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A narrative review of retinal vascular 
parameters and the applications (Part 
I): Measuring methods
Yuan Gao1,2, Lijun Xu3, Ning He4, Yuchuan Ding5, Wenbo Zhao6, Tingting Meng2, 
Ming Li6, Jiaqi Wu1, Yazeed Haddad5, Xuxiang Zhang7, Xunming Ji1,6

Abstract:
The retina is often used to evaluate the vascular health status of eyes and the whole body directly and 
noninvasively in vivo. Retinal vascular parameters included caliber, tortuosity and fractal dimension. 
These variables represent the density or geometric characteristics of the vascular network apart 
from reflecting structural changes in the retinal vessel system. Currently, these parameters are often 
used as indicators of retinal disease, cardiovascular and cerebrovascular disease. Advanced digital 
fundus photography apparatus and computer‑assisted analysis techniques combined with artificial 
intelligence, make the quantitative calculation of these parameters easier, objective, and labor‑saving.
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Introduction

Retinal vascular parameters including 
diameter, tortuosity, and fractal 

dimension (FD) can reflect the changes 
in the retinal vascular network structure. 
Several studies have reported that these 
parameters were associated with ocular 
and other diseases, such as glaucoma,[1] 
diabetic retinopathy,[2] hypertension,[3] 
cardiovascular[4] and cerebrovascular 
disease.[5] Particularly, carotid stenosis 
is a significant contribution to the risk 
of ischemic stroke, which can lead to 
neurological disability and death in adult.[6,7] 
The retinal vasculature can be regarded 
as a part of the cerebral vasculature, thus 
their associations may contribute to further 
studying the pathological mechanism 
of cerebrovascular diseases. However, 
there is no uniform measurement method 
for these parameters. Thus, it is very 
important to choose a simple and accurate 

calculation method for quantitative 
measurements of these parameters. Besides, 
it is difficult to quantify these parameters 
by manual methods. The development of 
computer‑assisted analysis of digital fundus 
images enables retinal vascular parameters 
measurement in a timely, accurate, and 
reliable manner while reducing subjective 
human error.[8] Diameter is one of the most 
commonly used indexes to evaluate vascular 
characteristics.[9] Currently, several methods 
and formulas were put forward for retinal 
vascular caliber quantitative calculation, 
such as Full width half‑maximum (FWHM) 
or half‑height at full‑width,[10,11] Gaussian 
fitting function,[12] Sobel edge detection,[13] 
sliding linear regression filter (SLRF),[14] 
Parr‑Hubbard[15] and Revised Parr‑Hubbard 
formulas.[16] Retinal vascular tortuosity, 
is another indicator of retinal vessel 
morphology.[3,17] Some techniques for 
assessing retinal vessel tortuosity can be 
divided to three major groups: based on 
ration of curve length over chord line,[18] 
curvature‑based methods,[19] and based on 
slope chain code (SCC).[20] FD is often used 
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to quantitative assessment of the complexity and branch 
self‑similarity of retinal microvasculature pattern.[21] The 
box‑counting technique is the most common approach 
to calculate FD.[22,23] In this review, we conclude the 
current methods of retinal caliber, tortuosity, and FD 
measurement, providing important reference values for 
using these metrics as an indicator of retinal disease and 
systemic disease in subsequent clinical studies.

Measuring Methods of Retinal Vasculature

Vascular caliber in retina
According to the dependence of the caliber calculation 
method on a particular value parameter, retinal caliber 
calculation methods include two principal groups: 
nonparametric and parametric methods.[24] In addition, 
the Parr‑Hubbard formula, revised Parr‑Hubbard 
formula and commercially available measurement 
software based on them were also usually used to 
measure retinal vascular caliber.

Nonparametric methods
The nonparametric method used the edge detection 
technique and consider the cross‑sectional caliber to be 
the smallest Euclidean distance between the two places 
on the vascular edges.[24] The Sobel and “Canny,” are the 
two most common edge detection methods to track or 
emphasize the boundaries between the two sides of a 
blood vessel. The Sobel operator is a two‑dimensional 
spatial gradient detector, including horizontal and 
vertical edge detectors with a pair of three‑dimensional 
convolution masks that is primarily applied to calculate the 
area of an image which has significant volume differences 
in both the X and Y directions.[13] It has the advantage 
of rapid detecting. However, it cannot detect thin and 
smooth edges accurately.[25] Canny operator is a classical 
detector on account of gradient and Laplacian methods.[26] 
The method has three characteristics of single detection 
edge response, good edge positioning, and low detection 
errors.[27] However, when the noise in an image is removed 
using the Canny method and Gaussian smoothing, it is 
unable to discern the somewhat hazy edges.[25] To address 
the problem, Rahman proposed an approach that relied 
on histogram processing as an image preprocessing step 
before the canny edge detector and confirmed promising 
outcomes.[25] Moreover, other detection techniques such 
as Edge pixel Grouping[28] and multi‑scale segmentation 
methods.[29] These methods have some limitations such 
as difficulty for fine vessels measurement and sub‑pixel 
accuracy. Besides, high‑intensity central light reflexes in 
high‑resolution fundus images cannot been accurately 
obtained as vessel boundaries.[24]

Parametric methods
Calculate a caliber by Gaussian function fitting intensity 
samples curve across a blood vessel cross‑section.[24] 

Gang et al. have modeled retinal vessel cross‑section 
using an amplitude‑modified second‑order Gaussian 
function.[30] The diameter is then calculated using FWHM 
method, which is introduced by Brinchmann‑Hansen 
and defined as the distance along either of the vessel’s 
edges between the center points of highest intensity 
variation.[10] The spreading factor (sigma) of the Gaussian 
best fit is linearly associated with caliber and thus 
can be applied to make diameter estimation simple. 
Nevertheless, it cannot capture the central light reflex 
of the vessels, also known as “specular reflection.”[31] To 
cope with this problem, some researchers created twin 
and piecewise Gaussian functions to describe the gray 
level profile distributions over a vessel cross‑section 
and quantify the vessel diameter.[32,33] SLRF was 
another method for caliber calculation. This method 
appears to be the most reproducible and consistent in 
measurements of retinal caliber diameter compared to 
the other two automated methods (Gaussian function 
and Sobel detection algorithm) (Sobel).[14] However, the 
approach grows unreliable when the total vessel width 
is <10 pixels.[13] For compensation, Aliahmad proposed a 
multi‑step regression method for retinal vessel diameter 
calculation that a three‑criteria function provides the best 
evaluation of the vessel profiles while reducing residual 
fitting errors brought on by uneven illumination and 
background noise to address the issue of sigma.[24]

Parr‑hubbard and revised parr‑hubbard formulas
Parr et al. put forward a method for computing the width 
of the central retinal artery (CRA) (the width of their 
single parent trunk) from the widths of all the retinal 
arteries measurement:[15]

Ŵ= (0.87W1
2 +1.01W2

2-0.22W1W2-10.76)1/2 (1)

W1, represents the narrower branch; W2, represents 
the wider branch; W, represents the parent trunk. The 
equivalent CRA width represents the general diameter of 
the retinal arteries and enables comparison of the arterial 
diameter between different eyes since it is unaffected 
by the number and pattern of the retinal larger arteries’ 
branching.[15] Nevertheless, the Parr‑Hubbard equation 
is influenced by the number of vessels measurement 
and sensitive to scale due to constant terms in the 
equations. Knudtson et al. proposed a revised equation 
for summarizing caliber measurement using the six 
largest arterioles and venules from fundus images:[16]

Arterioles:  Ŵ = 0.88*(W1
2+W2

2)1/2 (2)

Venules: Ŵ = 0.95*(W1
2 + W2

2) 1/2

W1, the widths of the narrower branch; W2, the wider 
branch; Ŵ, the parent trunk arteriole or venule. The 
revised Parr‑Hubbard formula is closely related to the 
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previous Parr‑Hubbard formula, but has the benefits of 
being independent of image scale, more resilient against 
the number of vessels variations, and thus being simpler 
to apply.[16] It has been used for caliber measurement by 
computer software in numerous studies.

Retinal vascular caliber can be calculated from the 
vessels inside the region of interest (ROI) in the computer 
software. The commonly used ROIs are concentric zones 
centered on the optic disc including the regions from 
the disc margin to ½ disc diameter from the disc (Zone 
A), ½ disc diameter from the disc to 1disc diameter 
from the disc (Zone B), and 2disc diameter from the 
disc (Zone C).[29,34‑36] Among them, Zone B and Zone C are 
the two most popular regions for calculation[29] [Figure 1]. 
Although there are many methods for calculating retinal 
vessel diameter, the methods based on the Parr‑Hubbard 
formula and the revised Parr‑Hubbard formula in the 
ROI region were the two most commonly applied in 
clinical research, especially the latter.

With the rise of artificial intelligence and its 
application in the medical field, the measurement 
method of retinal vascular caliber has developed 
from the original semi‑automatic to fully automatic. 
Cheung et al. developed and validated an automated 
measurement method of retinal vascular caliber based 
on deep‑learning algorithm without the need for vessel 
segmentation (SIVA‑DLS), which has high agreement 
with expert human graders.[37] Besides, fully automated 
software also included QUARTZ[38] and ALTAIR.[39]

Retinal vascular tortuosity
There is no uniform definition of retinal vascular tortuosity 
since it always varies with different measurement 

methods. Tortuosity is a degree of vascular curvature 
in a qualitative manner. Ophthalmologists in clinical 
practice usually divide tortuosity into a qualitative 
scale including mild, moderate, and severe according 
to a vessel segment’s curvature, number of twists, 
frequency, and amplitude.[40,41] There are main four types 
of measurement methods: arc‑length over chord length 
ratio methods, curvature‑based, angle‑based, and other 
domain‑based methods.[42]

The arc length over chord length ratio, first reported by 
Lotmar et al., is the simplest and most commonly used 
method:[18,43]

Tortuosity= Arc length/Chord length (3)

Arclength = 

Chord length =

However, this approach is deficient for the calculation of 
vessels with smooth curvature and variation in curvature 
direction.[42] Bullitt et al. noted that limitation, then 
proposed a method to calculate the number of inflection 
points (twists), which can calculate it caused by the 
blood vessel when the blood vessel changes direction, 
and then sum the total angle of each effective point on 
the curve, and normalize the result by the total curve 
length.[44] Grisan et al. raised the tortuosity density (TD) 
index to evaluate vascular tortuosity by calculating 
the contributions to tortuosity of uniformly convex or 
concave arcs:[45,46]

TD =  (4)

ꞇ=  (5)

n represents the number of “turns;” Lcsi represents the 
arc length of segment I; Lxsi represents the chord length 
of segment i; Lc represents the total length of the vessel’s 
centerline; ꞇ represents the tortuosity. Curvature‑based 
measurement is a calculation of how curved a curve is 
at a certain coordinate and is an integral function of the 
estimated curvature along the vascular skeleton, usually 
a weighted sum of absolute or squared curvatures.[19,42] 
Hart et al. proposed two tortuosity measurement methods 
which are the integral of vessel centerline curvature and 
curvature squared, and they found that the squared 
curvature was the closest to the eye doctor’ concept of 
curvature.[19] Trucco et al. pointed out that tortuosity 
can increase with thickness, thus its measurement not 
only needs skeleton curvature but also need vessel 
caliber.[47] Some researchers thought curvature‑based 
tortuosity measurements are more reliable but more 

Figure 1: An image from fundus photography shows that the ROI are concentric 
zones centered on the optic disc including the regions from the disc margin to 
½ disc diameter from the disc (Zone A), ½ disc diameter from the disc to 1 disc 

diameter from the disc (Zone B), and 2 disc diameter from the disc (Zone C). ROI: 
Region of interest
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computationally intensive and particularly rely on the 
technique of tortuosity measurement in comparison 
with the method of the arc length over chord length 
ratio.[48,49] Besides, some methods measured tortuosity 
by calculating the direction variations of the vessel. 
Foracchia et al. assessed tortuosity by a simulated 
annealing optimization technique identifying the model 
parameter and computing the number of changes in 
direction more than a predetermined threshold.[50] 
Rodriguez introduced the fast Fourier transform of the 
vessel’s curvature to compute tortuosity.[51] Bribiesca et al. 
put forward a new approach to tortuosity measurement 
based on SCC which is not affected by translation, 
rotation, or scaling.[20] “The accumulated slope Acc of a 
chain is the sum of the slope changes n around the curve, 
is defined by:

Acc =  (6)

”n is the number of slope changes; ai: “the slope change 
of the contiguous straight‑line segments of the curve at 
that element position” and the tortuosity ꞇ “is the sum 
of all the absolute values of the chain elements, and is 
defined by

ꞇ=  (7)

Lisowska et al.[20] assessed five retinal vascular tortuosity 
measurement methods including distance measure, 
two curvature‑based measures, TD, and slope chain 
coding with the retinal vessel tortuosity dataset public 
dataset.[46] They discovered that the curvature approach 
performs best to high‑frequency resampling, but is the 
most sensitive to variations in sample number; the TD 
index has excellent performance as a whole, but not 
always the best; Slope‑chain coding is most effective at 
low sampling rates, but need to choose the appropriate 
length of the linear elements.[46]

In addition, some methods calculated the curvature 
regions outside the space domain without vessel 
extraction such as the Hough transform.[52] Mustafa 
et al. proposed a fully automated retinal tortuosity 
measurement method based on nonlinear curvature that 
compares the mean tortuosity value with a computer 
threshold value, T, and if the average tortuosity value is 
less than the T, the retinal vascular network is considered 
normal, and vice versa.[53] Aras et al. calculated retinal 
vascular tortuosity using the relative length variation 
method, then used K nearest neighbor to classify the 
retinal images as normal, tortuosity, moderate, and 
severe tortuosity, and the best accuracy reached more 
than 90%.[54] Nowadays, based on the above calculation 
methods, a variety of commercial computer‑assisted 
analysis software has been developed and will be 
introduced in the later section.

Fractal dimensions in retina
The geometric complexity and branch self‑similarity 
of the vascular network, which have been employed to 
characterize physiological processes as well as various 
anatomical structures, were measured using the FD.[55] 
Retinal vascular FD reflects the overall branching 
pattern of retinal vessels and may aid in the detection of 
subclinical vascular abnormalities.[56] A mono‑fractal or 
a multifractal method was used to evaluate FDs.[57,58] In 
mono‑fractal method, classical FD estimation methods 
included box‑counting methods, area measurement 
methods, and fractional Brownian motion methods. 
The box‑counting technique is the most commonly used 
method to calculate FD and the mathematical formula 
is expressed as:

D =  (8)

N (ε), the number of boxes; scales ε, the number of 
pixels.[59] Konatar et al. implemented three methods 
including standard nonoverlapping, gliding or 
overlapping box scanning, and random box scanning 
to measure FD.[59] By examining photographs of the 
retinal microvasculature from public databases and 
comparing the findings to those of Image J, they 
confirmed that the results of the three approaches 
were rather near to the anticipated theoretical 
values.[59] In addition, Zode et al. demonstrated that 
the results obtained using box‑counting method 
were more accurate than using the mass‑radius 
method.[60] However, although this method is simple, it 
is sensitive to box size and requires signal binarization 
and the segmentation of retinal vessels’ images.[61] 
Fractional Brownian motion methods are based on 
the variogram (Gaussian modeling) or the Fourier 
transform algorithms of the image to compute the 
fractional dimension. Azemin et al. used the Fourier FD 
approach to quantify the grayscale images projected 
on to 3D fractal surface and compute the retinal FD.[62] 
The superiority of Fourier FD is that it calculates FD 
of grayscale images without image segmentation 
and relatively insensitive to noise and thus handles 
effectively data with low signal‑to‑noise ratio.[62] The 
Isarithm method, blanket method, and triangular 
prism method are the three algorithms commonly 
used in area measurement methods.[61] The retinal 
vascular tree, which may merge several mono‑FD, 
is one example of a complicated spatial arrangement 
that multifractal approaches are thought to be better 
suited to characterize.[57] The measurement methods 
include box‑counting methods such as generalized FD, 
multifractal spectrum, the “sandbox” or cumulative 
mass method, the large‑deviation multifractal spectrum 
method and wavelets.[61] Among these methods, the 
generalized sandbox method is commonly used to 
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compute the multifractal dimensions of the retinal 
vascular tree.[57] Employing a nonlinear SVM classifier, 
Ding et al. accomplished picture categorization into 
healthy group and pathological group according 
to the characteristics retrieved from multi‑fractal 
and Fourier spectra of retinal arteries.[63] Relan et al. 
used the multi‑fractal analysis quantified retinal 
FD in high‑resolution fundus images to distinguish 
between two subgroups in images of healthy, 
diabetic retinopathy, and glaucoma patients through 
segmented and skeletonized images.[64] Bhat et al. 
showed how the Pixel‑Based Multi Fractal Analysis 
method can aid in precisely locating the center of 
the optical disc and then tracing the entire disc.[65] In 
conclusion, there are many calculation methods and 
clinical applications of mono‑fractal FD, while there 
are few studies on multi‑FDs, and further research is 
needed in future.

Computer Software for Retinal Vascular 
Parameters

Currently, there are numerous developed semi‑automatic 
and automatic software to measure retinal vascular 
parameters. For instance, the Retinal Analysis (RA; 
University of Wisconsin, Madison, WI), [66] the 
Integrative Vessel Analysis (IVAN; University of 
Wisconsin, Madison);[66,67] the Singapore I Vessel 
Assessment (SIVA1.0,2.0,3.0,4.0; National University 
of Singapore),[2,56,68‑72] the Computer‑Aided Image 
Analysis of the Retina program (CAIAR, Imperial 
College London, City University, London, UK);[73,74] 
Retinal Vessel Analyser (RVA; IMEDOS Systems UG, 
Jena, Germany);[75,76] VesselMap (ImedosSystems, Jena, 
Germany),[77‑79] Vessel assessment and measurement 
platform for images of the retina (VAMPIRE),[80‑82]    
QUantitative Analysis of Retinal vessel Topology and 
siZe (QUARTZ;UK)[38,83] Automatic Retinal Image 
Analysis (US Patent 8787638B2).[84,85]

Yip et al. found that the associations between retinal vessel 
calibers with systemic factors were similar by evaluating 
the consistency among three software (RA, SIVA, and 
IVAN), despite absolute measurement differences.[66] 
They proposed an algorithm that enabled RA and IVAN 
calculations to be converted to SIVA approximates, 
which is crucial for future data pooling and the definition 
of normative values.[66] French C and Heitmar R also 
compared the retinal vessel caliber measurement using 
the VesselMap and MONA REVA (VITO Health, Mol, 
Belgium), and confirmed the good consistency between 
the two platforms.[77] However, McGrory et al. found 
that the poor agreement in estimation results of these 
parameters employing the SIVA and the VAMPIRE 
software from fundus camera images.[68] To make retinal 
vascular parameters trustworthy and independent of 

different computer applications, they must be measured 
according to a standard,[68] which need further research.

Conclusion

There are many challenges in retinal vascular parameters 
measurement from fundus photographs. For example, 
there is no uniform calculation method and standardized 
protocol for retinal vascular parameters. A lack of 
consistent comparison between different methods 
and different software for retinal vascular parameters 
measurements in the same data set. In addition, many 
software is not free and expensive for user, which limits 
its clinical application. Furthermore, although artificial 
intelligence has been used widely to classify and identify 
the qualitative assessment of retinal diseases, few are 
applied to retinal arteriovenous segmentation and then 
retinal vascular parameters evaluation based on the 
segmented vessels in clinical studies. The reason may 
be related to short of public, large, annotated datasets 
which take lots of work by trained ophthalmologists. It is 
still very challenging to compare algorithms thoroughly 
and objectively because different cameras have varying 
luminous exposure, focus, quality, and pixels. Thus, 
simple, economic, fully automated software based on 
AI to measure retinal vascular parameters are needed 
to further develop and apply to the clinical studies and 
practice.
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