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Simple Summary: New clinical radiology scans using trace amounts of therapeutic cancer drugs
labeled with radioisotope injected into patients can provide oncologists with fundamentally unique
insights about drug delivery to tumors. This new application of radiology aims to improve how
cancer drugs are used, towards improving patient outcomes. The article reviews published clinical
research in this important new field.

Abstract: Translational development of radiolabeled analogues or isotopologues of small molecule
therapeutic drugs as clinical imaging biomarkers for optimizing patient outcomes in targeted
cancer therapy aims to address an urgent and recurring clinical need in therapeutic cancer drug
development: drug- and target-specific biomarker assays that can optimize patient selection,
dosing strategy, and response assessment. Imaging the in vivo tumor pharmacokinetics and
biomolecular pharmacodynamics of small molecule cancer drugs offers patient- and tumor-specific
data which are not available from other pharmacometric modalities. This review article examines
clinical research with a growing pharmacopoeia of investigational small molecule cancer drug tracers.

Keywords: theranostics; imaging biomarkers; diagnostic biomarkers; predictive biomarkers;
small molecule drugs; pharmacokinetics

1. Introduction

Imaging in vivo pharmacokinetics and drug biodistribution, using isotopologues or
radiolabeled analogues of chemically synthesized small molecule (<900 Dalton molecular weight)
pharmacotherapeutics, administered in microdose (<100 micrograms, with no pharmacologic effects),
radiotracer (delivered patient radiation absorbed doses comparable to those from standard radiologic
scans) amounts, referred herein simply as drug tracers, is much advocated and increasingly realized
in optimizing translational and early clinical phase drug development, with great potential for
personalizing cancer care [1–6] (Figure 1).

Developing new cancer drugs is a slow, expensive process that usually fails [11–13]. The need for
new target- and drug-specific pharmacometrics is recurrent and fundamental to the clinical development
of new cancer pharmacotherapeutics [14,15]. A growing pharmacopoeia of investigational drug tracers
have been clinically tested, with various degrees of qualification [1] as imaging biomarkers (Table 1).

Cancers 2020, 12, 2712; doi:10.3390/cancers12092712 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0002-1886-1832
http://www.mdpi.com/2072-6694/12/9/2712?type=check_update&version=1
http://dx.doi.org/10.3390/cancers12092712
http://www.mdpi.com/journal/cancers


Cancers 2020, 12, 2712 2 of 16
Cancers 2020, 12, x 2 of 16 

 

 

Figure 1. Drug tracer imaging of small molecule therapeutic compounds employs isotopologues or 
radiolabeled analogues. For example, I-124 PU-H71 (top right) is an isotopologue of the epichaperome 
inhibitor therapeutic compound, PU-H71 (top left), identical in molecular structure, differing only in 
the isotopic form of a constituent atom (stable iodine-127 versus the positron-emitting iodine-124) 
[7,8]. F-18 SKI-249380 (bottom right) is a radiolabeled analogue of the tyrosine kinase inhibitor 
therapeutic compound, dasatinib (bottom left). The positron-emitting fluorine-18 atom, in F-18 SKI-
249380, replaces a hydroxyl group found in dasatinib; this substitution has minimal pharmacologic 
effect, enabling F-18 SKI-249380 to be an effective drug tracer of dasatinib [9,10]. 

Developing new cancer drugs is a slow, expensive process that usually fails [11–13]. The need 
for new target- and drug-specific pharmacometrics is recurrent and fundamental to the clinical 
development of new cancer pharmacotherapeutics [14,15]. A growing pharmacopoeia of 
investigational drug tracers have been clinically tested, with various degrees of qualification [1] as 
imaging biomarkers (Table 1). 

Table 1. Selected examples of isotopologues and radiolabeled analogues developed as positron 
emission tomography (PET) imaging tracers of specific therapeutic small molecule cancer drugs, from 
published peer-reviewed research reports (abstracts available at www.pubmed.gov). Published 
literature includes numerous other small molecule radiotracers that have been tested as radiologic 
biomarkers of important oncotherapeutic targets or as companion diagnostics for radionuclide 
therapy. 

Chemotherapy 
C-11 N-[(2′-dimethylamino)ethyl]acridine-4-carboxamide (XR5000) [16] 

C-11 Temozolomide [17] 
F-18 5-Fluorouracil [18–21] 

F-18 AraG [22] 
F-18 Clofarabine [23] 

F-18 Deoxycytidine [24–28] 
F-18 Paclitaxel [29–32] 

F-18 Xeloda [33] 
Anaplastic Lymphoma Kinase (ALK) Inhibitors 

C-11 Lorlatinib [34,35] 
F-18 Lorlatinib [35] 

Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors 
C-11 Erlotinib [36–38] 

C-11 Gefitinib [39] 
C-11 Osimertinib [40] 

F-18 FEA-Erlotinib [41] 
F-18 Gefitinib [42]  

F-18 IRS [43] 
Other Tyrosine Kinase Inhibitors 

C-11 Axitinib [44] 

Figure 1. Drug tracer imaging of small molecule therapeutic compounds employs isotopologues or
radiolabeled analogues. For example, I-124 PU-H71 (top right) is an isotopologue of the epichaperome
inhibitor therapeutic compound, PU-H71 (top left), identical in molecular structure, differing only in
the isotopic form of a constituent atom (stable iodine-127 versus the positron-emitting iodine-124) [7,8].
F-18 SKI-249380 (bottom right) is a radiolabeled analogue of the tyrosine kinase inhibitor therapeutic
compound, dasatinib (bottom left). The positron-emitting fluorine-18 atom, in F-18 SKI-249380,
replaces a hydroxyl group found in dasatinib; this substitution has minimal pharmacologic effect,
enabling F-18 SKI-249380 to be an effective drug tracer of dasatinib [9,10].

Table 1. Selected examples of isotopologues and radiolabeled analogues developed as positron emission
tomography (PET) imaging tracers of specific therapeutic small molecule cancer drugs, from published
peer-reviewed research reports (abstracts available at www.pubmed.gov). Published literature includes
numerous other small molecule radiotracers that have been tested as radiologic biomarkers of important
oncotherapeutic targets or as companion diagnostics for radionuclide therapy.

Chemotherapy

C-11 N-[(2′-dimethylamino)ethyl]acridine-4-carboxamide (XR5000) [16]
C-11 Temozolomide [17]

F-18 5-Fluorouracil [18–21]
F-18 AraG [22]

F-18 Clofarabine [23]
F-18 Deoxycytidine [24–28]

F-18 Paclitaxel [29–32]
F-18 Xeloda [33]

Anaplastic Lymphoma Kinase (ALK) Inhibitors

C-11 Lorlatinib [34,35]
F-18 Lorlatinib [35]

Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors

C-11 Erlotinib [36–38]
C-11 Gefitinib [39]

C-11 Osimertinib [40]
F-18 FEA-Erlotinib [41]

F-18 Gefitinib [42]
F-18 IRS [43]
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Table 1. Cont.

Other Tyrosine Kinase Inhibitors

C-11 Axitinib [44]
C-11 CEP-32496 [45]
C-11 Lapatinib [46]

C-11 Nintedanib [44]
C-11 Sorafenib [47]
F-18 Afatinib [38]

F-18 Dabrafenib [48]
F-18 SKI249380 (Dasatinib Analogue) [9]

Epichaperome Inhibitor

I-124 PU-H71 [7,8,49]

IL2-Receptor/Cytokine

F-18 IL-2 [50]
F-18 FB-IL2v [51]

Matrix Metalloproteinase Inhibitor

C-11 (2R)-2-[[4-(6-fluorohex-1-ynyl)phenyl]sulfonylamino]-3-methylbutyric acid methyl ester [52]

Phosphatidylinositol 3-Kinase (PI3K) Inhibitor

C-11 Pictilisib (GDC-0941) [53]

PD-L1

F-18 BMS-986192 [54]

Poly(Adenosine Diphosphate Ribose) Polymerase (Parp) Inhibitor

F-18 Fluorthanatrace [55]

Extensive published research indicates the potentially revolutionary impact of drug tracer imaging
as a fundamentally new kind of pharmacometric modality, offering unique, high-impact, patient-,
tumor-, and drug-specific in vivo data that can both optimize patient outcomes and economize drug
development [56]. National organizations are working to facilitate validation of these and other
radiologic biomarkers for the future of patient care [1,3,57–62].

The vast majority of published drug tracer research has focused on positron emission tomography
(PET) imaging, which can detect picomolar amounts of radiolabeled drug in tissues in vivo [63,64].
In this article, we focus on clinical research with drug tracers developed as drug-specific companion
diagnostics for cancer therapy, e.g., 18F-5-fluorouracil, a drug tracer studied for the chemotherapeutic
small molecule drug 5-fluorouracil [19]. We discuss the potential of drug tracer imaging to optimize
patient selection, dosing strategy, and pharmacometrics in targeted cancer therapy with small molecule
drugs in ways that conventional biomarker modalities cannot [14,15,65].

2. What Does Tumor Signal on a Drug Tracer Image Signify?

Medical imaging with drug tracers and other radiotracers typically seeks to detect high tumor
signal, relative to background or other reference tissues, commonly termed avidity (Figure 2). Avidity,
on imaging, is a net result of biologic factors affecting drug influx, efflux, and retention in tumors [65,66]
and of tracer in vivo radiopharmacology (including effective half-life) and imaging technology [67]
that affect the detectability of tumor avidity on imagery. Tumor avidity for drug tracers often depends
upon strong drug-target binding, i.e., irreversible or slow drug-target dissociation (kOFF). Types of
drugs with rapidly reversible drug–receptor binding might not be able to produce a simple tumor
avidity “hotspot” signal useful in routine radiology practice as diagnostic or predictive biomarkers,
instead requiring more complex image acquisitions and data analyses [63].
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Figure 2. Drug tracer imaging detects in vivo tumor avidity for therapeutic small molecule 
compounds. Axial CT (top) and PET/CT fusion (bottom) images from 57-year-old female with clear 
cell carcinoma of Müllerian origin, including biopsied malignant pulmonary mass (arrow). PET/CT 
image obtained 24 h after injection with I-124 PU-H71 radiotracer, an isotopologue of the 
epichaperome inhibitor therapeutic compound PU-H71. PET demonstrates marked retention of drug 
by tumor, after drug has cleared from blood circulation (e.g., cardiac blood pool, asterisk). 

Tumor avidity can be a diagnostic imaging biomarker of the molecular target to which the drug 
tracer binds in vivo. Tumor avidity for the isotopologue I-124 PU-H71 is a well-credentialed imaging 
biomarker of tumor epichaperome formations [49,68]. Epichaperomes are hyperconnected, 
integrated functional networks of chaperome units, induced by cellular stress as associated with 
malignancy [49,68–70]. For drugs with multiple molecular targets, tumor avidity might have in vivo 
specificity as a diagnostic biomarker of one drug target if a particular cancer assayed predominantly 
expresses one target [9,71]. 

Absence of tumor avidity (non-avidity) can indicate that the tumor does not express the 
molecular target or that other in vivo factors prevent the drug tracer from reaching and/or binding 
to the target [72]. For example, in vivo tumor avidity for F-18 paclitaxel varies inversely with tumor 
expression of the multidrug resistance (MDR) drug efflux pump; higher tumor F-18 paclitaxel avidity 
is associated with higher in vivo tumor drug sensitivity [30]. 

3. Drug Tracer Imaging to Guide Patient Selection 

Establishing tumoral target expression is key for rational patient selection for a targeted 
therapeutic drug. Biopsy-based histologic assay is the conventional gold standard diagnostic 
biomarker of target expression, but small clinical studies suggest that drug tracer imaging can be a 
superior predictive biomarker of drug efficacy [30,72]. 

Figure 2. Drug tracer imaging detects in vivo tumor avidity for therapeutic small molecule compounds.
Axial CT (top) and PET/CT fusion (bottom) images from 57-year-old female with clear cell carcinoma of
Müllerian origin, including biopsied malignant pulmonary mass (arrow). PET/CT image obtained 24 h
after injection with I-124 PU-H71 radiotracer, an isotopologue of the epichaperome inhibitor therapeutic
compound PU-H71. PET demonstrates marked retention of drug by tumor, after drug has cleared from
blood circulation (e.g., cardiac blood pool, asterisk).

Tumor avidity can be a diagnostic imaging biomarker of the molecular target to which the
drug tracer binds in vivo. Tumor avidity for the isotopologue I-124 PU-H71 is a well-credentialed
imaging biomarker of tumor epichaperome formations [49,68]. Epichaperomes are hyperconnected,
integrated functional networks of chaperome units, induced by cellular stress as associated with
malignancy [49,68–70]. For drugs with multiple molecular targets, tumor avidity might have in vivo
specificity as a diagnostic biomarker of one drug target if a particular cancer assayed predominantly
expresses one target [9,71].

Absence of tumor avidity (non-avidity) can indicate that the tumor does not express the molecular
target or that other in vivo factors prevent the drug tracer from reaching and/or binding to the target [72].
For example, in vivo tumor avidity for F-18 paclitaxel varies inversely with tumor expression of the
multidrug resistance (MDR) drug efflux pump; higher tumor F-18 paclitaxel avidity is associated with
higher in vivo tumor drug sensitivity [30].

3. Drug Tracer Imaging to Guide Patient Selection

Establishing tumoral target expression is key for rational patient selection for a targeted therapeutic
drug. Biopsy-based histologic assay is the conventional gold standard diagnostic biomarker of target
expression, but small clinical studies suggest that drug tracer imaging can be a superior predictive
biomarker of drug efficacy [30,72].
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Our group developed a radiolabeled analog of the therapeutic tyrosine kinase inhibitor dasatinib [9]
for PET imaging. Tumor resistance to dasatinib can involve altered tumor pharmacokinetics [73–79].
Resistant tumors may actively remove dasatinib (e.g., by efflux pumps) [73–75] or have mutations in
kinase targets that prevent dasatinib binding [73–75,80].

Imaging with radiolabeled octreotide fails to detect somatostatin receptor (SSTR) expression in
some tumors, but for tumors overexpressing SSTR, on histology, octreotide tracer avidity appears to
stratify tumor responses to octreotide therapy [81,82].

The tyrosine kinase inhibitor erlotinib binds to epidermal growth factor receptor (EGFR) exon
19 deletions or exon 21 (L858R) substitution mutations, called sensitizing mutations, affecting the
erlotinib binding site. Bahce et al. demonstrated that tumors with sensitizing mutations concentrate
[C-11]-erlotinib better than tumors lacking those key mutations—despite equivalent EGFR protein
expression—with non-avid tumors progressing more quickly [36].

Tumor avidity for F-18 radiolabeled paclitaxel analogue (FPAC) correlated with in vitro paclitaxel
sensitivity in animal models [83] and appeared to correlate with in vivo tumor sensitivity in a small
group of human subjects [30,84].

For novel therapeutic drugs that target based upon kinetic selectivity, a simple tissue-based
(e.g., immunohistochemistry) target assay might not exist [85]. For example, PU-H71 kinetically
selects for epichaperome-integrated HSP90; no epichaperome IHC assay exists and histologic HSP90
expression is not predictive. Tumor avidity for PU-H71 tracer predicts pharmacodynamics and
efficacy for PU-H71 [7,8,49,68,69,86] and other small molecule drugs targeting the HSP90 ATPase and
interfering with epichaperome formation [8,49].

4. Tumor Pharmacokinetics for Image-Guided Dosing Design

Drug tracer imaging can assay tumor pharmacokinetics, including (1) tumor drug concentrations
as a function of time post-drug administration and (2) tumor occupancy by therapeutic drug doses [87].
Tumor pharmacokinetic data from patient imaging can be mathematically modeled for predicting the
therapeutic dosage and schedule needed to achieve desired in vivo tumor drug concentration and
tumor saturation levels [8,49] (Figure 3). Imaging biodistribution can help to establish correlations with
observed organ toxicity that might enable dosing strategies optimized for the therapeutic index [65].

Pioneering clinical research in imaging in vivo tumor pharmacokinetics studied the cytotoxic
drug 5-fluorouracil both by PET [88–90] and by in vivo nuclear magnetic resonance spectroscopy
(NMRS) [18,20,21,91–93] and explored the microdose versus therapy dose biodistribution and
pharmacokinetics of radiolabeled N-[2-(dimethylamino)ethyl]acridine-4-carboxamide (DACA) [94].
Saleem et al. demonstrated in cancer patients that the prodrug temozolomide undergoes in vivo
metabolic conversion to its active form, by studying the PET isotopologue [11C]temozolomide and its
in vivo radiometabolites [17]. Saleem and Price [89], analyzing accumulated PET pharmacokinetic
data used in previously published studies [16,90,94], evaluated the influence of tumor perfusion on
tumor pharmacokinetics.

We and others have explored clinical PET-based approaches to quantifying in vivo tumor drug
molar concentrations [8,37,49,95]. Ideally, for tracing pharmacokinetics, drug tracer and (non-labeled)
therapeutic drugs are isotopologues, as drug and tracer should then have identical physicochemical
characteristics (Figure 1). Microdose (tracer) versus therapy dose in vivo pharmacokinetics, metabolism,
and biodistribution can differ significantly, e.g., including potential tumor saturation affecting the
accuracy of microdose predictions of tumor molar concentrations achieved by therapy doses. In our
trials [7,8,49], we have explored therapy dose (mixing therapeutic drug and tracer together, NCT01393509)
and microdose drug tracer PU-H71 imaging (NCT01269593). We validated the quantitative accuracy
of non-invasive PET-based measurements of tumor PU-H71 molar concentrations, after administering
therapeutic (non-radioactive) PU-H71 dose mixed with drug tracer, using liquid chromatography–tandem
mass spectrometry (LC-MS/MS) of PU-H71 concentrations in biopsy specimens (NCT01393509 [8]).
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Figure 3. Drug tracer imaging can detect tumor saturation by therapeutic drug. Axial (left top,
left bottom) and coronal (middle, right) PET images of single mouse bearing tumors after IV
injection with F-18 SKI249380, radiolabeled analogue of therapeutic tyrosine kinase inhibitor dasatinib.
Microdose (radiotracer only) images (left top, middle) detect avid tumors (arrowheads, H1975 lung
cancer xenograft) and bone marrow (e.g., sternum, arrows). The next day (after F-18 isotope decay), the
mouse was re-imaged after receiving F-18 SKI249380 radiotracer co-injected with therapeutic dose of
dasatinib (left bottom, right). The therapeutic dasatinib dose competitively inhibited uptake of the
radiotracer in tumors and bone marrow, indicating that the drug and tracer share the same in vivo
tumor pharmacokinetic pathways and that these drug-specific tumor pharmacokinetic pathways
(cellular kinase targets and/or pre-target uptake and transport mechanisms) were saturated by the
single therapeutic dose. The tumor-saturating dose used in the animal model (30 mg/kg) was equivalent
(by allometric extrapolation) to a 140 mg human dose, less than the maximum tolerated dose of some
solid tumor dasatinib therapy trials [73].

Tumor avidity quantified for derivation of molar concentration must account for any
tumor-residualizing radiometabolites. A drug (tracer) might have one or more active metabolites;
drug tracer metabolites, produced in vivo, might be radiolabeled or unlabeled. In vivo radiometabolites
can be detected by plasma sampling or, for some carbon-11 (C-11) drug tracers, in assayed exhalations [17].
I-124 PU-H71 produces three radiometabolites in vivo but these all spontaneously efflux from the tumor,
simplifying tumor analysis. PU-H71 therapeutic drug and its isotopologue are both given intravenously,
also simplifying our modeling of drug molar concentrations. Small molecule cancer drugs are often
orally administered, with less than 100% bioavailability (compared to the 100% bioavailability of an
IV-administered drug). Imaging after oral administration of a drug tracer potentially enables correlation
of gastrointestinal drug transit, plasma concentrations, and tumor concentrations.

Conventional selection of a dosing strategy in early-phase therapy trials is based on preclinical
PK models to predict sufficient tumor exposure to drug [65]. Our group established a preliminary
dose–response relationship for PU-H71 in tumor in vitro cultures, identifying a threshold drug
concentration time integral necessary to collapse tumor epichaperomes that correlated with target
saturation [49,86]. We next validated the preclinical correlation between tumor pharmacokinetics
and tumor pharmacodynamics in vivo, using PET and tissue assays in animal tumor models [86],
and now we have explored these PK/PD correlations in cancer patients [7,8,49]. Our clinical PET
imaging of tumor kinetics confirmed that tumor Cmax is key, as expected for dose-dependent responses,
but our clinical data indicate that in vivo tumor concentrations required for anti-tumor efficacy are
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an order of magnitude higher than predicted by our prior in vitro data [8]. The PET has helped us
to select a phase 2 (NCT03166085) PU-H71 therapeutic dosing strategy that we expect will saturate
epichaperome-positive tumors efficaciously [8,49].

Drug tracer imaging enables a non-invasive clinical approach to quantifying in vivo tumor
occupancy by therapeutic drug [37,96]. Tumor occupancy or complete saturation by drug uptake are
indicated by decreased tumor uptake of drug tracer in the presence of a co-administered therapeutic
drug dose, compared to tumor uptake of microdose tracer alone [37,87] (Figure 3). Tumor saturation
does not necessarily indicate that all tumor molecular targets are bound by the drug; it can also
indicate saturation or alteration of tumor pharmacokinetics [17]. Imaging therapeutic drug inhibition
of drug tracer uptake can be used to identify the maximum single therapeutic dose that a tumor can
accumulate and retain. Drug tracer imaging can detect whether or not the maximum tolerated dose of
a therapeutic drug, determined empirically in phase 1 therapy dose escalation trial, is able to saturate
tumors in vivo [16]. Clinical C-11 erlotinib PET imaging demonstrated variable saturation of in vivo
tumor EGFR targets in NSCLC patients receiving erlotinib therapeutic doses [37].

Drug tracer imaging potentially could be incorporated into dose escalation therapy trials to
detect whether tumor saturation, defined by imaging, occurs prior to reaching the maximum
tolerated dose (MTD) level, defined by patient toxicity. Hypothetically, once tumor saturation
is achieved, higher therapeutic dose levels might not yield proportional, incremental increases in
tumor drug concentrations or responses, despite increasing dose-dependent patient toxicity [73,97–99].
Pharmacodynamic studies often reveal a sigmoidal dose-response curve, with “diminishing returns”
at higher dose levels [100,101]. If a non-MTD, tumor-saturating dose level, which we call a maximum
tumor dose, is detected by imaging, researchers could then pursue identifying the maximum tolerated
schedule for that saturating dosage, modeling which steady-state peaks and trough tumor molar
concentrations would be obtained [8,49,68]. For example, a lower therapeutic dose of the small
molecule tyrosine kinase inhibitor dasatinib, given more frequently, was equally efficacious against
leukemia and less toxic to patients, as a less frequent, higher dose strategy [102]. Drug tracer imaging is
the only available modality of biomarker assay that enable clinicians to explore this novel dose-learning
approach, based upon in vivo tumor pharmacokinetics, in cancer patients.

Drug tracer imaging can aid in the design of combination therapy regimens, in studying drug
interactions and pharmacodynamics. Drug tracer imaging revealed an unanticipated drug interaction
in an investigational therapy regimen that combined the antiangiogenic therapeutic drug bevacizumab
with the cytotoxic drug docetaxel: imaging demonstrated reduced tumor uptake of (C-11) docetaxel
isotopologue for four days after bevacizumab administration; these imaging data helped to guide
a redesign of this dosing strategy [103]. Saleem et al. [90] studied the effects of a pharmacological
intervention (eniluracil modulation) on the in vivo kinetics of the cytotoxic agent 5-fluorouracil in
tumors and healthy organs by 5-[18F]-FU drug tracer imaging.

In non-human primates, Kurdzeil et al. [30] used F-18 paclitaxel (FPAC) PET to detect the in vivo
effects of tariquidar, an inhibitor of the P-glycoprotein (Pgp) efflux pump that is implicated as a
moderator of multidrug resistance (MDR), on paclitaxel kinetics. Tariquidar did not alter FPAC plasma
kinetics, but PET successfully detected a change in FPAC biodistribution consistent with Pgp inhibition.

5. How to Make a Drug Tracer

Synthesis of PET or single photon emission computed tomography (SPECT) (i.e., radiolabeled)
versions of therapeutic small molecules is usually a more challenging process than, for example,
synthesis of radiolabeled versions of therapeutic antibodies. Relatively simple techniques are
well-established such that each can radiolabel a wide variety of antibodies; in contrast, synthesizing
a radiolabeled version of a drug or tracer that is closely related, structurally, to a drug of interest
requires radiochemistry expertise to design a synthetic process that will generate a specific precursor
molecule that can be radiolabeled to yield the desired radiotracer. For a drug analogue, when installing
a radioisotope, a key design criterion is that the position and type of radioisotope must not significantly
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compromise the binding affinity of the drug analog to the molecular target(s). Much effort is spent
optimizing the synthetic scheme so that radiolabeling can be done at the latest possible synthetic step to
minimize potential side products and isotope decay. In general, most PET tracers containing carbon-11,
nitrogen-13, fluorine-18, and iodine-124 are synthesized in a two-step method involving radiolabeling
of a suitable radioactive precursor followed by deprotection. This is followed by purification, isolation,
and formulation in a biocompatible buffer. In considering the position of the radiolabel on the small
molecule, the general rule of thumb is that it must be both chemically and metabolically stable.
For example, alkyl iodides and benzylic (-CH2) fluorides are highly labile and therefore not common in
PET drugs. The available supply and chemical form of the radioisotope dictate the type of chemistry
amenable to installing the radiolabel for subsequent in vivo use. Carbon-11 is routinely available as
CO2 or CH4 (50–200 GBq) and has to be converted to a suitable reactive form to be installed onto a
small organic molecule. Fluorine-18 is commonly available as a non-reactive fluoride (F-) (50–200 GBq)
in water and must be completely dried and activated before it is incorporated into an organic molecule
using nucleophilic (SN2) displacement or SNAr type reactions. Recent developments in metal-catalyzed
aromatic substitution reactions have rapidly expanded the scope of the chemistry with [18F]-F- and have
facilitated the production of aromatic- and heterocyclic-fluorinated PET tracers that were previously
considered inaccessible with [18F]-F-. Iodine-124 is available as iodide (I-) (0.5–5 GBq) and can be easily
installed on a suitable aromatic backbone using direct electrophilic iodination of activated arenes or
via a variety of iodo-demetallation reactions on inactivated arene backbones.

In developing drug tracers for human studies, a suitable radiosynthetic method and precursor
must facilitate (1) easy, scalable, and reproducible radiochemical yields, (2) automation, (3) easy
purification, and (4) formulation in a biocompatible solvent. The radiochemical precursor is a suitable
compound whose chemical manipulation with radioactive elements yields the intermediate product
that can be converted to the desired final radioactive product or is sometimes the final product itself.
The precursor must be reactive enough to facilitate chemical/radiochemical manipulations but stable
enough to be vialed and stored for future use (up to two years) without loss of radiochemical yields,
isomerization, or chemical transformation that can lead to undesirable products. The precursor
and its breakdown products during radiochemical reactions must be easily separable from the final
radiochemical compound to ensure that the final product is not only radiochemically pure but also
chemically pure. An additional consideration in the precursor design is whether the compound
contains toxic elements (e.g., tin, lead, or mercury); a suitable analysis method must be developed
to quantify concentrations in the final product. In developing a suitable radiosynthetic method,
solvent optimization is essential for each step to address logistical challenges related to automation,
purification, and/or formulation due to compatibility, miscibility, corrosiveness, high boiling points, etc.
Minimizing the use of HPLC is also advantageous, as is ensuring that separation of the final product
can be achieved through physical manipulation.

Once a reproducible synthesis of a candidate drug tracer has been developed, this candidate
is subjected to a battery of in vitro and in vivo tests. In vitro testing must demonstrate high affinity
binding/avidity of the drug tracer to its target and its ability to be blocked by a suitable competitor,
including the drug itself. For example, in designing F-18 SKI-249380, a tracer of the small molecule
therapeutic drug dasatinib, we placed a positron-emitting fluorine isotope (F-18) atom to substitute for a
hydroxyl group [9,10,71]. Molecular modeling predicted that the substitution had a minimal effect upon
drug binding to target kinases, which we confirmed by comparing in vitro pharmacodynamic profiles
and potencies and in vivo imaging of competitive inhibition of tracer uptake by a co-administered
dasatinib therapeutic dose.

Another important criterion is to ensure that the drug tracer has minimal non-specific binding in
the cell or system. This is followed by in vivo testing, in suitable animal models, to demonstrate drug
tracer uptake by the tumor or other target-containing tissue(s). This becomes extremely important for
privileged organs such as the brain, cerebrospinal fluid (CSF), or tumor, where barriers (e.g., blood–brain
barrier, interstitial pressure, low vascularity, etc.) can severely restrict penetration of the drug into the
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tissue of interest. If the animal imaging studies demonstrate feasibility of using the candidate molecule
as a drug tracer, the blood half-life and metabolic profile of the compound is then assessed to demonstrate
that the signal from the tissue of interest is arising due to specific binding of the drug tracer to its
target rather than merely due to blood pool activity (e.g., high plasma protein binding) or a radioactive
metabolic byproduct. For the promising candidate tracer, animal dosimetry studies then measure
radioactive dose to organs (mouse); the results are then extrapolated to predict human absorbed and
effective doses. To pursue clinical translation to first-in-human studies, further requirements typically
include animal toxicology studies, GMP-quality radiochemistry synthesis, radiotracer synthesis
validation runs, and institutional and regulatory agency (e.g., FDA) approval of a clinical research
protocol embedded within an investigational new drug application package. Radiolabeled small
molecule drugs are usually synthesized with a high specific activity, meaning that patients receiving
the radiotracer injection, sufficient for imaging of drug biodistribution, often receive only a “microdose”
of drug (<100 micrograms). As such, small molecule drug tracers for microdose imaging typically
demonstrate no pharmacodynamic effect or pharmacologic toxicity.

6. Does Drug Tracer Imaging Offer Any Advantages over Conventional Tissue-Based
PK/PD Biomarkers?

Drug tracer imaging offers potentially revolutionary, multifaceted patient-, tumor-, drug-,
and target-specific biomarker data that tissue-based assays cannot, including tumor saturation,
drug molar concentrations and kinetics, tumor heterogeneity, and biodistribution data.

Plasma pharmacokinetics, though essential data, often fail to predict tumor pharmacokinetics
and response, for which tracer imaging of tumor pharmacokinetics might be a better predictive
biomarker [6,8,49,90,98,99,104]. For PU-H71, we found that not only is the maximal tumor concentration
achieved important for drug efficacy, but maintaining threshold tumor concentrations for a threshold
duration of time was also key [86], whereas plasma pharmacokinetics did not differ significantly
between responders and non-responders [8]. For drug administration to specific compartments
(e.g., intrathecal, intraperitoneal, intratumoral), plasma pharmacokinetics do not provide a reliable
surrogate of drug concentrations and distributions within those spaces and immediately surrounding
tissues. The ability to correlate tumor response to tumor dose, not merely to the administered or
plasma dose, advances the precision of dose–response analyses from patient- to lesion-level [88,105].

Tumor heterogeneity refers to significant intra- and inter-tumor variations in molecular target
expression. Quantifying target expression by imaging of drug tracer uptake throughout a single tumor,
as well as in all tumors in a given patient, might achieve stronger correlations with tumor response
and insights into mixed tumor responses [72]. Needle biopsy collects biomarker data from only a
small sliver of a tumor. Biofluid biomarkers or surrogates, such as circulating tumor cells, offer only a
general correlate of systemic tumor burden and biomarker expression.

Drug tracer imaging enables four-dimensional whole-body assessment of drug tracer biodistribution
across serial scan time-points. Biodistribution imaging data can reveal unexpected drug tracer
accumulation in certain organs that might prompt serum or other assays to monitor for toxicity in that
organ during clinical therapy trials, potentially improving patient safety and clarifying drug toxicity
profile [106]. Biodistribution might identify compartments of poor drug penetration. PET isotopologues
have been used to quantify the blood–brain barrier penetration of small molecule drugs in early-phase
development [35,37,40], thereby predicting efficacy against brain metastases and encouraging further
testing [34]. Clinical research with a temozolomide drug tracer, when temozolomide was an investigational
therapeutic, demonstrated drug uptake in glioma brain tumors with scant drug retention by normal
brain, predicting a favorable therapeutic index [17]. Similar clinical data were obtained with a lapatinib
drug tracer in breast cancer patients with brain metastases [107,108].
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7. Conclusions

Clinical PET assays of tumor targeting by small molecule drugs provide a fundamentally new
mode of perception for cancer therapy investigators, enabling clinical testing of new paradigms in
targeted drug development. As a pharmacometric modality, clinical PET imaging-based microdose
studies, using a trace (<100 micrograms) amount of drug isotopologue or radioanalogue, offer patient-,
drug-, and tumor-specific in vivo data that conventional plasma- or biopsy-based pharmacokinetic
and biomarker assays cannot.
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