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Abdominal aortic aneurysm (AAA) is a cardiovascular disease with a high risk of death,

seriously threatening the life and health of people. The specific pathogenesis of AAA

is still not fully understood. In recent years, researchers have found that amino acid,

lipid, and carbohydrate metabolism disorders play important roles in the occurrence and

development of AAA. This review is aimed to summarize the latest research progress of

the relationship between AAA progression and body metabolism. The body metabolism

is closely related to the occurrence and development of AAA. It is necessary to further

investigate the pathogenesis of AAA from the perspective of metabolism to provide

theoretical basis for AAA diagnosis and drug development.
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INTRODUCTION

Abdominal aortic aneurysm (AAA) is a disease in which the abdominal aorta gradually expands
like a tumor under the action of blood pressure. Usually, when the diameter of the abdominal aorta
exceeds 3 cm or increases by more than 50% compared with normal, it can be diagnosed with AAA
(1). AAA commonly occurs in elderly male over age of 65, and the morbidity can reach 8% (1). The
most serious consequence is the rupture of the artery wall due to it cannot withstand the impact
of blood flow. The mortality from ruptured aneurysms can exceed 80% (1, 2), and the mortality of
patients undergoing repair surgery still exceeds 50% (1, 3, 4).

AAA is caused by the destruction of the abdominal aorta, especially the elastin break, due to a
variety of congenital or acquired factors. Previous studies have found that the pathological process
of AAAmainly includes local inflammatory cell infiltration, protease hydrolysis of elastic fibers and
collagen fibers, vascular smooth muscle cell (VSMC) apoptosis and phenotypic transformation,
and oxidative stress caused by oxidation and anti-oxidation imbalance (1, 2, 5). In recent years,
researchers have discovered that the metabolic disorders of amino acids, lipids and glucose in vivo
are closely related to the occurrence and development of AAA by affecting the above-mentioned
pathological processes. This article will review the latest research of the relationship between AAA
and the metabolism of main nutrients in vivo.

AMINO ACID METABOLISM AND AAA

Homocysteine
Homocysteine (Hcy), an intermediate product in the metabolism of methionine and cysteine,
is a sulfur-containing amino acid. Lack of key enzymes required for Hcy metabolism, such as
cystathionine β-synthase (CBS), and coenzymes, such as folic acid, vitamin B6, and vitamin B12,
will cause hyperhomocysteinemia (HHcy).
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HHcy is a risk factor for many cardiovascular diseases,
including AAA (6–8). Early clinical studies found that HHcy
caused by congenital CBS deficiency would increase the risk of
vascular diseases, such as abdominal aortic aneurysm, pulmonary
embolism, andmyocardial infarction, and lowering of circulating
Hcy level by long-term treatment can significantly improve the
vascular outcome of patients with CBS deficiency (9, 10). One of
the most representative drugs treating HHcy and entering phase
1/2 clinical trials is OT-58, which is obtained from human CBS
(11). Some preclinical studies provide evidence that OT-58 may
be further investigated in AAA treatment in the future (12, 13).

HHcy may also increase the concentration and activity of
MMP-9 in the blood vessel wall by activating ERK and Akt
signaling pathways to promote the occurrence and development
of AAA (14, 15). Siennicka et al. (16) found that high
concentrations of Hcy can participate in the pathological process
of AAA by affecting proteolysis and coagulation/fibrinolysis
system. In AAA with thin intraluminal thrombus, high Hcy
can increase matrix metalloproteinase (MMP)-2 and fibrinolytic
factors (plasminogen and tissue-type plasminogen activator),
leading to the degradation of elastin and collagen. On the
contrary, in AAA with thicker thrombus, high level of Hcy
produce the opposite effect, which may be one of reasons
that lesion with thicker thrombus is less likely to rupture, and
intraluminal thrombus may have some influence on the effect
of HHcy on AAA (16). Besides, HHcy can also cause local
inflammatory cell infiltration in AAA, increase the expression

FIGURE 1 | Relationship between amino acid and glucose metabolism and abdominal aortic aneurysm. ERK, extracellular regulated protein kinases; MMP, matrix

metalloproteinase; ECM, extracellular matrix; AAA, abdominal aortic aneurysm; AMPK. AMP-activated protein kinase; SMC, smooth muscle cell; IDO, indoleamine

2,3-dioxygenase; 3-HK, 3-hydroxykynurenine; KNU, kynureninase; 3-HAA, 3-hydroxyanthranilic acid; NFκB, nuclear factor kappa B; SAA, serum amyloid A; TIMP-1,

tissue inhibitor of matrix metalloproteinase-1; GSH, Glutathione; AGE, advanced glycation end-product; HIF-1, hypoxia-inducible factor-1; VEGF, vascular endothelial

growth factor.

of inflammatory factors (such as IL-6), and promote the
transformation of VSMC phenotype from contractile to synthetic
(17). Moreover, HHcy can induce autophagy in VSMC by
activating the AMPK signaling pathway, which is characterized
by the increased expression of autophagy-related proteins LC3
and Beclin-1 (Figure 1a) (17).

Researchers have confirmed that serum Hcy level is positively
correlated with the size, diameter, expansion rate, and risk of
rupture of aneurysms in AAA patients (18–22). Therefore, some
researchers have tried to inhibit the occurrence and development
of AAA by regulating the metabolism of Hcy. Fan et al.
(23) found that excessive supplementation of Hcy’s metabolic
precursor methionine can induce Hcy production and cause
hypermethioninemia (HMET), thereby enhancing the expression
of MMP-2 and inflammatory response in the vessel wall and
exacerbating the development of AAA in rats. This suggests that
for AAA patients, restricting the intake of methionine may have
a protective effect. There is also preliminary evidence in clinical
practice that the low-methionine diet combined with vitamin B6,
vitamin B12 and folic acid can reduce the concentration of serum
Hcy for HHcy patients with AAA, and may protect people from
AAA (10, 24).

Tryptophan
Tryptophan (Trp), one of the essential amino acids, is
catalyzed by indoleamine 2,3-dioxygenase (IDO) or tryptophan
2,3-dioxygenase (TDO) to generate kynurenine (Kyn). The
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catabolism of Kyn can produce 3-hydroxykynurenine (3-
HK) and 3-hydroxyanthranilic acid (3-HAA). 3-HAA can be
produced from 3-HK under the action of kynureninase (KNU).

Wang et al. (25) found that the degradation of the elastic
laminae and arterial expansion rate in Apoe−/− IDO−/− mice
was significantly reduced. Further exploration of the mechanism
found that 3-HAA up-regulated the expression of MMP-2
by activating the transcription factor nuclear factor kappa B
(NFκB). Therefore, knockdown of KNU in mice can inhibit
the production of 3-HAA and MMP-2, thereby inhibiting
the formation of AAA. The detection of human AAA tissue
samples also found that the anti-3-HAA, anti-IDO and anti-
KNU antibody staining intensity in aneurysm tissue was stronger
than that in non-aneurysm tissue sections (25). These results
suggest that reducing the serum 3-HAA level in AAA patients by
regulating Trp metabolism may be a potential therapeutic target.
Furthermore, 3-HK and 3-HAA can generate free radicals (26),
which may lead to an imbalance between oxidation and anti-
oxidation in the blood vessel wall and promote AAA. Metghalchi
et al. (27) found that IDO deficiency may limit the development
of aneurysms by reducing the production of 3-HAA, but
the specific mechanism needs further research (Figure 1b). At
present, several IDO inhibitors, such as Indoximod, Epacadostat,
and Navoximod, have been approved for patients in anti-tumor
therapy, but there is a lack of research to assess the application of
these drugs on AAA (28).

Taurine
Taurine (Tau) is an amino acid converted from sulfur-containing
amino acids. Kim et al. (29) found that oral supplementation of
Tau could inhibit AAA formation in mice, because Tau can react
with the oxidant (such as HOCl) catalyzed bymyeloperoxidase to
alleviate oxidative stress, reduce inflammatory cell aggregation,
and inhibit activity of matrix metalloproteinase-1 in the vessel
wall. In addition, Tau can also reduce the serum amyloid A level
(29), which can promote the AngII-induced formation of AAA
in mice (30). These findings suggest that supplementing patients
with Tau may be a potential prevention or treatment method for
AAA (Figure 1c).

Besides, Tau can also bind with ursodeoxycholic acid to form
tauroursodeoxycholic acid (TUDCA). By animal experiments,
researchers found that TUDCA can reduce the apoptosis of
VSMC by inhibiting endoplasmic reticulum stress, thereby
reducing the maximum diameter of aneurysms induced by
AngII (31).

Glycine
Glycine (Gly) can form the endogenous antioxidant glutathione
(GSH) with glutamic acid and cysteine. Studies have found
that Gly has protective effects on cardiovascular diseases, such
as antagonizing cardiac and cerebral ischemic damage (32,
33), and lowering blood pressure (34, 35). The researchers
found that supplementing the diet with an appropriate dose
of Gly could prevent cardiovascular diseases (36, 37), which
may depend on potential mechanisms showing below: (1)
Activating the glycine-gated Cl− channel, hyperpolarizing the
cell membrane, preventing the influx of Ca2+, and inhibiting
the effect of Ca2+ on the growth and migration of endothelial

cells (38); (2) Reducing the oxidation of nitric oxide through
a glutathione-dependent mechanism, thereby increasing its
content in the circulatory system (39); (3) Increasing the
synthesis of glutathione in vascular inherent cells, thus playing
a cytoprotective role (40).

Lack of Gly or mutations in the coding gene may result in
decreased synthesis of elastin and collagen or abnormal structure,
by which the blood vessel wall will become weak and gradually
expand to form aneurysms under the pressure of blood flow
(41). Moreover, studies have reported that glycine inhibits the
production of reactive oxygen species (ROS) by synthesizing
GSH to reduce the oxidative stress response of the blood vessel
wall (42), and Gly can also regulate glucose and lipid metabolism
(35, 43, 44). These findings suggest that glycine is involved in
the pathophysiological progress of AAA, and further research is
needed to study the mechanism (Figure 1d).

GLYCOMETABOLISM AND AAA

Glycometabolism refers to a series of complex chemical reactions
of carbohydrates such as glucose and glycogen in vivo. Diabetes
mellitus (DM) is a group of metabolic diseases characterized
by hyperglycemia. Although DM is an important risk factor for
cardiovascular events and atherosclerosis-related diseases (45–
47), epidemiological investigations have found that DM and
fasting blood glucose is negatively related to AAA (48–50).

Miyama et al. (51) found that compared with normal blood
glucose, AAA mice with hyperglycemia had less blood vessel
expansion, arterial wall inflammatory cell infiltration, elastic fiber
degradation and neoangiogenesis. Furthermore, the degree of
AAA expansion and pathophysiological changes in diabetic mice
treated with insulin were greater than those of diabetic AAA
mice not treated with insulin, suggesting that hyperglycemia can
limit the development of experimental aortic aneurysms. The
mechanism may be linked to the down-regulation of vascular
endothelial growth factor expression via interfering with the
hypoxia-inducible factor-1 signaling pathway by hyperglycemia.
Dua et al. (52) also found that hyperglycemia may also
increase the level of endogenous plasminogen activator inhibitor-
1, inhibit plasmin production, and reduce the infiltration of
macrophages and the expression of MMPs in the arterial wall,
thereby limiting the progress of experimental AAA.

Besides, chronic hyperglycemia can make extracellular matrix
(ECM) glycation to form advanced glycation end-products
(AGEs), which increases the stiffness of blood vessels (53). Koole
et al. (54) found that the concentration of pentosidine, one of
the AGEs, was negatively correlated with the diameter of the
abdominal aorta in AAA patients with DM. The glycosylated
AAA tissues can resist MMPs-induced degradation of type I
collagen. Golledge et al. (55) incubated activated monocytes
with glycosylated collagen fibers and found that glycosylated
collagen tissue can inhibit monocytes from secreting MMPs.
These findings indicate that AGEs induced by hyperglycemia
may play a protective role in the progress of AAA (Figure 1e).

Clinical studies have also found that DM patients have a
lower incidence of AAA (56), and AAA patients with DM
have smaller aneurysms, lower expansion rate and are less
likely to rupture (57, 58). In addition, some researchers used
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positron emission tomography/computed tomography to detect
AAA tissue and found an increase in the uptake of 18F-
fluorodeoxyglucose mediated by glucose transporters, suggesting
enhanced glucose metabolism activity in the lesion tissue (59).
Tsuruda et al. (60) found in mouse models that the enhancement
of glycolytic activity in arterial wall tissue is one of the
reasons for the development of AAA. They tried intraperitoneal
administration of glycolysis inhibitor 2-deoxyglucose, a glucose
analog and found that it can alleviate AAA via inhibiting
macrophage survival and adhesion to endothelial cells, ECM
degradation and inflammation. Later studies confirmed that
the energy metabolism in macrophages changed from oxidative
phosphorylation to glycolysis in the HHcy state, which promoted
the production of pro-inflammatory cytokines and ROS, thereby
aggravating AAA (61). These results suggest that interference
with glycolytic activity may be a potential therapeutic target
for AAA.

LIPID METABOLISM AND AAA

Lipids, produced by the dehydration condensation of fatty acids
and alcohols, refer to ester compounds and their derivatives,
including triglycerides (TG) and lipoid (phospholipids,
glycolipids, sterols, and their esters). Atherosclerosis (AS)
and AAA have some similar pathophysiological processes, such
as chronic inflammation, VSMC apoptosis and phenotypic
transformation. Although it is still uncertain whether AS and
AAA have a causal relationship (62), some traditional risk
factors for AS (such as hyperlipemia, hypertension, smoking,
age, gender, etc.) are also related to AAA (63–67). Investigations
and studies have found that serum low density lipoprotein
cholesterol (LDL-C), total cholesterol (TC), and TG levels are
positively correlated with AAA (64–66). Nevertheless, whether
elevated TG level will promote the occurrence and development
of AAA is still controversial (68, 69).

Cholesterol is often combined with lipoproteins in plasma,
and low density lipoprotein (LDL) is the main carrier for
transporting endogenous cholesterol. When TC and/or LDL-
C abnormally elevated beyond the normal range, it will lead
to hypercholesterolemia. Hobbs et al. (70) found through case-
control analysis that there is a significant positive correlation
between LDL-C and AAA, and hypothesized that LDL-C
may cause AAA by inducing chronic inflammation-mediated
degradation of ECM. Weng et al. (71) confirmed the causal
relationship between high serum TC and LDL-C levels and
AAA through Mendelian randomization study. Liu et al.
(72) confirmed that hypercholesterolemia can promote the
occurrence and development of AAA in mice. However, there
is still a lack of basic research to clarify the specific cellular
and molecular mechanisms of hypercholesterolemia on AAA
(Figure 2f).

Contrary to LDL, high density lipoprotein (HDL) is mainly
responsible for the reverse transport of cholesterol. HDL
transports extrahepatic cholesterol to the liver, where cholesterol
is transformed into bile acids and excreted, so that the high
density lipoprotein cholesterol (HDL-C) level of hyperlipidemia

is reduced. There is sufficient evidence to prove that HDL-C level
is negatively correlated with AAA (73, 74), and the impaired
cholesterol efflux caused by abnormal HDL transport function
is also related to the development of AAA (75, 76). A recent
study found that IgG anti-HDL antibody levels in AAA patients
were elevated, and the antibody levels were positively correlated
with the aortic diameter and negatively correlated with HDL-C
levels, suggesting that AAA patients may have humoral immune
response against HDL, which provides a new direction for the
study of AAA pathogenesis and drug targets (77).

In addition, there is lipoprotein(a), also known as LP(a), in
plasma which is related to AAA. LP(a) is a type of independent
lipoprotein, which is produced by the liver and is not transformed
into other lipoproteins, and its physiological function is currently
unclear (78). Studies have shown that elevated LP(a) level is
a risk factor for cardiovascular diseases. And current research
is mainly about AS and thrombotic vascular diseases (79–82).
Some researchers have also found that LP(a) levels are elevated
in AAA patients (19). High plasma level of LP(a) may also
be a risk factor for AAA (83), because LP(a) carries monocyte
chemoattractant protein 1 and oxidized phospholipids, which
can cause chronic inflammation and oxidative stress in the blood
vessel wall (84–86), but the specific mechanism has not been
confirmed (Figure 2g).

In recent years, it has been discovered that long chain
polyunsaturated fatty acids (LCPUFAs) may be related to AAA.
Arachidonic acid (ARA), a long chain omega-6 polyunsaturated
fatty acid (LC n-6 PUFA), can be metabolized to produce
prostaglandin E2, thromboxane A2, and leukotriene B4, which
have been shown to aggravate AAA through their pro-
inflammatory effect (87–90). The selective cyclooxygenase-2
(COX-2) inhibitor Celecoxib inhibits the formation of AAA
in mice infused with AngII, which also confirms that the
prostaglandin compounds produced by COX-2 catalyzed ARA
play a certain role in AAA (91). Consistently, a clinical study
conducted in Danish men showed that increased levels of ARA
is related to AAA incidence and progression. AAA patients
with high ARA levels were more likely to require surgical
repair (92). Furthermore, this clinical study also found that the
levels of eicosapentaenoic acid (EPA), a long chain omega-3
polyunsaturated fatty acid (LC n-3 PUFA), was not associated
with AAA.

However, another Japanese clinical study found that EPA
levels in AAA patients were relatively low compared with that
in healthy person. There is a significant negative correlation
between EPA levels or the EPA/arachidonic acid (ARA) ratio
and AAA growth rate or maximum aneurysm diameter (93).
A number of studies have found that LC n-3 PUFAs and
their derivatives resolvins produced by enzymatic oxidation can
inhibit the infiltration of inflammatory cells, the production
of cytokines, the expression of MMPs, and oxidative stress
(94–96). Moreover, LC n-3 PUFAs can reduce the synthesis
of endogenous cholesterol and increase the metabolism of
exogenous cholesterol, thereby reducing plasma TC level (97–
99). In vivo experiments have confirmed that LC n-3 PUFAs and
their derivatives can inhibit the occurrence and development of
AAA (Figure 2h) (94, 100, 101). The contradiction between two
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FIGURE 2 | Relationship between lipid metabolism and abdominal aortic aneurysm. ECM, extracellular matrix; AAA, abdominal aortic aneurysm; SMC, smooth

muscle cell; LP(a), lipoprotein(a); LC n-3 PUFAs, long chain omega-3 polyunsaturated fatty acids; PGE2, prostaglandin E2; TXA2, thromboxane A2; LTB4, leukotriene

B4; CYP2J2, Cytochrome P450 epoxygenase 2J2; EETs, epoxyeicosatrienoic acids; PPARγ, peroxisome proliferator-activated receptor γ.

clinical studies results from a huge difference on EPA diet of the
populations. Furthermore, Cytochrome P450 cyclooxygenase 2J2
(CYP2J2) catalyzes the formation of epoxyeicosatrienoic acids
(EETs) from ARA. Cai et al. (102) found that increased levels of
EETs through CYP2J2 overexpression can activate peroxisome
proliferator-activated receptor γ to exert anti-inflammatory
effect, thereby preventing the development of AAA in mice
(Figure 2i). These findings provide new ideas for the therapy
of AAA.

Based on previous studies on the relationship between
lipid metabolism and AAA, researchers are working on the
development of preventive and therapeutic drugs for AAA from
the perspective of regulating lipid metabolism. At present, the
most widely used drug to regulate lipid metabolism is statins,
the mechanism of which is to inhibit the rate-limiting enzyme 3-
hydroxy-3-methylglutaryl coenzyme A reductase in endogenous
cholesterol synthesis, thereby effectively reducing TC and LDL-
C (103–105).

Moreover, proprotein convertase subtilisin/Kexin type 9
(PCSK9) inhibitors can reduce LDL-C by inhibiting the

degradation of low density lipoprotein receptor (Ldlr), while
PCSK9 gain-of-function mutation promotes AAA occurrence
in mice (106). Previous clinical study has reported that PCSK9
inhibitors can reduce the risk of AAA (107). Evolocumab and
Alirocumab, as PCSK9 inhibitors, have been approved for the
clinical treatment of hyperlipidemia in many countries and
regions (108, 109), but their actual effects on AAA have not been
tested in clinical studies.

CONCLUSIONS AND PERSPECTIVES

Due to the concealment in the early stage and the lack of
prevention and treatment methods, AAA is still a cardiovascular
disease with high risk of death. Improving the diagnosis rate and
cure rate, delaying the progression of AAA to prevent its rupture,
and improving the prognosis are the goals that researchers and
clinicians have been working on.

The above studies have found that the increase in plasma
metabolites levels caused by abnormal amino acid and lipid
metabolism is related to AAA. Therefore, clinicians can assess
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the risk of AAA formation by detecting the corresponding
metabolites levels in plasma. For the elderly with a high incidence
of AAA, clinicians can also provide dietary recommendations to
achieve the purpose of early prevention. For patients who are
diagnosed with AAA but have not yet met the surgical criteria
or cannot tolerate surgery, drug therapy is still an important
intervention (110). Although there is still a lack of recognized
drugs that can treat AAA, experimental animal studies provide
many new clues for potential drug targets.

In summary, under the general trend of multi-disciplinary
cooperation, which leads to a number of new interdisciplinary
sciences, it is in line with the trend of scientific development
to study the pathogenesis and to develop therapeutic methods
of AAA from a multi-disciplinary perspective. Moreover,
with the rapid development of metabolomics in recent years,
metabolomics methods have penetrated into many fields
of medical science, including disease diagnosis and drug
development. If the cellular and molecular mechanisms involved
in the occurrence and development of AAA can be further
elucidated from the perspective of metabolism, it will surely
promote the application of metabolomics in the field of
cardiovascular diseases. More specifically, it may provide new

ideas and methods for early prevention, progression retardation
and prognosis improvement of AAA.
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