosis, or asthma. Further, TLV has been
shown to correlate with mortality and health status.10

Currently, the gold standard for measurement of TLV
is the pulmonary function test (PFT), using special
techniques such as body plethysmography, helium,
or nitrogen dilution techniques.9 Several studies11–13

demonstrated that TLV measured from CT strongly cor-
relates to TLV obtained from PFTs. Alternatively, several
studies investigated TLV estimation from CXR using
predictive equations. In fact, this has been a research
interest for a century, with the first relevant paper
appearing in 191814 demonstrating the correlation of
external measurements to the PFT (using gas dilution
technique). All such previous literature, investigating
predictive equations, was either based on the use of
planimetric techniques15–18 or made assumption of a
given geometry,19–21 or required several manual linear
measurements to estimate TLV from CXR. However,
all these studies required manual measurements to
estimate TLV and used small sample sizes, making it
unclear whether the techniques could be generalized to
other populations.

In this study, we investigate, to the best of our knowl-
edge, for the first time, whether CXR can be used to
automatically predict TLV in a fully automated fashion
using large datasets and deep learning. We examine
the role of TLV labels derived from thoracic CT imaging
in training deep-learning systems. In order to account
for variations in inspiration and dataset complexity,
experiments with simulated and real chest radiographs
in three different datasets were designed in a stepwise
fashion. For each experiment, we optimized various
state-of -the-art deep-learning regression approaches
to predict TLV using only posterioranterior (PA) view, lat-
eral view,or both views.The purpose of our study was to
determine the accuracy of fully automatic measurement
of TLV from CXR using deep-learning-based models.

2 MATERIALS AND METHODS

2.1 Data and preprocessing

The data used in this study was obtained from two
sources: the COPDGene study22 and Radboud Uni-
versity Medical Center (RUMC). To facilitate our step-
wise experimentation, demonstrating sources of error,
we experimented with simulated CXR images (digitally
reconstructed radiographs), which are obtained from a
forward-projection using a parallel beam geometry (i.e.,
average intensity projections [AIPs]) on thoracic CT, as
well as with true CXR images. Reference TLV labels
were obtained by two means; through segmentation of
the lungs in CT or PFTs.

The datasets are detailed in the following sections and
in Figure 1.

2.2 COPDGene-sim

Inspiration chest CT studies (1000) from unique patients
were randomly selected from the COPDGene study,22

which is publicly available for research purposes. The
images in this study are acquired from patients with
chronic obstructive pulmonary disorder (COPD), vary-
ing from mild to very severe. From the 1000 randomly
selected CT studies, 800 (600 training, 200 develop-
ment) were used for training and validation, and 200
were retained as a held-out test set as illustrated at the
top of Figure 1.

Lung segmentations were obtained by an automated
algorithm and manually corrected by trained analysts
with radiologist supervision.23 Reference TLV was cal-
culated for each CT scan by multiplying CT voxel size
by the number of voxels segmented.

All CT scans were first resampled to 1 mm, 1 mm,
1 mm spacing and simulated CXRs were generated
from CT by creating AIP24 from coronal and sagittal
planes, resulting in frontal and lateral view simulated
CXR. This dataset, which we refer to as COPDGene-
sim, was used to demonstrate model performance in an
ideal scenario where there is no inspiration difference
between the label source (CT) and the (simulated) CXR
image, CT segmentations are manually corrected, and
the variety of pathologies is limited.

2.3 RUMC datasets

This data was obtained from routine clinical care in
RUMC, Nijmegen, the Netherlands. This study was
approved by the research ethics committee of the Rad-
boud University Nijmegen Medical Centre. Dataset was
collected and anonymized according to local guidelines
and informed consent was obtained from all participants.
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F IGURE 1 Flowchart of the data-selection procedure. Flowchart that shows the criteria to select the data to be used in the experiments.
Numbers of images are shown with numbers of patients in brackets. CXR = chest radiographs, CXR-sim = simulated chest radiographs from
CT, PFT = pulmonary function test

All research was performed in accordance with relevant
guidelines and regulations.

We retrospectively collected CXR studies and chest
CT acquired between 2003 and 2019 resulting in
321k CXR studies and 120k CT studies. Patients with
both CT and CXR (with PA and lateral view), per-
formed a maximum of 15 days apart, were selected
(4420 patients). The reference standard TLV mea-
surements were obtained by a CT lung segmentation
algorithm23 and segmentation failure cases were
visually identified and excluded (284 CT). This resulted
in 7621 CXR studies and 5305 CT studies from 4275
patients (Figure 1). Multiple CXR studies from a single
patient could be matched to a single CT reference
standard.

A group of patients being assessed for lobectomy was
used to provide subjects with both PFT and CXR data
acquired within 15 days of each other. This resulted in
928 CXR studies from 485 patients. Reference TLV was
determined using the helium delusion technique.25

From this dataset, we created two sets for experimen-
tation. The first is referred as RUMC-sim and used sim-
ulated CXR generated from CT as described earlier.The
second is RUMC-real, consisting of real CXR with CT-
derived and PFT-derived labels for TLV. To investigate
the relationship between CT-derived and PFT-derived
labels, we created a dataset, CT-evaluation, where both
CT and PFT were acquired within 15 days of each
other. We made sure that there was no patient over-
lap between training and held-out evaluation sets for all
the datasets.These datasets are detailed later and illus-
trated in Figures 1 and 2.

RUMC-sim: In this dataset, PA and lateral CXRs
were simulated from 5305 CT studies (4275 patients).
Of these, 389 patients (590 CT studies) were ran-
domly selected and used as a held-out evaluation set,
whereas the remaining 3886 were used for training.
This dataset was used, with CT-derived TLV labels, to
illustrate the model performance in a set of images
with a large variety of abnormalities (compared to
COPDGene-sim). The use of simulated CXR images
removes any possibility of error related to inspiration
effort, or patient position between the label source (CT)
and the (simulated) CXR.

RUMC-real: This dataset consists of patients with
real CXR studies (PA and lateral) and with TLV refer-
ence from two sources, CT and PFT. For CT-derived
label data, the same subject partition was used as in
RUMC-sim. This resulted in 7621 CXR studies with CT-
derived labels. PFT-derived labels were used for 928
CXR studies as seen in Figure 1. As held-out evaluation
sets, 590 patients with 1008 CXR (CT-derived labels)
and 150 patients with 291 CXR (PFT-derived labels)
were randomly selected. All CXR images were resized
to have 1 mm by 1 mm spacing.

CT evaluation dataset: We identified patients with
PFT results that were also in the RUMC-sim dataset,
and selected those with PFT acquired a maximum of 15
days apart from CT (137 CT studies from 130 patients).
CT lung volume was calculated by a CT lung segmenta-
tion algorithm,23 and the results were visually inspected,
identifying no obvious failed segmentations. This set
was used to demonstrate the relationship between CT-
derived and PFT-derived labels.
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F IGURE 2 Sample data from a single subject. Real CXR (a), Simulated CXR (b) and coronal CT slices (c) from a patient in the RUMC-real
dataset. Lobe segmentation results in CT are illustrated in the bottom row of (c). CT-derived TLV is calculated as the sum of the lobe volumes.
Each color in the figure represents a lung lobe which was segmented by an automated algorithm. CT-derived TLV for this subject was 3.8 L,
while PFT-derived TLV was 4.3 L

3 METHODS

We experiment with 5 different deep-learning architec-
tures, 4 of which are widely used popular classification
architectures (DenseNet121,26 ResNet34, ResNet50,27

VGG-Net1928), and one, referred as 6-layer CNN, was
designed to represent a shallow architecture. The 6-
layer CNN consisted of 6 CNN layers, each followed
by RELU, batch normalization, and a max-pooling layer.
The first CNN layer had 32 feature maps, and the num-
ber of feature maps was doubled in each layer. The final
CNN layer was followed by 3 fully connected layers using
linear activation function, which mapped the number of
features to 512, 128, and 1, respectively.

These network architectures were trained from
scratch with 3 possible inputs (PA CXR, lateral CXR
or both, and methods of combining their outputs (see
Figure 3). Each network outputs a regression value
representing TLV in liters. Before feeding the input to
the network, all real and simulated CXR images were
padded with 0 to reach 512 × 512 pixels. Images under-
went standard normalization in the range of −1 to 1,and
the corresponding TLV measurements were normal-
ized between 0 to 1. The dual CNN architecture, which
receives both frontal and lateral radiographs as input,
consists of two branches with a backbone architecture
that is either VGG-Net, ResNet34 or 6-layer CNN, and
concatenates the features from these branches before
the first fully connected layer. Due to memory limita-
tions, Densenet121 and ResNet50 architectures were
not investigated for the dual CNN model.

For each model trained, a hyperparameter optimiza-
tion was carried out to ensure the best possible result
for that architecture/input combination on the valida-
tion set. A variety of aspects for training a convolutional
neural network were considered as hyperparameters:
They were learning rate, optimizer, oversampling tech-
nique, and data augmentation as seen in Figure 4. Data

augmentation techniques consisted of brightness and
contrast, rotation, translation, and horizontal flip. If over-
sampling hyperparameter was chosen, the chest X-rays
with low and high TLV labels, which were underrepre-
sented in the dataset, were oversampled during training
(more details regarding the hyperparameter optimiza-
tion in Supporting Information). Random hyperparame-
ter optimization was employed given a predefined range
for hyperparameters for each model (frontal, lateral, and
dual CNN) separately.

Each model was trained by optimizing the mean
squared error loss between the predicted TLV and the
reference standard TLV. The model was trained for a
maximum of 300 epochs, terminating if there was no
improvement in the validation set performance for 50
successive epochs. We selected the epoch that yielded
the least mean squared error in the validation set.

For each of our three datasets, the optimal combina-
tion of architecture and hyperparameters was identified
for each of the three possible input types on the valida-
tion set.These models were then applied to the held-out
evaluation set.In addition,the average of the two outputs
from the networks using single (frontal or lateral) inputs
is calculated and presented as Ensemble CNN output
(Figure 3).

Our TLV prediction experiments were constructed in a
stepwise fashion, to identify potential sources of error as
the task becomes increasingly difficult. This is given in
Table 1.CT-derived volume labels are used in all experi-
ments except the final one where the network is addi-
tionally fine-tuned with PFT-derived labels. We begin
with the COPDGene-sim dataset, where errors related
to patient position and inspiration effort as well as errors
related to CT segmentation accuracy and diversity of
underlying pathologies are eliminated. In RUMC-sim,we
introduce the potential for errors from minor CT seg-
mentation inaccuracies, and from the diverse pathol-
ogy within the dataset, which is likely to increase the
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F IGURE 3 Illustration of architecture pipelines. Four different experimental designs were considered: frontal CNN, lateral CNN, dual CNN
(combining frontal and lateral models by layer concatenation) and ensemble CNN (combining optimal frontal and lateral models by averaging
their outputs)

F IGURE 4 Illustration of our model selection process on validation set. Different network architectures were systematically optimized for
three different inputs, namely frontal, lateral, and dual (frontal+lateral), separately. Each of them was optimized systematically for
hyperparameters, and the model with the least mean absolute percentage error on the validation set was selected
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TABLE 1 Datasets characteristics in stepwise experiments

COPDGene-sim RUMC-sim RUMC-real
(CT-labels)

RUMC-real
(PFT-labels)

Reference TLV
measurement

Label type CT-derived CT-derived CT-derived PFT-derived

Possible sources of label
error

Patient position
difference

Y Y

Inspiration effort
difference

Y Y

CT segmentation

Inaccuracy Y Y

Diverse pathologies Y Y Y

Note: RUMC-real (PFT-labels) was used to finetune the models which were pretrained on RUMC-real (CT-derived) dataset. Y indicates that the condition holds true.

variability in image appearance. Finally in RUMC-real,
we first experiment with predicting CT-derived TLV from
chest radiographs (RUMC-real [CT-labels]), and subse-
quently with PFT-derived TLV (RUMC-real [PFT labels]).
The networks to predict CT-derived TLV were trained
from scratch with real CXR images. In this last exper-
iment, since there is only a small number of gold-
standard PFT labels available (487 patients), the net-
work trained with CT-labels is used as pretrained model,
and fine-tuned using CXR images with associated PFT-
labels.

As an additional experiment, we investigate the rela-
tionship between PFT-derived TLV and CT-derived TLV,
in a scenario where they are acquired at most 15 days
apart from each other, using the CT-evaluation dataset.

All the experiments in the paper were implemented
in Python using PyTorch and other standard data-
processing libraries such as pandas, sklearn, and
imageio.

3.1 Statistical analysis

Mean absolute error (MAE), mean absolute percentage
error (MAPE), and Pearson correlation coefficient were
computed to demonstrate the relationship between pre-
dicted and reference TLV values. About 95% limits of
agreement were estimated by means of a nonparamet-
ric method for Bland–Altman plot since data distribution
was not normal, assessed with Shapiro–Wilk test29 and
quantile–quantile plot.30

4 RESULTS

Model training for each model, namely frontal CNN, lat-
eral CNN, and dual CNN, took between 8 to and 14 h on
the RUMC-sim and RUMC-real datasets (depending on
the network architecture),and 2–4 h on the COPDGene-

sim dataset using a variety of GPUs such as TitanX,
GTX1080,GTX1080ti,GTXTitanx,and TitanV.The mean
processing time per test image was 0.3 s.

Three trained models (frontal, lateral, dual) were
selected for each dataset, based on optimization using
the validation set, and applied to the held-out evaluation
data. Additionally, the outputs of the optimized frontal
and lateral models were averaged and presented as
“Ensemble” model. The selected architectures and their
performance on the held-out evaluation data are pro-
vided in Table 2.

In the COPDGene-sim dataset, where chest radio-
graphs were simulated from CT and potential sources
of label error were minimal, VGG-Net, 6-layer CNN,
and Densenet121 architectures were selected. On the
held-out evaluation set, the model with the lowest error
according to all 3 metrics was the dual CNN with 6-
layer CNN architecture. This model achieved a MAPE
of 2.2% and MAE of only 112 ml. The scatter plot of
model predictions against the reference standard from
CT volumes and Bland–Altman-like plot for analyzing
differences between the reference standard and pre-
dicted TLV measurements are shown in Figure 5a,b,
respectively. As shown in Figure 5b, 95% of differences
between predicted and reference standard TLV were
from –351 to 261 ml.

On the RUMC-sim dataset, which contains more
abnormal images compared to COPDGene-sim,
Densenet121 and ResNet architectures were selected
from the development set experiments. As in the
COPDGene-sim experiments, the lateral CNN model
performed better than the frontal CNN model and the
best performance on the evaluation set was, once
again, achieved by the dual CNN with MAPE of 2.9%
and MAE of 112 ml as seen in Table 2 and plotted
in Figure 5c. Limits of agreement of the differences
between the predicted and reference standard TLV mea-
surements were between -348 and 235 ml as shown in
Figure 5d.
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TABLE 2 Results of the selected models on the held-out evaluation sets

Evaluation Datasets
(#images) Model Architecture MAPE (%) MAE (ml) Pearson’s r

Frontal CNN DenseNet121 4.3 226 0.978

Lateral CNN VGG-Net 3.6 198 0.983

COPDGene-sim (200) Dual CNN 6-layer CNN 2.2 112 0.995

Ensemble CNN Densenet121&VGG-net 2.6 139 0.992

Frontal CNN Densenet121 5.5 220 0.978

Lateral CNN Densenet121 5.0 200 0.984

RUMC-sim (590) Dual CNN ResNet34 2.9 112 0.993

Ensemble CNN Densenet121&Densenet121 3.8 154 0.989

Frontal CNN VGG-Net 16.9 650 0.826

Lateral CNN Densenet121 16.8 639 0.831

RUMC-real (CT-labels) (1008) Dual CNN ResNet34 16.1 592 0.855

Ensemble CNN VGG-Net&Densenet121 15.7 597 0.851

Frontal CNN VGG-Net 10.3 509 0.870

Lateral CNN Densenet121 9.2 472 0.875

RUMC-real (PFT-labels) (291) Dual CNN ResNet34 8.1 408 0.922

Ensemble CNN VGG-Net&Densenet121 8.5 420 0.907

Note: Mean absolute error is calculated against the reference standard for TLV measurements. MAE = mean absolute error (in milliliters), MAPE = mean absolute
percentage error, Pearson’s r = Pearson correlation coefficient. Bold font indicates best performance per dataset and metric.

Finally, in the RUMC-real dataset, where real chest
radiographs were used, dual CNN and ensemble CNN
performed very similarly, and the best result obtained
(with the least MAPE) with CT-derived labels was
achieved by the ensemble CNN, as shown in Table 2.
This model achieved 15.7% MAPE and MAE of 597 ml.
The model predictions and references for the eval-
uation set of 1008 CXRs are plotted in Figure 6a;
and the differences between predicted TLV and
reference standard are analyzed in Figure 6b. As
shown in Figure 6b, the model tended to underestimate
TLV where reference standard was higher than 6 L, and
overestimate TLV where reference standard was lower
than 4 L.

For the final experiment using PFT-derived labels, the
best models trained on the RUMC-real (CT-labels) data
for frontal, lateral, dual CNN were used as pretrained
models and further fine-tuned on 637 CXR images with
PFT-derived labels. The results achieved on 291 CXR
images with PFT-derived labels are shown in Table 2
(RUMC-real [PFT-labels]). The best model on the held-
out evaluation set was the dual CNN with ResNet34
architecture and achieved MAE of 408 ml and MAPE
of 8.1%. The model predictions and PFT-derived refer-
ence standard were highly correlated with Pearson cor-
relation coefficient of 0.92 as illustrated in Figure 6c;
95% of differences between predicted and reference
standard TLV measurements were from −1 L to 938 ml
(Figure 6d).Example cases of this model predictions are
shown in Figure 7a–f .

Figure 8a,b shows the results of the comparison
between CT-derived TLV and PFT-derived TLV on the
CT evaluation set of 137 subjects. These two mea-
surements were well correlated with Pearson’s r of
0.78; however, considerable variations were observed
between the two measurements for some patients. TLV
was consistently underestimated by CT-based mea-
surements where median differences (bias) between
CT-derived and PFT-derived was −560 ml as shown in
Figure 8b.

5 DISCUSSION

This study demonstrated that state-of -the-art deep-
learning solutions can measure TLV from PA and lat-
eral CXRs,using primarily CT-derived labels and a small
number of PFT-derived measures. To demonstrate the
sources of error, the experiments were conducted in a
stepwise fashion with increasing levels of complexity.
Using simulated CXRs eliminated potential error related
to the patient position or inspiration level between the
CT and CXR image acquisition. Results on both simu-
lated datasets show extremely low error (MAPE of 2.2%
and 2.9%) and high correlation with the reference labels
(r = 0.99 and r = 0.99). The slightly better performance
on the COPDGene-sim dataset may be attributed to the
fact that this dataset contains a limited range of patholo-
gies and that the CT segmentations were manually
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F IGURE 5 Results on simulated datasets in stepwise experiments. Left: The TLV predictions of the best model against the reference
standard measurements on the held-out evaluation sets. (a) COPDGene, (c) RUMC-sim. Red line is line of identity (ideal agreement). Right:
Bland–Altman-like plot to analyze the differences between predicted and reference standard TLV measurements. Nonparametric method was
used to estimate 95% limits of agreement. r = Pearson correlation coefficient, MAE = mean absolute error, MAPE = mean absolute percentage
error, N = number of data, P2.5 = 2.5th percentile P97.5 = 97.5th percentile

corrected, meaning that even very small inaccuracies
were eliminated.

In the dataset of clinical CXR with CT-derived
volumes (RUMC-real dataset), we see a substantial
increase in the prediction error with MAPE of 15.7%,
which we attribute largely to the difference in patient
position and inspiration effort between the CT and
the CXR image acquisition. It is likely that the degree
of inspiration in the CXR and CT images is different,
particularly given that there is known to be a high

intraindividual deviation in TLV between routine CT
scans.31 The indication from this experiment is that CT-
derived labels are useful, but not optimal, to learn the
TLV from CXR. As an additional check, we investigated
the relationship between CT-derived and PFT-derived
volumes in 137 cases where both were available. This
provides results in line with previous studies on CT-
derived lung volumes31,32: Although CT-derived lung
volume and TLV are well correlated (r = 0.78), there are
considerable differences in some patients.
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F IGURE 6 Results on real datasets in stepwise experiments. Left: The TLV predictions of the best model against the reference standard
measurements on the held-out evaluation sets. (a) RUMC-real, (c) RUMC-real (PFT-labels). Red line is line of identity (ideal agreement). Right:
Bland–Altman-like plot to analyze the differences between predicted and reference standard TLV measurements. Nonparametric method was
used to estimate 95% limits of agreement. r = Pearson correlation coefficient, MAE = mean absolute error, MAPE = mean absolute percentage
error, N = number of data, P2.5 = 2.5th percentile P97.5 = 97.5th percentile

To overcome the issues with the CT-derived labels
on the RUMC-real dataset, we further fine-tuned the
best networks from that experiment with PFT-derived
labels. Evaluation on an independent dataset of 291
subjects that were not used for training showed that
the error of the estimated TLV from CXR relative to
the measured TLV from PFT is reduced considerably,
achieving MAPE of 8.1% and Pearson’s correlation
coefficient of 0.92. This algorithm is publicly available
at https://grand-challenge.org/algorithms/cxr-total-lung-
volume-measurement/

In all experiments, the model was optimized to use
the best performing architecture and input. In the exper-
iments using simulated CXR images, it is notable that
the networks using lateral images as input perform
better than the networks using frontal images. This
may indicate that the lateral projection image contains
more information related to CT-derived TLV. However
we note also that in all experiments the combination
of frontal and lateral images produced the optimal
results, either by use of a dual-CNN or through an
ensemble.

https://grand-challenge.org/algorithms/cxr-total-lung-volume-measurement/
https://grand-challenge.org/algorithms/cxr-total-lung-volume-measurement/
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F IGURE 7 Example cases of the dual-CNN model predictions on RUMC-real dataset. RS = reference standard obtained from pulmonary
function test (PFT), Pred-TLV = predicted total lung volume. Pred-TLV indicates the model predictions (in liter), and the reference standard from
PFT is denoted in parenthesis. (a)–(c) Three example cases where the predictions of the models are highly accurate. (d)–(f) Three example
cases where the model predictions highly differ from the reference standard

(a) (b)

F IGURE 8 CT-derived TLV against PFT-derived TLV on CT evaluation dataset. Left: Comparison of CT-derived total lung volumes with
pulmonary function test on the CT evaluation set. Right: Bland–Altman-like plot to analyze differences between CT-derived and PFT-derived
total lung volume. r = Pearson correlation coefficient, MAE = mean absolute error, MAPE = mean absolute percentage error, N = number of
data, PFT = pulmonary function test, P97.5 = 97.5th percentile, P2.5 = 2.5th percentile

Previous literature has investigated predictive equa-
tions for measurement of TLV from chest radiographs
using manual measurements. One study33 investigated
performance with simulated chest radiographs to predict

CT-derived TLV. Their method, which required manual
measurements, had an inferior performance (MAPE of
5.7%) on their dataset compared to our results obtained
in the COPDGene-sim and RUMC-sim datasets (MAPE
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of 2.2% and 2.9%). For studies that investigated pre-
dictive equations to estimate PFT-derived TLV from
real CXR,16,19,20 the coefficient of correlation between
predictions and reference standard (body plethysmog-
raphy or helium dilution technique) generally ranged
from 0.80 to 0.93 (compared to our method with 0.92).
Sample sizes in these papers ranged from 21 to 100
patients. However, it should be noted that many of
these studies used spirometric control to regulate the
level of inspiration during CXR acquisition. In fact, one
study34 has shown that without spirometric control, the
correlation of predicted TLV and PFT-derived refer-
ence standard was only 0.47, compared to 0.82 with
spirometric control. In this work, however, we experi-
ment with routinely taken chest radiographs (with no
spirometric control), and produce TLV predictions that
are highly correlated (r = 0.92) to PFT-derived results.
Our work is the first to demonstrate automated mea-
surement of TLV from chest radiographs and achieves
a comparable or lower error range with a remarkably
larger sample size compared to previous literature.

There are several limitations in this study. First, the
algorithms were evaluated on an internal dataset from a
single institution;validation of the models on an external
dataset is an important next step to assess the algorithm
robustness.Second, the datasets were constructed from
routinely taken studies with the assumption that TLV
would not change in 15 days, which might not hold true
for extreme cases. This selection criterion also yielded
an underrepresentation of healthy subjects but reflects
a clinical population in which TLV measurements are
of clinical interest. The PFT-derived reference standard
measurements were obtained using the helium dilution
technique which might underestimate TLV in patients
with severe airway obstruction. Further, simulated CXRs
were obtained using a parallel beam geometry; other
techniques such as cone-beam geometry or advanced
machine learning techniques might produce more real-
istic simulated CXRs. However, since the simulated
radiographs were only used for pretraining, the overall
results are expected not to be improved significantly.Fur-
thermore, inspiration levels were not controlled in a sim-
ilar fashion to PFT in these routine chest radiographs,
which could have introduced a source of error in our
predictions, but this represents regular clinical practice.
One possible solution to address this issue would be to
develop an automated algorithm to assess the inspira-
tion level on CXR, for example by rib counting.35 More-
over, our held-out evaluation set was constructed with
patients assessed for lobectomy since their PFT results
were readily available; future research should address
the evaluation of the algorithm on a population with
other clinically relevant pathologies, including fibrosis.

In conclusion,we demonstrated that TLV can be auto-
matically estimated from CXR using a deep-learning
approach, with an accuracy that is superior or compa-
rable to the previous literature using semiautomated

methods. Further, we showed that the deep-learning
system can be trained primarily with CT-derived labels
from automatically segmented chest CT images and
fine-tuned on gold-standard PFT-derived labels. This
automated system could be routinely applied to clinical
chest radiographs and serve as a tool for identifying
temporal change in total lung volume in patients with
restrictive and obstructive lung diseases.
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