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The etiologies of bipolar disorder (BD) and schizophrenia include a large number of common risk

alleles, many of which are shared across the disorders. BD is clinically heterogeneous and it has

been postulated that the pattern of symptoms is in part determined by the particular risk alleles

carried, and in particular, that risk alleles also confer liability to schizophrenia influence psychotic

symptoms in those with BD. To investigate links between psychotic symptoms in BD and schizo-

phrenia risk alleles we employed a data-driven approach in a genotyped and deeply phenotyped

sample of subjects with BD. We used sparse canonical correlation analysis (sCCA) (Witten,

Tibshirani, & Hastie, 2009) to analyze 30 psychotic symptoms, assessed with the OPerational

CRITeria checklist, and 82 independent genome-wide significant single nucleotide polymorphisms

(SNPs) identified by the Schizophrenia Working group of the Psychiatric Genomics Consortium for

which we had data in our BD sample (3,903 subjects). As a secondary analysis, we applied sCCA to

larger groups of SNPs, and also to groups of symptoms defined according to a published factor

analyses of schizophrenia. sCCA analysis based on individual psychotic symptoms revealed a signif-

icant association (p5 .033), with the largest weights attributed to a variant on chromosome 3

(rs11411529), chr3:180594593, build 37) and delusions of influence, bizarre behavior and grandi-

ose delusions. sCCA analysis using the same set of SNPs supported association with the same SNP

and the group of symptoms defined “factor 3” (p5 .012). A significant association was also

observed to the “factor 3” phenotype group when we included a greater number of SNPs that

were less stringently associated with schizophrenia; although other SNPs contributed to the signifi-

cant multivariate association result, the greatest weight remained assigned to rs11411529. Our

results suggest that the canonical correlation is a useful tool to explore phenotype–genotype rela-

tionships. To the best of our knowledge, this is the first study to apply this approach to complex,

polygenic psychiatric traits. The sparse canonical correlation approach offers the potential to

include a larger number of fine-grained systematic descriptors, and to include genetic markers

associated with other disorders that are genetically correlated with BD.
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1 | INTRODUCTION

Bipolar disorder (BD) is a severe, often recurrent, mental illness, associ-

ated with disability, suicide, and a reduction in life expectancy of over

10 years (Vos et al., 2015). Pervasive high mood and increased energy

are core features of the disorder, characteristically alternating with

spells of depression and normal mood states (V�azquez, Holtzman,

Lolich, Ketter, & Baldessarini, 2015). BD is clinically heterogeneous;

psychotic symptoms are present in some individuals but not others,

and when these occur, they can be indistinguishable from those pres-

ent in people with schizophrenia (Craddock, O’donovan, & Owen,

2005; Grande, Berk, Birmaher, & Vieta, 2016).

Molecular and epidemiological studies have reported strong

evidence of shared genetic etiology between BD and schizophrenia

(Andreassen et al., 2013; Cardno and Owen, 2014; Cardno, Rijsdijk,

Sham, Murray, & McGuffin, 2002; Lichtenstein et al., 2009; Purcell et al.,

2009; Sullivan, Daly, & O’Donovan, 2012). It is now established that com-

mon genetic variants contribute liability to both disorders, and in addition,

the fraction of heritability conferred by such variants to schizophrenia

and BD is substantially (around 68%) correlated (Lee et al., 2013).

A number of studies have aimed to identify characteristics of the BD

phenotype that are most strongly liked to schizophrenia risk, and have

generally done so by testing predefined subgroups of BD patients against

total burden of schizophrenia risk alleles. Such studies have shown that

in people with BD, the burden of alleles identified in studies of schizo-

phrenia is highest in those with psychotic symptoms (Allardyce et al.,

2017; Goes et al., 2012), while conversely, in people with schizophrenia,

the burden of alleles identified in studies of BD is highest in people with

manic symptoms (Ruderfer et al., 2014). While studies of total risk burden

are providing insights into the relationships between schizophrenia and

BD, a limitation of this approach is that alleles identified from studies of

one disorder are considered to act uniformly on a particular symptom, or

set of symptoms, in the context of people with the other disorder. Given

both schizophrenia and BD are highly heterogeneous disorders, if genetic

heterogeneity underpins phenotypic heterogeneity, such universal geno-

type–phenotype relationships are unlikely to apply.

An alternative approach is to use data-driven approaches to seek

novel relationships between phenotypic variables and genotypes.

However, such analyses are challenging in the context of the high-

dimensional data, which is comprised of large numbers of associated

alleles, even larger numbers of combinations of alleles, and potentially

thousands of phenotypic data points and phenotypic combinations

(Ehrenreich & Nave, 2014). Here, we have begun to address this problem

using canonical correlation analysis (CCA) (Hotelling, 1936), an approach

designed to identify linear relationships (usually hidden) between two

sets of multidimensional variables. We exploit more recently developed

sparse CCA (sCCA) (Witten et al., 2009), which addresses the high com-

putation burden of CCA for high-dimensional data by minimizing the

number of features used in both phenotypic variables and genotypes

while maximizing the correlation between the two sets.

The broad hypothesis underpinning our study is that schizophrenia

liability is not randomly distributed in individuals with BD; rather liabil-

ity is enriched among people with BD who manifest particular clinical

features. We have previously shown that en masse, schizophrenia

liability is linked to psychotic symptoms in BD (Allardyce et al., 2017).

Here, we aim to extend that finding to investigate, in a purely data-

driven manner, the possibility that further granularity exists between

schizophrenia liability and BD, specifically, do particular schizophrenia

risk alleles (or groups of alleles) show evidence for relatively selective

effects on particular psychotic features in people with BD. By way of

comparison, we also undertook a phenotypic hypothesis-based CCA,

based on grouping symptoms according to a three factor classification

of schizophrenia symptoms (Cardno et al., 1996).

2 | MATERIALS AND METHODS

2.1 | Bipolar data description

2.1.1 | Recruitment

Participants were available as part of the Bipolar Disorder Research

Network (bdrn.org) using (a) systematic screening of community mental

health teams across the United Kingdom and (b) website, media and

third sector organizations. Subjects were aged 18 years or over and

provided written informed consent.

Subjects were excluded if they: (a) had a lifetime diagnosis of intra-

venous drug dependency; (b) were judged to have only experienced

affective illness as a result of alcohol or substance dependence; and

(c) had only experienced affective illness secondary to medical illness or

medication. This study received Multi-Region and Local Research

Ethics Committee (MREC and LREC) approvals.

2.1.2 | Diagnostic assessments

Information was collected by interviewing participants with the

Schedules for Clinical Assessment in Neuropsychiatry (Wing et al.,

1990). Psychiatric and general practice case notes were also reviewed.

Interview and case note data were combined. Participants were diag-

nosed using DSM-IV criteria, including 2,628 cases with BD-I, 1,089

cases with BD-II, 124 cases with Schizoaffective BD, and 66 cases with

BD NOS. Fifty-three percent patients with psychotic features. Clinical

ratings were made according to the OPCRIT (OPerational CRITeria)

checklist (McGuffin, Farmer, & Harvey, 1991). Originally designed to

facilitate a polydiagnostic approach to psychotic and mood disorders

for molecular genetic research, OPCRIT includes items on psychopa-

thology and history. For the current analyses we used items concerning

psychotic symptoms, rated on a lifetime-ever basis (summarized in

Table 1). Team members involved in the interview, rating, and

diagnostic procedures were all fully trained research psychologists or

psychiatrists.

2.1.3 | Quality control for OPCRIT data

The information on OPCRIT measurements was available for 4,589 BD

subjects of European ancestry. The OPCRIT items most frequently

rated as present also have higher missing value rates (>10%). For the

CCA we excluded subjects if they had three or more missing values

among the OPCRIT items; retaining 3,903 subjects.
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2.2 | Bipolar genotype quality control

BD subjects were genotyped at three different stages of sample collec-

tion on different platforms (Supporting Information Table 1). Quality

control (QC) was performed on each cohort separately using PLINK2

software (Chang et al., 2015). SNPs were excluded if their minor allele

frequency (MAF) <0.01; call rate <0.98, or they deviated from Hardy–

Weinberg equilibrium (HWE) at p�1026. Individuals were removed if

they had genotype call rates <0.98, increased or decreased hetero-

zygosity of |F|>0.1, genotyped/reported sex discrepancy, high pair-

wise relatedness (pi-hat 0.2), or were population outliers as identified

TABLE 1 Description of OPCRIT measurements

Full sample (N54,589) Cleaned sample (N53,903)

OPCRIT
number Description

Missingness
(%)

Presence
(%)

Missingness
(%)

Presence
(%)

Groups defined
by schizophrenia
factor analysis

Clusters defined
according to a
phenomenological
approach

29 Third person auditory hallucinations 7.3 2 3.2 1.7 Factor 1 Cluster 1

30 Running commentary voices 6.7 0.8 2.6 0.7 Factor 1 Cluster 1

31 Abusive/accusatory/persecutory voices 8.8 7 2.6 7 Factor 1 Cluster 1

32 Other (nonaffective) auditory hallucinations 16.5 6 8.6 6 Factor 2 Cluster 1

33 Nonaffective visual hallucinations 15 3.7 9 4 Factor 1 Cluster 1

34 Nonaffective hallucination in any
other modality

7.8 2 4.2 1.8 Factor 1 Cluster 1

35 Thought echo 2 0.2 0.3 0.1 Cluster 1

36 Thought insertion 3.6 0.5 1.7 0.5 Factor 1 Cluster 1

37 Thought broadcast 2.9 0.2 1 0.2 Factor 1 Cluster 1

38 Thought withdrawal 2.5 0.15 0.6 0.2 Factor 1 Cluster 1

39 Delusions of passivity 3.9 0.4 2 0.4 Factor 1 Cluster 1

40 Delusions of influence 17.2 32.5 10.4 34 Factor 1 Cluster 1

41 Primary delusional perception 2 0.15 0.2 0.2 Cluster 1

42 Persecutory delusions 12 18 6.7 19 Factor 1 Cluster 1

43 Bizarre delusions 3.6 0.9 1.3 1 Factor 1 Cluster 1

44 Other primary delusions 3.3 1 1.2 1.3 Cluster 1

45 Bizarre behavior 4 11 1.4 10 Factor 3 Cluster 3

46 Catatonia 2.4 0.3 0.6 0.4 Factor 2 Cluster 2

47 Speech difficult to understand 3 3 1.3 2.7 Factor 3 Cluster 3

48 Incoherent form of thought 3 0.3 1.2 0.3 Cluster 3

49 Positive formal thought disorder 4.3 0.4 2.3 0.4 Factor 3 Cluster 3

50 Negative formal thought disorder 3 0.4 1 0.4 Factor 2 Cluster 2

51 Restricted affect 2.2 1.5 0.4 1.4 Cluster 2

52 Blunted affect 2 0.2 0.2 0.2 Factor 2 Cluster 2

53 Inappropriate affect 2.3 2 0.5 1.7 Factor 3 Cluster 3

54 Perplexity 5.6 5 4 4.8 Cluster 2

55 Grandiose delusions 17.3 29 11 31 Factor 3 Cluster 1

56 Delusions of guilt 12.1 3.4 8.2 3.5 Cluster 1

57 Delusions of poverty 9.8 0.1 6.9 0.2 Cluster 1

58 Nihilistic delusions 12.1 1.4 8.9 1.4 Cluster 1

Description of OPCRIT items. Columns present missingness and presence of the OPCRIT items in the full sample (N54,589) and cleaned sample
(N53,903), respectively. The last two columns present two different ways of lumping OPCRIT items into three groups (groups defined by
schizophrenia factor analysis; groups defined using phenomenological approach).
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by principle components (PCs) analysis in a joint analysis of 2,000

subjects from 19 different populations taken from the 1000 Genome

project (The 1000 Genomes Project Consortium, 2015).

Following QC, the data for each cohort were imputed using

SHAPEIT (Delaneau & Marchini, 2014) and IMPUTE2 (Howie,

Fuchsberger, Stephens, Marchini, & Abecasis, 2012) with the 1000

Genome reference panel Phase 3, 2014. Imputed data were converted

to the most probable genotypes with probability �0.9, and then

merged. SNPs were further excluded out if their imputation INFO score

was <0.8, MAF<0.01, and HWE p-value<1 3 1026).

To remove SNPs due to genotyping platform difference, SNP

frequencies were compared in each pair of cohorts (with logistic

regression) and removed if their frequencies were significantly different

(p< .01). Our final data set contains 3211519 imputed SNPs. Ten PCs

were generated and used to control for population stratification (see

Figure 1 for first two PCs). The total number of individuals after QC

was 3,903.

2.3 | SNP selection

Imputed genotypes were clumped for linkage disequilibrium (LD;

window 1,000 kb, r25 .2) using PLINK2 (Chang et al., 2015) retaining

the SNPs most significantly associated with schizophrenia (The

Psychiatric Genomics Consortium, 2014). We excluded the MHC

region because of its complex long-range LD properties (Price et al.,

2008) and discarded schizophrenia associated SNPs for which

variation in imputation across arrays resulted in low-quality data. We

retained 82 LD independent SNPs for further analysis (Supporting

Information Table 2). SNPs were coded using the additive genetic

model, 0 for major allele homozygous status, 1 for heterozygous, and

2 for minor allele homozygous, and adjusted for 10 PCs to control

population stratification.

3 | METHODS

3.1 | Canonical and sparse canonical correlations

CCA captures the linear relationship between two sets of variables.

CCA finds two sets of basis vectors for two sets of variables, such

that the correlations between the projections of the variables onto

the space spanned by the basis vectors, are mutually maximized

(Hotelling, 1936). The dimensionality of these new bases is equal to,

or less than, the smallest dimensionality of the two sets of variables,

in our case, the minimum numbers of phenotypic variables and

SNPs.

Formally, the CCA concept can be described as follows. Consider n

subjects with two sets of multidimensional measurements, phenotypes

(number of measured phenotypes is p) and genotypes (number of SNPs

is equal to q). Then X is an n3pð Þ matrix of phenotypes for each

individual and Y is an n3qð Þ matrix of genotypes. To quantify the

relationship between them, CCA identifies vectors u and v that

maximize the correlation cor Xu; Yvð Þ. Vectors u and v are called

canonical variates, which are simply linear combinations of the pheno-

type variables on the one side and genotypes on the other side. The

canonical variates can be interpreted as factor loadings.

Extension of CCA to sCCA makes the technique more suitable for

analyzing large correlated datasets (e.g., when p1 q exceeds n). sCCA

aims to find the “sparse” solution, that is, those projections that depend

on a small number of variables, making the analysis more robust and

powerful (Witten et al., 2009).

Similar to ordinary CCA, sCCA searches for canonical variates u

and v that maximize the correlation cor Xu; Yvð Þ with additional convex

penalty functions P1 uð Þ � c1, P2 vð Þ � c2. Parameters c1 and c2 give

the numbers of variables for X and Y that have nonzero weight.

To understand how well the sCCA captures the relationship between

the two matrices, p-values are usually computed using a permutation

approach. In brief, computation of sCCA is performed in three stages.

First, sCCA is run with a permutation option where the best parame-

ters c1 and c2 are chosen based upon p-values. Second, sCCA is run

with the best coefficients c1 and c2 from stage 1. Third, variables for

the X and Y matrices, with nonzero weights derived in the final

analyses, are extracted.

In the last decade, a number of sparse CCA approaches have been

introduced. The techniques introduced by Waaijenborg, Verselewel de

Witt Hamer, and Zwinderman (2008), Parkhomenko, Tritchler, and

Beyene (2009), and Witten et al. (2009) impose covariance restrictions.

Wilms et al. (2016) suggested that variables are selected (find a sparse

solution) using a penalized regression framework. Wilms et al. (2016)

demonstrated that this method outperforms CCA and some other

sparse CCA approaches in almost all simulated scenarios. This method-

ology is freely available in package “PMA” in R on CRAN, and we chose

to use it for the analyses in this study. We used 1,000 permutations to

select the sparsity parameters c1 and c2. We report results only for the

first sCCA dimension, since it captures the most of the variation (similar

to the first PC in a standard PC analysis) and is most robust to sparsity

parameters choice (Grellmann et al., 2015).

FIGURE 1 PC analysis (the first two components) for BD case
genotype data. Each point represents an individual which belongs
to one of the three waves of genotyping (red—WTCCC, blue—
BDRN wave 1, green—BDRN wave 2) [Color figure can be viewed
at wileyonlinelibrary.com]
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3.2 | Imputation of phenotypes and genotypes

The proportion of missing data directly affects the quality of (s)CCA

analyses as individuals with missing values are usually removed and as

a consequence, power is decreased. There is no established cutoff for

missing value thresholds suitable for all datasets; some suggest that

5%–10% missingness is acceptable, depending on the patterns of the

missing data (Tabachnick & Fidell, 2007), others have applied a 15%–

20% threshold for genomic data (Lin et al., 2013), and 20% for clinical

data (Bennett, 2001).

In our data, after QC, the missing value rate does not exceed 11%

for phenotypes and 5% for genotypes (see Table 1). To retain those

surviving QC, we further imputed both genotype and phenotype data

as implemented in the R-package “mice.” Function mice() is a Markov

Chain Monte Carlo method that uses the correlation structure of the

data and imputes missing values for each incomplete variable a number

of times by regression of incomplete variables on the other variables

iteratively. This method benefits from automatic identification of the

variable type (binary, categorical, or continues) and treats data

accordingly.

3.3 | OPCRIT groups of symptoms

OPCRIT items were combined to generate three groups of symptoms:

“factor 1,” “factor 2,” and “factor 3” (Table 1), as suggested by

schizophrenia factor analysis (Cardno et al., 1996). In this way, the

sCCA may be more powerful since the number of phenotype variables

(30) is reduced, there are no missing values, the ambiguity of the

imputation is minimized, and the frequencies of symptom “presence” in

each the group are increased, as compared to individual OPCRIT item

frequencies. Groups were coded as 0/1, where 1 represents that at

least one OPCRIT symptom is present in a group. The numbers of peo-

ple with the present symptom in each group were 1,655, 261, 1,385

for “factor 1,” “factor 2,” “factor 3” groups, respectively. Note that an

individual can be assigned to more than one group and 1,895 subjects

did not belong to either of the groups above. The correlation structure

of the three dimensions is depicted in Figure 2.

To investigate our results further, we also explored a three-cluster

model based on phenomenological approach, grouping the items in

three clusters, see Table 1: “cluster 1” (including positive symptoms,

present in 1,964 participants), “cluster 2” (including negative symptoms,

present in 247 participants), and “cluster 3” (including disorganized

symptoms, present in 480 participants).

4 | RESULTS

First, we performed sCCA for 82 genome-wide significant (GWS) SNPs

and 30 individual OPCRIT symptoms. The results are summarized in

Table 2. Phenotypes and genotypes with nonzero weights chosen by

sCCA are shown in columns “phenotypes” and “SNPs,” respectively.

Weights can be interpreted as unstandardized regression coefficients

and can be negative or positive (Supporting Information Table 2). If

weights for phenotype variables and SNP variables are of the same

sign that indicates that both variables are positively correlated. If the

weights are of opposite sign, then they are inversely correlated. Those

variables were identified from a single multivariate analysis, and

therefore no multiple testing corrections to the p-values are required.

sCCA for individual psychotic items identified significant association

between delusions of influence, bizarre behavior, grandiose delusions,

and rs11411529 as in the single nucleotide polymorphism database

(dbSNP) (www.ncbi.nlm.nih.gov/projects/SNP), also reported as indel

chr3:180594593, build 37, see Supporting Information Table 2, (The

Psychiatric Genomics Consortium, 2014). Delusions of influence, gran-

diose delusions had the largest contribution to the sCCA loadings (Sup-

porting Information Table 3).

The analysis of grouped OPCRIT items revealed a significant asso-

ciation between the “factor 3” group and the same SNP, rs11411529.

As shown in Table 1, the “factor 3” group includes both grandiose

delusions and bizarre behavior. A post hoc within case logistic regres-

sion analysis confirmed association between the “factor 3” group and

rs11411529 (p59.1 3 1025, OR50.79). The direction of the associa-

tion was such that the schizophrenia (SZ) risk allele was associated

with membership of this group, and is in agreement with the direction

identified by sCCA.

As a further test, we applied sCCA to a randomly chosen half of

the sample. The results were similar, rs11411529 and “factor 3” group

were identified as significantly correlated (p5 .036), a finding that

replicated in the second (independent) half of the sample using logistic

regression (p5 .03; OR50.83).

As an exploratory analysis, we performed sCCA using sets of SNPs

that are expected to be enriched for true associations to schizophrenia,

but for which the evidence for association does not meet the definition

of genome-wide significance (Supporting Information Table 4). The

“factor 3” group was consistently identified as the only group that cor-

related with schizophrenia risk alleles, and rs11411529 remained the

FIGURE 2 Correlation matrix between OPCRIT groups of
symptoms defined by schizophrenia factor analysis (see Table 1):
“factor 1,” “factor 2,” and “factor 3” [Color figure can be viewed at
wileyonlinelibrary.com]
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main contributor to that association (Supporting Information Table 5).

When GWS SNPs were excluded, sCCA analysis found no significant

canonical correlations.

We then tested the association between genotype and three

clusters of symptoms, defined using a phenomenological approach.

sCCA detected a borderline significant association (p5 .052) between

“cluster 1” (which included both delusions of influence and grandiose

delusions), and the same SNP rs11411529. The sCCA analysis

did not identify significant association when using SNPs on less

significant schizophrenia associated p-value thresholds, see Supporting

Information Table 4.

The sCCA for individual OPCRIT items did not identify a significant

association with additional, less significant schizophrenia associated

SNPs (Supporting Information Table 4). Note that in the top section of

the Supporting Information Table 4, although the resulting canonical

correlations are not negligible (maximum 0.33), they are not significant;

this is likely due to the penalty that comes from a large number of

variables (similar to the penalty for the numbers of degrees of freedom

in other statistical tests).

5 | DISCUSSION

BD and schizophrenia are distinct categorical entities according to

current diagnostic systems. Nevertheless, the two disorders share

many clinical features—for example, up to 50% of patients with BD

present with symptoms that are common in schizophrenia such as

persecutory delusions, auditory hallucinations, experiences of influence,

and catatonic symptoms (Pope & Lipinski, 1978) and it is now clear

their genetic etiologies also substantially overlap. The relationships, if

any, between the genetic and clinical overlaps are unclear, although

recent studies suggest schizophrenia risk is particularly elevated in

people with BD and mood incongruent psychotic features (Allardyce

et al., 2017; Goes et al., 2012).

Seeking to identify novel genotype–phenotype links, we have

applied sCCA to a well-phenotyped and genomically informative sample.

sCCA is a data-driven approach that can estimate the strength of the

relationships between two sets of variables (in our example, genotypes

and phenotypes); in doing so, sCCA has the potential to identify novel

genotype–phenotype links without investigators imposing highly specific

hypotheses. To our knowledge this is first study of its type.

The primary finding of the hypothesis-free analysis was that a cluster

of symptoms comprising the most common delusions in our sample

(grandiose, of influence, as well as bizarre behavior) are particularly associ-

ated with a schizophrenia risk allele. Note that this association is a “within

case” association, and this allele has not been reported as GWS associ-

ated with BD in any case-control analysis. The association was primarily

driven by a single variant rs11411529, which tags a locus spanning three

genes, CCDC39, DNAJC19, and FXR1. It is as yet unclear which (if any of

these three) confer is involved in schizophrenia susceptibility.

A second analysis in which we impose a structure to the BD

phenotype based upon factor analysis of symptoms in schizophrenia

identified the same allele to be associated with “factor 3” group. Being

constrained, the latter analysis does not fully exploit the potential of

sCCA, but the reduced dimensionality of that analysis enhances power,

allowing us to detect associations once again between “factor 3” group

and a larger number of SNPs based upon more relaxed significance cri-

teria. It should be noted that sets of SNPs at those sub GWS significant

thresholds are nevertheless enriched or true associations, indeed

among the eight SNPs with a threshold P51025 from the PGC (The

Psychiatric Genomics Consortium, 2014) that together show significant

evidence for association with disorganized features, 5 map to loci that

are GWS in a larger recent schizophrenia GWAS dataset (Pardi~nas,

2018); in addition to rs11411529 these include; rs999494 (EMX1);

rs75968099 (TRANK1); rs6803008 (FOXP1); rs5004844 (CNTN4). The

TRANK1 locus has previously been reported to be significant in a

case-control study of BD (Chen et al., 2013), and the index SNP

rs75968099 is also significant in the GWAS (The Psychiatric Genomics

Consortium, 2014), from which we selected alleles to be tested in this

study. We speculate that the inclusion of this SNP as contributing to a

multivariant association involving relaxed significance thresholds, but

not the more stringent GWS threshold, possibly indicates joint associa-

tion with other SNPs. We denote these above loci by gene name, but

as for rs11411529, the functional basis for the associations is not

understood. Further studies to confirm these associations are needed,

and if confirmed, their biological functions may potentially offer a route

into understanding heterogeneity of BD.

We tested the validity of sCCA to identify genotype–phenotype

relationships by applying it to a random draw of half of the sample.

Our finding of association between rs11411529 and “factor 3” group

in the discovery half of the sample was independently replicated by a

different analytic method (logistic regression) in the second (independ-

ent) half of the sample, supporting the hypothesis that sCCA can iden-

tify true associations in the complex datasets, although at present, in

genomics terms, the findings are modest and need to be replicated.

TABLE 2 sCCA results for 82 schizophrenia GWS SNPs

Correlation p-value Phenotypes chosen by sCCA SNPs chosen by sCCA

Individual OPCRIT items 0.07 0.033 Delusions of influence, Bizarre behavior,
Grandiose delusions

rs11411529

OPCRIT groups defined by schizophrenia factor analysis 0.063 0.012 “factor 3” group rs11411529

p-Values are obtained by 1000 permutations. sCCA results for GWS schizophrenia SNPs and two types of phenotypes used in the analysis (individual
OPCRIT items and OPCRIT groups of symptoms). “Correlation” and “p-value” columns give the best sCCA correlation coefficient and corresponding
p-value obtained by 1000 permutations. Columns “phenotypes chosen by sCCA” and “SNPs chosen by sCCA” show phenotypes and SNPs with nonzero
weights chosen by the analysis.
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Using a phenomenological approach to group OPCRIT items, we

also replicated the association between the cluster of symptoms

containing grandiose delusion and delusions of influence and SNP

rs11411529, confirming that this association is driven mainly by these

two OPCRIT items.

Strengths of this study are the use of a validated assessment tool

and the assessment of inter-rater variability (Di Florio et al., 2013); the

largest sample size to date with this of granularity of phenotypic infor-

mation; and phenotypic data obtained from multiple sources including

case notes. Limitations are reliance on retrospective assessment of psy-

chosis, the low prevalence of some psychotic symptoms, and missing-

ness. In addition, the sCCA approach may not be the most powerful

when genotype–phenotype relationships are nonlinear, and our sample

size that while large for this type of study, is still small in the genomics

context.

In summary, we show that sCCA approach is capable of revealing

relationships between complex phenotype and genotype data, and pro-

vide evidence for associations between sets of SNPs and features of

the bipolar phenotype. Given sample size limitations, the specific asso-

ciations are best regarded as hypothesis generating, and require evalua-

tion in other well-phenotyped samples.
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