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An 8-week feeding trial was conducted to evaluate the effects of sodium butyrate (SB) on growth, digestive
enzymes, body composition and nutrient retention-related gene expression of juvenile yellow catfish (Pel-
teobagrus fulvidraco). Five isonitrogenous and isolipidic diets (420 g/kg protein and 90 g/kg lipid) were
formulated to contain 0 (control), 250, 500, 1,000 or 2,000 mg/kg SB. Triplicate groups of 40 fish (BW ¼ 1.26
± 0.01 g) per tank (300-L cylindrical fiberglass tanks) for each diet were fed to apparent satiation twice daily.
Stomach, hepatopancreas and intestine samples were obtained for digestive enzymes activities analyses. A
real-time quantitative PCR analysis was performed to determine the relative expression of target of rapa-
mycin (TOR) and lipoprotein lipase (LPL) in the hepatopancreas and intestine. Fish fed the diets supplemented
with SB at 500 and 1,000 mg/kg showed significantly higher specific growth rate and significantly lower feed
conversion ratio compared to the control (P < 0.05). Dietary SB inclusion did not alter activities of intestinal
amylase, creatine kinase and sodiumepotassium adenosine triphosphatase (Naþ/Kþ-ATPase), but increased
activities of hepatic trypsin, stomachic lipase, intestinal lipase, alkaline phosphatase and g-glutamyl trans-
peptidase for fish fed 1,000 mg/kg SB compared to the control (P < 0.05). Intestine length index, intestine
somatic index, fold height and muscular thickness of distal intestine were significantly higher in 1,000 mg/kg
SB groups compared to the control (P < 0.05). Significantly higher levels of whole-body crude protein, ash,
calcium, phosphorus, nutrition retention and relative mRNA of intestinal TOR were observed in 1,000 mg/kg
SB group (P < 0.05). Whole-body lipid content and hepatopancreas LPLmRNA expression in 2,000 mg/kg SB
group were significantly higher than the control (P < 0.05). Relative mRNA levels of intestinal LPL and
hepatopancreas TOR were significantly higher in the 500 mg/kg SB group compared to those in other groups
(P < 0.05). The increased growth performance, digestive enzymes and nutrient retention in fish fed the diets
supplemented with SB at 500 and 1,000 mg/kg suggests that SB can be a desirable growth promoter as an
antibiotic alternative in diets.
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1. Introduction

Organic acids are organic carboxylic compounds including
acetic, butyric, citric, formic, lactic, propionic and sorbic acids
(Hoseinifar et al., 2017; Ng and Koh, 2017). Feed supplementation
with organic acids has been shown to improve health and growth
performance in various fish and crustacean species by altering the
gastrointestinal tract function and energy metabolism, improving
nutrition retention, increasing the availability of nutrients and
ishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an
s/by-nc-nd/4.0/).
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inhibiting the growth of pathogenic bacteria (Ng and Koh 2017;
Hoseinifar et al., 2017). Butyrate is one of the most important short-
chain fatty acids, which presents in the gastrointestinal tract as a
main end product of anaerobic bacterial fermentation of carbohy-
drates. Sodium butyrate (SB) is solid, stabile and much less odorous
compared to butyrate, and SB is more commonly added to animal
feeds (Guilloteau et al., 2009). Increasingly, SB is being investigated
as a dietary additive in various aquatic animals, to improve their
growth, nutrient utilization and intestinal health (Abdel-Latif et al.,
2020). Positive effects of dietary SB on growth performance have
been confirmed in fish, such as sea bream Sparus aurata (Robles et
al., 2013), common carp Cyprinus carpio (Liu et al., 2014), tilapia
Oreochromis niloticus (Ahmed and Sadek, 2015), grass carp Cteno-
pharyngodon idellus (Liu et al., 2017), European sea bass Dicen-
trarchus labrax (Abdel-Mohsen et al., 2018), golden pompano
Trachinotus ovatus (Zhou et al., 2019), Nile tilapia O. niloticus (Jesus
et al., 2019a), turbot Scophthalmus maximus L. (Liu et al., 2019) and
Asian seabass L. calcarifer (Aalamifar et al., 2020).

Fish growth is closely related to the digestive and absorptive
abilities of digestive organs (Mitra et al., 2008). Jesus et al. (2019b)
reported that protected forms of SB improved absorption capacity
of nutrients through increasing length, perimeter and villus area of
the anterior region of the intestinal tract during the sexual rever-
sion period. The improvement of digestion and absorption of nu-
trients was characterized by the increase in activity of digestive
enzymes, e.g., trypsin, chymotrypsin, lipase and amylase, and
brush-border membrane enzymes, e.g., alkaline phosphatase,
sodiumepotassium adenosine triphosphatase (Naþ/Kþ-ATPase)
and creatine kinase (Krogdahl and Marie Bakke-McKellep, 2005;
Tibaldi et al., 2006). Alkaline phosphatase is used as a marker of
nutrient absorption and takes part in the absorption of lipid,
glucose, calcium and inorganic phosphate (Villanueva et al., 1997).
Naþ/Kþ-ATPase created the potential energy of the Na gradient for
many transport systems and the activity of this enzyme could
indirectly reflect the absorption ability of the nutrient, such as
amino acids, phosphate or glucose (Hakim et al., 2009). Creatine
kinase is associated with energy metabolism and the coupling of
ATP and kinase (Wallimann and Hemmer, 1994) and g-glutamyl
transpeptidase is related to peptide transport (Griffith and Meister,
1980). Dietary SB could enhance the activities of intestinal protease,
amylase, alkaline phosphatase and Naþ/Kþ-ATPase of golden
pompano (Zhou et al., 2019). Furthermore, dietary SB enhanced
intestinal physical barrier function referring to NF-E2-related factor
2 (Nrf2), c-Jun N-terminal protein kinase (JNK) and myosin light
chain kinase (MLCK) signaling pathways of young grass carp (Wu et
al., 2018). The syntheses of proteins and lipids are key processes
involved in growth response (Mommsen, 2001). In gilthead sea
bream and yellow drum (Nibea albiflora) (Richardson), the
improvement of growth performance may be due to the increase in
the availability of essential amino acids of fish fed SB diets (Robles
et al., 2013; Wu et al., 2019). Wu et al. (2019) suggested that sup-
plementation of 0.15% SB increased crude lipid content of thewhole
body in yellow drum. The limiting step in protein synthesis is
translation initiation, which is regulated by the signaling pathway
of target of rapamycin (TOR) (Seiliez et al., 2008). Similarly, lipo-
protein lipase (LPL) is an important lipid regulatory enzyme
involved in supplying free fatty acids for storage in adipocytes or for
oxidation in other tissues (Zheng et al., 2013). Rainbow trout
genetically selected for greater muscle fat content displays
increased activation of liver TOR signaling and lipogenic gene
expression (Skiba-Cassy et al., 2009). Although some preliminary
work has been conducted in fish species previously, studies con-
cerning intestinal health and nutrient retention of dietary SB in fish
are still limited. Hence, it is necessary to address the effects of SB on
intestinal health and nutrient retention of fish.
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Yellow catfish (Pelteobagrus fulvidraco) is one of omnivorous
freshwater fish species, which has a delicious quality and high
nutritional value. Considering the increasing interest in dietary SB,
and increasing popularity of yellow catfish as a food fish that is a
promising farmed fish in aquaculture, evaluating the relationship of
SB to growth, feed utilization and nutrient retention of this
commercially important species would likely benefit the industry.
Thus, this studywas conducted to study the effects of SB on growth,
digestive enzymes, body composition and nutrient retention
related gene expression of juvenile yellow catfish (P. fulvidraco).

2. Materials and methods

All experimental procedures were carried out in accordance
with the Guidelines for Experimental Animals by the Guangdong
Academy of Agricultural Sciences, China. The animal use and care
protocol was reviewed and approved by the Animal Care and Use
Committee of Guangdong Academy of Agricultural Sciences (SC-
GDAAS-2019-018).

2.1. Experimental design and diets

Formulation and proximate composition of experimental diets
are presented in Table 1. Fishmeal, soybean, rapeseedmeal and corn
gluten meal were used as protein sources. Wheat flour, fish oil and
soybean oil were used as carbohydrate and lipid sources. The levels
of nutrients met the requirements of yellow catfish according to
previous studies conducted in our laboratory (Cao et al., 2012; Chen
et al., 2016; Zhao et al., 2020). Five isonitrogenous and isolipidic
diets were formulated to contain SB at 0 (control), 250, 500, 1,000
or 2,000 mg/kg, by supplementing SB (purity � 98%). All in-
gredients were ground through a 60-mesh screen. SB was mixed
with dietary water sources and then mixed with the other feed-
stuffs. The diets were prepared by mixing the ingredients before
adding fish oil, soybean oil and water using a kneading machine
(NH-10, South China University of Technology, Guangzhou, China).
The feed ingredients were thoroughly mixed with fish oil, soybean
oil and the appropriate amount of water in a strong stirrer (B20,
Guangzhou Panyu Lifeng Food Machinery Factory, Guangzhou,
China) and the mixture was processed into 1.5-mm diameter pel-
lets using a twin screw extruder (SLX-80, South China University of
Technology, Guangzhou, China) and dried at 55 �C for 6 h. After
drying, diets were stored at �20 �C in plastic bags until being used.

2.2. Fish and experimental conditions

Yellow catfishwere obtained fromGuangzhou Jinglong Fisheries
(Guangzhou, China). The fish were acclimatised with the control
diet for 2 weeks prior to this trial. The feeding trial was conducted
in an indoor re-circulating aquaculture system at the Animal Sci-
ence Institute of Guangdong Academy of Agricultural Sciences
(Guangzhou, China). The circling waterflow rate in each aquarium
was maintained at 1.5 L/min. Fish (1.26 ± 0.01 g) were randomly
stocked into fifteen 330-L cylindrical fiberglass tanks (the water
volume was 300 L) at 40 fish per tank in triplicate. Fish were fed 2
times per day at 8:30 and 18:30 to apparent satiation. The uneaten
feed was collected to calculate total consumption. The amounts of
diets consumed by the fish in each tank were recorded daily, and
adjusted according to the amounts consumed the day before. The
water source was drawn from underground and one-third of the
water in the tank was exchanged weekly. Aeration was also pro-
vided to maintain enough dissolved oxygen. Water samples were
collected twice a week for chemical analysis. During the 56-
d feeding trial, natural water temperature ranged from 28 to 32
�C, pH 7.4 to 7.9, ammonia �0.02 mg/L, nitrite �0.2 mg/L and



Table 1
Formulation and proximate composition of experimental diets (g/kg, DM basis).

Item Dietary SB1 supplementation

0 mg/kg 250 mg/kg 500 mg/kg 1,000 mg/kg 2,000 mg/kg

Ingredients
Peru fish meal2 250.0 250.0 250.0 250.0 250.0
Soybean meal2 300.0 300.0 300.0 300.0 300.0
Rapeseed meal2 90.0 90.0 90.0 90.0 90.0
Corn gluten meal2 60.0 60.0 60.0 60.0 60.0
Wheat flour2 223.0 223.0 223.0 223.0 223.0
Menhaden oil2 25.0 25.0 25.0 25.0 25.0
Soybean oil2 25.0 25.0 25.0 25.0 25.0
Vitamin premix3 1.0 1.0 1.0 1.0 1.0
Mineral premix4 5.0 5.0 5.0 5.0 5.0
Ca(H2PO4)22 15.0 15.0 15.0 15.0 15.0
Vitamin C ester2 1.0 1.0 1.0 1.0 1.0
Choline chloride2 3.0 3.0 3.0 3.0 3.0
Microcrystalline Cellulose2 2.0 1.75 1.5 1.0 0
SB 0.0 0.25 0.5 1.0 2.0

Proximate nutrition composition
Crude protein 426 423 420 425 422
Crude lipid 90.1 87.7 90.1 85.6 84.5
Ash 82.5 81.9 81.9 83.0 84.2
Moisture 77.9 86.9 85.7 80.7 81.8

SB ¼ sodium butyrate.
1 Provided by SigmaeAldrich, MO, USA. The actual SB concentrations were 0.0 (control), 158.1, 314.7, 612.3 and 1,193.5 mg/kg diet, which were determined by high-

performance liquid chromatography (HPLC) (Liu et al., 2014).
2 Provided by Guangzhou Fishtech Fisheries Science & Technology Co., Ltd (Guangzhou, China).
3 One kilogram of vitamin premix contained the following: vitamin A 3,200,000 IU, vitamin B1 4 g, vitamin B2 8 g, vitamin B6 4.8 g, vitamin B12 0.016 g, vitamin D 1,600,000

IU, vitamin E 16 g, vitamin K 4 g, nicotinic acid 28 g, calcium pantothenate 16 g, folic acid 1.28 g, inositol 40 g, biotin 0.064 g, wheat middling, 876.84 g. Moisture �10%.
4 One kilogram of mineral premix contained the following: MgSO4$H2O 12 g, Ca(IO3)2 9 g, KCl 36 g, Met-Cu 1.5 g, ZnSO4$H2O 10 g, FeSO4$H2O 1 g, Met-Co 0.25 g, NaSeO3

0.0036 g, zeolite 930.25 g. Moisture �10%.

H. Zhao, G. Wang, H. Wang et al. Animal Nutrition 7 (2021) 539e547
dissolved oxygen >6.0 mg/L. The experimental units were under a
natural light and dark cycle (approximately 12 h light:12 h dark).

2.3. Sample collection and analysis

After a fasting period of 24 h, fish in each tank were individually
weighed and counted at the end of the feeding trial. Prior to sam-
pling, fish were anesthetized in tricaine methane sulfonate (120
mg/L). Ten fish before the experiment and 5 fish at the end of the
experiment per tank were obtained to determinate the initial and
final whole-body composition, respectively. The intestine, hepato-
pancreas and stomach of 6 fish per tank were collected and frozen
in liquid nitrogen, then stored at �70 �C until analysis. Another 3
fish per tank were randomly selected to measure hepatosomatic
index (HSI) and intestine somatic index (ISI).

Thewhole intestine, hepatopancreas and stomach samples from
each tank were homogenized in ice-cold physiological saline so-
lution and centrifuged at 6,000 � g at 4 �C for 20 min. The super-
natant was stored at �70 �C for analysis of protein and enzyme
activities. The protein concentrations of homogenates were deter-
mined by the method of Bradford (1976).

The moisture, crude protein, crude lipid and ash contents in the
diets and whole body of fish were determined according to the
Association of Official Analytical Chemists (Association of Official
Analytical Chemists (AOAC), 1995). Moisture was determined by
drying the samples to a constant weight at 105 �C. Crude protein (N
� 6.25) was determined by the Kjeldahl method using a semi-
automatic Kjeldahl System after acid digestion. Crude lipid was
determined by using the Soxhlet extraction method. Crude ash was
determined after burning at 550 �C in a muffle furnace. Commercial
kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China)
were used to determine intestine enzyme activities of protease,
lipase, amylase, alkaline phosphatase (AKP), g-glutamyl trans-
peptidase (g-GT), creatine kinase (CK) and Naþ/Kþ-ATPase,
following the corresponding manufacturer's instructions.
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Three fish per tank were randomly sampled and dissected to
obtain the proximal intestine (1 cm after the stomach), mid intes-
tine and distal intestine (1 cm before the anus) according to the
method described by Anguiano et al. (2013). The samples were
dissected and fixed immediately in the 4% buffered formalin solu-
tion for 24 h, and then transferred to 70% ethanol. Subsequently, the
tissues were sliced, embedded in paraffin and processed via stan-
dard hematoxylin and eosin staining (Cheng et al., 2011). Exami-
nation was done by light microscopy (Eclipse E100, Tokyo, Japan)
with a photomicrograph attached to a computer with Image-Pro
Plus 6 software (Media Cybernetics, Maryland, USA). Image
collection, slices measurement (n¼ 9) and each slice (n¼ 8) for fold
height and muscular thickness were determined.

2.4. RNA extraction and real-time quantitative PCR analysis

Total RNA was extracted from the intestine and hepatopancreas
according to the Trizol protocols (Invitrogen, USA). Total RNA was
incubated with RNase-free DNase (Dalian Takara Co. Ltd., China) to
remove the contaminating genomic DNA. Then, the quality and
quantity were assessed using agarose gel (1.2%) electrophoresis and
spectrophotometric (a 260:280 nm ratio) analysis, respectively. The
RNA was then reverse transcribed to cDNA using PrimeScript RT re-
agent kit (Takara, Japan). The real-time quantitative PCR (RT-qPCR)
was performed in an ABI 7500 Real-Time PCR machine (Applied
Biosystems, USA). The amplificationwas performed in a final volume
of 20 mL containing 1 mL cDNA product, 10 mL SYBR Premix ExTaq II
(Takara, Japan), 0.4 mL of each respective primer, and 8.2 mL dH2O.
Primers (shown in Table 2) for TOR and lipoprotein lipase (LPL) were
designed using primer 5.0 (PREMIER Biosoft International, Palo Alto,
CA, USA) based on the sequences obtained from the published se-
quences of yellow catfish. A melting curve analysis was generated
following the amplification to check and verify the specificity of RT-
qPCR products. Beta-actin was used as a housekeeping gene to
normalize target gene transcript levels. The target and housekeeping



Table 2
Primers used in real-time quantitative PCR.

Target GenBank ID Forward primer (50- 30) Reverse primer (50- 30)

TOR KY072931 GTGAAGGACCTGACTCAAGCC TGATAGACTGGATGCGTATGATTGG
LPL JX992743 GACCAGAGAGATGATGCCGT TAGCTTAGCTGGCTCTTGCTG
b-Actin XM027148463 TTCGCTGGAGATGATGCT CGTGCTCAATGGGGTACT

TOR ¼ target of rapamycin; LPL ¼ lipoprotein lipase.
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gene amplification efficiency were calculated according to the spe-
cific gene standard curves generated from 10-fold serial dilutions.
After verifying that the primers amplified with an efficiency of
approximately 100%, the 2�DDCTmethodwas used for calculating the
expression results according to Livak and Schmittgen (2001).

2.5. Statistical analysis

Statistical analyses were carried out using the SPSS version 20.0
software package (SPSS Inc., Chicago, IL, USA). All data were sub-
jected to the homogeneity of variance tests before one-way ANOVA
and a multiple range test (Tukey's test) was used. The significance
criterion was P < 0.05. Data were presented as means ± SD.

3. Results

3.1. Growth performance

Weight gain (WG), specific growth rate (SGR), feed conversion
ratio (FCR) and survival rate (SR) are presented in Table 3. The WG,
SGR and FCR were affected by the dietary SB levels (P < 0.05). There
was a significant increase in WG in 500 mg/kg SB group compared
with that of the control (P < 0.05). Fish in 500 and 1,000 mg/kg SB
groups showed a significantly higher SGR and a significantly lower
FCR than that of control (P < 0.05). The SRwas not influenced by the
inclusion of SB in the diets (P > 0.05).

3.2. Enzyme activities in stomach, hepatopancreas and intestine

Protease, trypsin, lipase, amylase, AKP, g-GT (g-glutamyl trans-
peptidase), CK (creatine kinase) and Naþ/Kþ-ATPase activities are
shown in Tables 4 and 5. Lipase activity of stomach in SB groups was
significantly higher than that in the control group (P < 0.05). Trypsin
activity in hepatopancreas of fish in 500 and 1,000 mg/kg SB groups
Table 3
Effects of different levels of sodium butyrate (SB) supplementation on growth performan

Item Dietary SB supplementation

0 mg/kg 250 mg/kg

WG2, g 11.61 ± 0.57a 12.56 ± 1.24ab

SGR3, %/day 4.16 ± 0.08a 4.28 ± 0.15ab

FCR4 1.20 ± 0.04b 1.08 ± 0.09ab

SR5, % 92.50 ± 4.33a 95.83 ± 1.44a

PRV6, % 25.48 ± 1.75a 29.99 ± 3.10b

LRV7, % 56.44 ± 3.79a 69.55 ± 4.75b

CaRV8, % 47.71 ± 5.51a 55.48 ± 9.34ab

PhRV9, % 52.12 ± 2.28a 62.51 ± 10.45abc

WG ¼ weight gain; SGR ¼ specific growth rate; FCR ¼ feed conversion ratio; SR ¼ surviv
retention value; PhRV ¼ phosphorus retention value.
a, b, c Within a row, means with different superscripts represent significant difference by

1 Initial fish average weight ¼ 1.26 ± 0.01 g; initial fish whole-body composition (% w
2 WG (g) ¼ Final weight (g) � Initial weight (g).
3 SGR (%/day) ¼ 100 � [ln (final weight) (g) � ln (initial weight) (g)]/Number of days.
4 FCR ¼ Dry diet fed (g)/Wet weight gain (g).
5 SR (%) ¼ 100 � (Finial number of fish)/(Initial number of fish).
6 PRV (%) ¼ 100 � [Final weight (g) � Final fish protein (%) � Initial weight (g) � Initi
7 LRV (%) ¼ 100 � [Final weight (g) � Final fish lipid (%) � Initial weight (g) � Initial
8 CaRV (%) ¼ 100 � [Final weight (g) � Final fish calcium (%) � Initial weight (g) � In
9 PhRV (%) ¼ 100 � [Final weight (g) � Final fish phosphorus (%) � Initial weight (g) �
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was significantly higher as compared with that in control and 250
mg/kg SB groups (P < 0.05). Lipase activity in intestine of fish in
1,000mg/kg SB groupwas significantly higher than that in control (P
< 0.05). There was a significant increase of intestinal AKP activity in
500 and 1,000 mg/kg SB groups compared with that of control and
2,000 mg/kg SB groups (P < 0.05). The activity of g-GT in intestine of
fish in 1,000 and 2,000 mg/kg SB groups was higher as compared
with that in control (P < 0.05). The activities of protease in stomach,
trypsin, CK and Naþ/Kþ-ATPase in intestine, lipase in hepatopan-
creas, amylase in stomach, hepatopancreas and intestine were not
influenced by the inclusion of SB in the diets (P > 0.05).
3.3. Hepatopancreas and intestine morphometric parameters

Hepatopancreas and intestine morphometric parameters are
shown in Table 6. Intestine somatic index in 500, 1,000 and 2,000
mg/kg SB groups was significantly higher as compared with control
and 250 mg/kg groups (P < 0.05). Intestine length index (ILI), in-
testinal protein content (IPC) and hepatopancreatic protein content
(HPC) in 1,000 mg/kg SB group were significantly higher as
compared with those in control (P < 0.05). There was a significant
increase of fold height in proximal intestine (PI) in 500 and 1,000
mg/kg SB groups comparedwith that of control (P< 0.05). Muscular
thickness in PI was significantly higher in 500 mg/kg SB group than
that in control (P < 0.05). Significantly higher values of fold height
and muscular thickness in distal intestine (DI) were observed in
250, 500 and 1,000 mg/kg SB groups (P < 0.05).
3.4. Whole body composition and nutrition retention value

Dry matter, crude protein, crude lipid, ash, calcium and phos-
phorus contents are shown in Table 7. Significantly higher contents
of crude protein and phosphorus were observed in the 1,000 mg/kg
SB group compared to those in control and 2,000 mg/kg SB groups
ce and nutrition retention of juvenile yellow catfish.1

500 mg/kg 1,000 mg/kg 2,000 mg/kg

13.36 ± 0.22b 13.08 ± 0.56ab 12.46 ± 0.88ab

4.38 ± 0.03b 4.35 ± 0.06b 4.27 ± 0.11ab

1.03 ± 0.01a 0.99 ± 0.09a 1.13 ± 0.13ab

92.50 ± 5.00a 91.67 ± 8.04a 94.17 ± 2.89a

30.44 ± 2.23b 31.98 ± 1.24b 27.66 ± 2.72ab

66.75 ± 1.16b 65.28 ± 5.15b 68.21 ± 7.05b

56.48 ± 2.82ab 64.61 ± 2.61b 49.48 ± 2.31a

65.34 ± 4.94bc 70.59 ± 6.46c 56.29 ± 6.16ab

al rate; PRV ¼ protein retention value; LRV ¼ lipid retention value; CaRV ¼ calcium

Tukey's test (P < 0.05). Data presented are means ± SD of 3 replicates.
et weight): protein, 15.13; lipid, 3.29; calcium, 1.43; phosphorus, 0.92.

al fish protein (%)]/[Feed intake (g) � Feed protein (%)].
fish lipid (%)]/[Feed intake (g) � Feed lipid (%)].
itial fish calcium (%)]/[Feed intake (g) � Feed calcium (%)].

Initial fish phosphorus (%)]/[Feed intake (g) � Feed phosphorus (%)].



Table 4
Effects of different levels of sodium butyrate (SB) supplementation on digestive enzymes activities in stomach, hepatopancreas and intestine of yellow catfish.

Item Dietary SB supplementation

0 mg/kg 250 mg/kg 500 mg/kg 1,000 mg/kg 2,000 mg/kg

Stomach
Protease, U/g protein 15.50 ± 1.19a 15.00 ± 3.06a 14.39 ± 1.70a 19.05 ± 0.46a 15.56 ± 3.96a

Lipase, U/g protein 33.19 ± 2.45a 39.74 ± 3.11b 42.39 ± 4.23b 44.63 ± 4.31b 42.03 ± 0.53b

Amylase, U/mg protein 0.64 ± 0.13a 0.80 ± 0.25a 0.62 ± 0.02a 0.65 ± 0.13a 0.67 ± 0.04a

Hepatopancreas
Trypsin, U/g protein 171.6 ± 14.31a 181.8 ± 15.12a 231.0 ± 30.40b 239.9 ± 16.21b 203.8 ± 24.78ab

Lipase, U/g protein 8.19 ± 0.31a 9.97 ± 1.20a 8.51 ± 0.31a 9.00 ± 0.90a 9.05 ± 1.72a

Amylase, U/mg protein 0.64 ± 0.10a 0.81 ± 0.16a 0.67 ± 0.06a 0.64 ± 0.12a 0.81 ± 0.24a

Intestine
Trypsin, U/g protein 389.9 ± 31.69a 421.1 ± 69.18a 423.8 ± 68.27a 429.4 ± 58.45a 419.9 ± 42.23a

Lipase, U/g protein 17.85 ± 1.25a 19.30 ± 1.93a 22.80 ± 3.13ab 24.63 ± 1.49b 21.07 ± 3.89ab

Amylase, U/mg protein 1.62 ± 0.07a 1.38 ± 0.26a 1.55 ± 0.06a 1.60 ± 0.27a 1.47 ± 0.05a

a, b Within a row, means with different superscripts represent significant difference by Tukey's test (P < 0.05). Data presented are means ± SD of 3 replicates.

Table 5
Effects of different levels of sodium butyrate (SB) supplementation on intestinal brush-border membrane enzymes activities of yellow catfish (U/mg protein).

Item Dietary SB supplementation

0 mg/kg 250 mg/kg 500 mg/kg 1,000 mg/kg 2,000 mg/kg

AKP 78.68 ± 10.92a 96.33 ± 10.50ab 119.05 ± 18.99b 105.72 ± 6.83b 81.35 ± 10.03a

g-GT 16.13 ± 1.85a 19.13 ± 1.57ab 18.26 ± 2.14ab 21.12 ± 1.86bc 24.14 ± 3.40c

CK 0.40 ± 0.03a 0.38 ± 0.02a 0.42 ± 0.08a 0.41 ± 0.07a 0.36 ± 0.04a

Naþ/K þ -ATPase 3.64 ± 0.81a 3.49 ± 0.61a 4.02 ± 0.93a 4.39 ± 0.68a 3.91 ± 0.66a

AKP ¼ alkaline phosphatase; g-GT ¼ g-glutamyl transpeptidase; CK ¼ creatine kinase; Naþ/Kþ-ATPase ¼ sodiumepotassium adenosine triphosphatase.
a, b, c Within a row, means with different superscripts represent significant difference by Tukey's test (P < 0.05). Data presented are means ± SD of 3 replicates.

Table 6
Effects of different levels of sodium butyrate (SB) supplementation on morphology and nutrient content of intestine and hepatopancreas of yellow catfish.

Item Dietary SB supplementation

0 mg/kg 250 mg/kg 500 mg/kg 1,000 mg/kg 2,000 mg/kg

ILI1 0.81 ± 0.08a 0.83 ± 0.09ab 0.84 ± 0.08ab 0.88 ± 0.06b 0.83 ± 0.07ab

ISI2, % 1.88 ± 0.26a 1.90 ± 0.30a 2.18 ± 0.56b 2.34 ± 0.44b 2.18 ± 0.33b

IPC3, % 4.13 ± 0.34a 4.47 ± 0.41a 4.72 ± 0.37ab 5.43 ± 0.72b 4.52 ± 0.47ab

HSI4, % 1.77 ± 0.26a 1.96 ± 0.32a 1.84 ± 0.25a 1.88 ± 0.36a 1.89 ± 0.37a

HPC5, % 7.87 ± 0.27a 7.98 ± 0.55ab 8.26 ± 0.65ab 8.79 ± 0.36b 8.38 ± 0.30ab

Fold height, mm
PI 438.49 ± 26.64a 535.53 ± 57.52ab 580.30 ± 47.15b 600.67 ± 33.26b 512.99 ± 81.82ab

MI 280.34 ± 38.49a 346.78 ± 45.66a 351.76 ± 38.47a 313.57 ± 30.67a 314.46 ± 26.37a

DI 251.72 ± 30.27a 303.91 ± 19.29b 321.35 ± 30.46b 327.42 ± 27.99b 281.77 ± 21.63ab

Muscular thickness, mm
PI 91.32 ± 18.97a 102.31 ± 6.87ab 124.19 ± 11.40b 106.53 ± 7.49ab 107.356 ± 9.38ab

MI 52.06 ± 9.52a 63.52 ± 10.53a 58.82 ± 9.73a 64.51 ± 7.71a 54.38 ± 13.43a

DI 54.75 ± 6.20a 75.77 ± 12.03b 70.36 ± 7.528b 72.81 ± 6.95b 62.94 ± 6.68ab

ILI¼ intestine length index; ISI¼ intestine somatic index; IPC¼ intestinal protein content; HSI¼ hepatosomatic index; HPC¼ hepatopancreatic protein content; PI¼ proximal
intestine; MI ¼ mid intestine; DI ¼ distal intestine.
a, b Within a row, means with different superscripts represent significant difference by Tukey's test (P < 0.05). Data presented are means ± SD of 3 replicates.

1 ILI ¼ Intestine length (cm)/Total body length (cm).
2 ISI (%) ¼ 100 � Intestine weight (g)/Body weight (g).
3 IPC (%) ¼ 100 � Intestine protein (g)/Intestine weight (g).
4 HSI (%) ¼ 100 � Hepatopancreas weight (g)/Body weight (g).
5 HPC (%) ¼ 100 � Hepatopancreas protein (g)/Hepatopancreas weight (g).

Table 7
Effects of different levels of sodium butyrate (SB) supplementation on whole body composition of juvenile yellow catfish (% wet weight).

Item Dietary SB supplementation

0 mg/kg 250 mg/kg 500 mg/kg 1,000 mg/kg 2,000 mg/kg

Dry matter 25.22 ± 0.47a 25.01 ± 0.14a 24.98 ± 0.34a 25.38 ± 0.65a 25.24 ± 0.19a

Crude protein 14.16 ± 0.26a 14.38 ± 0.22ab 14.41 ± 0.27ab 14.91 ± 0.22b 14.16 ± 0.20a

Crude lipid 6.29 ± 0.11a 6.71 ± 0.32ab 6.39 ± 0.24ab 6.16 ± 0.35a 6.98 ± 0.18b

Ash 2.81 ± 0.21a 2.88 ± 0.20ab 2.99 ± 0.19ab 3.21 ± 0.12b 2.92 ± 0.18ab

Calcium 0.79 ± 0.05a 0.78 ± 0.03a 0.79 ± 0.05a 0.87 ± 0.02b 0.76 ± 0.04a

Phosphorus 0.53 ± 0.02a 0.45 ± 0.03ab 0.55 ± 0.03ab 0.59 ± 0.04b 0.52 ± 0.03a

a, b Within a row, means with different superscripts represent significant difference by Tukey's test (P < 0.05). Data presented are means ± SD of 3 replicates.
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(P < 0.05). Crude lipid content in the control and 1,000 mg/kg SB
groups were significantly lower than that in 2,000 mg/kg SB group
(P < 0.05). Ash in 1,000 mg/kg SB group was higher as compared
with control (P < 0.05). Calcium content in 1,000 mg/kg SB group
was higher as compared with those in other groups (P < 0.05). Dry
matter was not influenced by the inclusion of SB in the diets (P >
0.05).

Dietary SB levels had a significant effect on protein, lipid,
calcium and phosphorus retention in the whole body of juvenile
yellow catfish (P < 0.05) (Table 1). A significantly higher value of
protein retention was observed in 250, 500 and 1,000 mg/kg SB
groups (P < 0.05). Lipid retention in 250, 500, 1,000 and 2,000
mg/kg SB groups was significantly higher as compared with
control (P < 0.05). Calcium retention in 1,000 mg/kg SB group
was significantly higher as compared with those in control and
2,000 mg/kg SB groups (P < 0.05). Phosphorus retention in 500
and 1,000 mg/kg SB groups was significantly higher than that in
control (P < 0.05).
3.5. Relative expression of TOR and LPL in intestine and
hepatopancreas

Relative expression of TOR and LPL mRNA in intestine and
hepatopancreas are shown in Fig. 1. Relative mRNA levels of in-
testinal TOR in 500, 1,000 and 2,000 mg/kg SB groups were
significantly up-regulated (P < 0.05). Relative mRNA levels of in-
testinal LPL and hepatopancreas TOR were significantly up-
Fig. 1. Effects of different levels of sodium butyrate (SB) supplementation on relative
expressions of (A) TOR and (B) LPL genes in intestinal tissue of juvenile yellow catfish.
TOR ¼ target of rapamycin; LPL ¼ lipoprotein lipase. a, b, c, d Bars with different su-
perscripts represent significant difference by Tukey's test (P < 0.05). Data presented are
means ± SD of 3 replicates.
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regulated and the values were higher in 500 mg/kg SB group as
compared with those in other groups (P < 0.05). The relative mRNA
level of hepatopancreas LPL was significantly up-regulated and
higher in the 2,000 mg/kg SB group as compared with that in
control, 250 and 1,000 mg/kg groups (P < 0.05).

4. Discussion

4.1. Growth performance

Sodium butyratewas shown to have beneficial effects on growth
and feeding efficiencies of yellow catfish. Fish weight gain (WG)
and specific growth rate (SGR) increased with SB supplementation,
which suggested that growth performance can be improved using
SB in the diets. Growth benefit observed in this study was attrib-
uted to an improvement in feed utilization, which significantly
increased with SB supplementation. Maximum growth perfor-
mance and feed efficiency were observed at dietary SB levels of 500
and 1,000 mg/kg. The value of SGR was higher than those reported
in some previous studies on yellow catfish (Luo et al., 2016; Zhao et
al., 2017), but was lower than those observed inmore recent studies
on yellow catfish (Zhao et al., 2019). This is probably due to dif-
ferences in the initial weight of the fish in these experiments. Based
on the results of previous research, dietary supplementation of SB
at 2,000 mg/kg improved the growth or feed utilization of juvenile
grass carp (Liu et al., 2017), golden pompano (Zhou et al., 2019), and
turbot (Liu et al., 2019). However, supplementation of 200 or 2,000
mg/kg SB did not improve the growth performance and feed uti-
lization of African catfish and red hybrid tilapia (Owen et al., 2006;
Ebrahimi et al., 2017). In Atlantic salmon (Bjerkeng et al., 1999) and
rainbow trout (Gao et al., 2011), 0.5% to 2% dietary SB had no sig-
nificant effect on growth performance. Studies containing different
sustained-release times of microencapsulated SB did not demon-
strate significantly improved growth in common carp (Liu et al.,
2014). Protected forms of SB improved the biomass gain of Nile
tilapia fingerlings during sexual reversion, but there was no sig-
nificant difference betweenpure and protected forms of SB (Jesus et
al., 2019a). This suggests that there is a doseeeffect response in SB
and growth performance. Therefore, the efficacy of SB to fish is
mainly dependent on the dosage and protected form as well as
species.

4.2. Enzyme activities in stomach, hepatopancreas and intestine

The activities of digestive enzymes are generally associated
with digestive capacity and affect fish growth rate (Krogdahl and
Marie Bakke-McKellep, 2005). In this study, SB improved lipase
activity in stomach and intestine, as well as the trypsin activity in
hepatopancreas of yellow catfish. Similar results were reported
for golden pompano in which intestinal digestive enzyme activity
was increased by 2,000 mg/kg SB in diets (Zhou et al., 2019). Silva
et al. (2016) found that diets supplemented with 2% SB increased
intestinal lipase of white prawns as compared with the non-
supplemented group. However, Jesus et al. (2019b) supple-
mented Nile tilapia with different forms and concentrations of SB
and found no change in intestinal digestive enzymes activities of
fish. The variation among results may be due to the forms and
concentrations of SB used, structural characteristics of digestive
organs, variations in the types of enzymes and experimental
conditions (Yao et al., 2019). Absorption of nutrients is affected
by the brush-border membrane enzymes of the intestine, such
as AKP, Naþ/Kþ-ATPase and CK (Tibaldi et al., 2006). In golden
pompano, diets supplemented with SB increased intestinal AKP,
CK and Naþ/Kþ-ATPase activities (Zhou et al., 2019). In the
present study, an increase of intestinal AKP and g-GT activities
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was observed in yellow catfish fed with SB diets. SB enhanced
intestinal enzymes activities of yellow catfish possibly partly
due to its slight acidifying properties (Castillo et al., 2014; Silva
et al., 2016).

4.3. Hepatopancreas and intestine morphometric parameters

The improvement of intestinal enzyme activities of fish fed
with SB diets might be attributed to the integrity and growth of
digestive organs. In Jian carp (C. carpio var. Jian) and white
shrimp (Penaeus setiferus), digestive enzymes activity was
correlated with growth and development of the hepatopancreas
(Chen et al., 2012; Lovett and Felder, 1990). The present study
showed that the weight and protein content of hepatopancreas
had a similar trend to digestive enzyme activity, indicating there
was a beneficial effect of SB on the hepatopancreas. Similarly, HSI
was increased as dietary SB levels increased in golden pompano
(Zhou et al., 2019). The intestine is the main site for nutrient
absorption in fish. An increase in intestine length, weight and
protein content was observed in fish fed with SB diets, indicating
that SB promoted intestinal growth of yellow catfish. In Nile
tilapia, protected forms of SB increased length, perimeter and
villus area of the proximal intestine (Jesus et al., 2019b). In this
study, dietary SB increased fold height and muscular thickness of
proximal and distal intestine in yellow catfish. The observed in-
crease in fold height and muscular thickness would presumably
be conducive to increased absorption in the intestine of yellow
catfish as in Jian carp (Chen et al., 2012). This finding was
consistent with the corresponding feed conversion rate, weight
gain and nutrient retention in yellow catfish fed with SB diets.
Therefore, well-developed intestine, as those observed in this
study for yellow catfish fed SB diets, correlates well with an
improved nutrient uptake which was illustrated by significantly
improved feed efficiency and final weight.

4.4. Chemical composition of whole fish and nutrition retention
value

In the present study, whole-body composition and nutrient
retention of yellow catfish were affected by dietary SB levels.
Significantly higher levels of crude protein, ash, calcium, phos-
phorus in whole body and the retention of protein, lipid, calcium
and phosphorus were found in fish fed with 1,000 mg/kg SB diet.
Dietary SB is an important energy source for intestinal epithelial
cells (Piva et al., 2009). An increase of whole-body crude protein
and lipid contents in fish fed with SB diets may be attributed to SB's
energy-supplying effect for animal metabolism, and it is not
necessary to use more protein as an energy source (Jesus et al.,
2019b). Thus, SB can spare the protein to ensure its use for fish
growth (Lee, 2015). The increase in retention of calcium and
phosphorus may be related to nutrient digestibility. Lin and Cheng
(2017) suggested that 1% dietary butyrate increased the calcium
and phosphorus digestibility in groupers. The respective addition of
5% and 3% dietary citric acid improved the absorption of calcium
and phosphorus in rainbow trout (Sugiura et al., 2001) and Indian
major carp (Baruah et al., 2005). Dietary SB may solubilize bone
minerals in fish meal and reduce the antagonistic interaction be-
tween calcium and phosphorus at the intestinal brush border
(Sugiura et al., 1998; Baruah et al., 2007).

4.5. Relative expression of TOR and LPL in intestine and
hepatopancreas

Protein synthesis is a key component of fish growth. The present
study showed that protein content in hepatopancreas, intestine and
545
wholebody increasedwithdietary SB, indicating the improvementof
protein synthesis and nitrogen deposition. The TOR signaling
pathway is involved in the cell growth andproliferationby regulating
protein synthesis (Hay and Sonenberg, 2004). The relationship be-
tween nutrition retention and TOR signaling pathway has been re-
ported in fish (Liang et al., 2016;Wu et al., 2019). However, the effect
of SB onTOR signalingpathwayoffishhasnot been reported. Relative
expression of TOR mRNA in intestine and hepatopancreas was
significantlyup-regulatedbydietary SB in this study,which indicated
a similar trend with whole-body protein content of yellow catfish.
This suggested that dietary SBmight activate TOR signaling pathway,
which improved protein synthesis of yellow catfish. SB could pro-
mote the proliferation of enterocytes and increase the expressions of
intestinal total binding proteins by enlarging the absorption surface
of the intestine (Scholzahrens et al., 2007). Liu et al. (2017) reported
that butyrate could increase protein absorption by upregulation of
the mRNA expression of intestinal amino acid transporters in grass
carp. Butyrate, providing an energy source for animals, is a signaling
molecule regulating animal energymetabolism (Samuel et al., 2008;
Yu et al., 2017). To date, reports concerning the effect of SB on lipid
metabolism of fish are scarce. In piglets, butyrate has been shown to
promote differentiation and metabolic adaptations of adipocytes by
down-regulating fatty acid synthesis genes and up-regulating fatty
acid oxidation genes (Li et al., 2014; Lu et al., 2012). Although lipid
metabolism of pigs was regulated in vivo or in vitro by SB, the effects
of SB in fish have not been reported. Lipoprotein lipase is an impor-
tant lipid regulatory enzyme involving hydrolyzing triglyceride of
plasma lipoproteins and supplying free fatty acids for storage in ad-
ipocytes or for oxidation in other tissues (Zheng et al., 2013). In this
study, the expression of hepatopancreas LPL was significantly up-
regulated in the 2,000 mg/kg SB group, which is in agreement with
the increase of whole-body fat in yellow catfish. This indicates that
dietary SB might have a role in increasing lipid synthesis and
decreasing hydrolysis of lipoproteins and triglyceride, and this ex-
plains the positive effects of SB onwhole body lipid deposition of the
fish. Butyrate has a direct impact on the lipid storage regulation of
porcine adipocytes through inhibiting lipolysis and enhancing fatty
acid synthesis (Yan and Ajuwon, 2015). However, Lu et al. (2012)
reported that SB might decrease fat deposition of loin muscle in vi-
tro thoughup-regulating the expressionof oxidative genes. The exact
mechanism by which SB regulates lipid metabolism of fish is still
unknown and needs further investigation.

5. Conclusions

In conclusion, dietary SB improved the growth performance,
digestive enzymes, body composition and nutrient retention of
yellow catfish. The fish fed 500 or 1,000 mg/kg SB diet significantly
increased weigh gain, feed efficiency, digestive tract health, and
crude protein, ash, calcium, and phosphorus content of the whole
body. However, a high level of SB (2,000 mg/kg) increased the lipid
content in the whole body and the lipoprotein lipase mRNA
expression in the hepatopancreas of fish. The addition of SB in diets
of P. fulvidraco in the range of 500 to 1,000 mg/kg is recommended.
This study brought new insights into the role of SB in improving
growth performance, intestinal health and nutrient retention.
Moreover, it is confidently predicted that SB could be widely used
for increasing growth performance, nutrient retention and
improving the health status of the digestive tract in other animals
and humans.
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