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Abstract

Most outcome studies of rheumatic diseases report outcomes ascertained on a single occasion. While single
assessments are sufficient for terminal or irreversible outcomes, they may not be sufficiently informative if
outcomes change or fluctuate over time. Consequently, longitudinal studies that measure non-terminal
outcomes repeatedly afford a better understanding of disease evolution.
Longitudinal studies require special analytic methods. Newer longitudinal analytic methods have evolved
tremendously to deal with common challenges in longitudinal observational studies. In recent years, an
increasing number of studies have used longitudinal design. This review aims to help readers understand
and apply the findings from longitudinal studies. Using a cohort of children with juvenile dermatomyositis
(JDM), we illustrate how to study evolution of disease activity in JDM using longitudinal methods.
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Background
Outcome studies in rheumatic diseases have generally
focused on single-occasion outcome assessments, e.g., 5-
year outcome. When the outcome of interest is not a
terminal event (e.g., death), but a dynamic one (e.g.,
disease activity, functional status), a cross-sectional view is
usually not the best way to look at the data. Two patients
may have similar outcomes at a point in time but how they
arrived at their outcomes may have been very different.
To understand the disease course, information about how
outcomes change over time is necessary. By measuring
patients’ outcomes repeatedly (by definition, on ≥ 3
occasions), a longitudinal study provides information
about the shape of outcome trajectory, e.g., whether the

disease goes into remission, waxes and wanes or re-
mains persistently active [1].
Longitudinal studies require special longitudinal statis-

tical analysis. Although some of these methods have been
available for many years, they are not commonly used in
the literature. These complex methods are harder to
understand and use. This paper aims to: 1) Provide a re-
view of common methods used to analyze longitudinal
trajectory data; and 2) Demonstrate how to interpret re-
sults from longitudinal trajectory analysis [2–4]. We will
focus on application of these methods to a real-life clinic-
based rheumatic disease cohort.

Questions that can be addressed by a longitudinal study
A longitudinal study can answer questions about the
sources of variability in observed outcomes. In studies
where outcomes are assessed once, the differences in
outcomes are usually attributed to differences between
individuals [1]. The effects of within-individual differences
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cannot be differentiated from that of between-individual
differences in cross-sectional studies. In contrast, by
measuring the outcomes repeatedly over time– for each
individual– the longitudinal design captures important
prognostic information about within-individual differences
and allows these effects to be distinguished from between-
individual differences.
Prognostic factors that fluctuate or emerge later during

the course of the disease can only be understood using the
longitudinal design. Examples of prognostic factors that
often vary over time may include a biomarker of disease
activity, or alterations in treatment. Using a longitudinal
study design, we can repeatedly and simultaneously meas-
ure both the time-varying prognostic factors and the
outcome(s) of interest, allowing direct relationships to be
established.

Special considerations in analyzing the longitudinal study
Methods to analyze longitudinal data have been available
since the 1960s. Traditional longitudinal analyses include
repeated measures analysis of variances (RANOVA) [5]
and multivariate analysis of variance (MANOVA) [6].
Newer methods of longitudinal analysis include the gen-
eralized estimating equation (GEE) [7], mixed effects re-
gression model (MRM) [8, 9], latent class trajectory
analyses (LCTA) [10, 11], joint modeling [12–14] and
multi-state modeling [15]. For illustrating longitudinal
disease trajectory in this review, we will focus on the
first four of these newer models. In this section, we will
also compare the traditional with the modern methods
of longitudinal analysis.
In a longitudinal study, each individual contributes at

least three observations (by definition). As observations
originating from the same individual are less variable
than those originating from different individuals, longi-
tudinal analysis needs to account for this relationship
[16]. If analyzed without consideration for within-
individual correlations, the conclusion will be inaccur-
ate. However, traditional methods like RANOVA have
highly restrictive assumptions [5], such as the assumption
that the correlation between two measurements is con-
stant, i.e., the correlation between measurements is simi-
lar, whether the measurements have been two days or two
years apart. In contrast, newer methods attempt to ac-
count for the fact that within-individual correlations likely
vary over time [17] (Additional file 1: Appendix).
In a longitudinal study, patients may be followed for dif-

fering lengths of time, resulting in a different number of
visits for each patient and different visit schedules among
patients. While traditional methods require an equal num-
ber of visits and/or the same schedule of visits, newer
methods can accommodate an unequal number of visits
and irregular measurement schedules [17].

Missing data is inevitable in observational longitudinal
studies. As patients are followed over long periods, there
will be times when patients may leave a cohort and then
return, or be lost to follow-up. Traditional longitudinal
methods have a requirement of no missing data, which
is impractical in longitudinal observational studies
[18]. In contrast, newer methods are able to handle
missing data with varying degrees of flexibility [7, 8, 19]
(Additional file 1: Appendix).
We will now apply four of the longitudinal methods–

GEE, MRM, LCTA and Joint Modelling– to illustrate the
use of these methods in an observational cohort. We have
chosen these four models, as they all provide a view of the
shape of the longitudinal outcome trajectory and form the
basic models from which more complex models can be
developed.

Juvenile dermatomyositis as a disease model for
longitudinal analysis
We will use Juvenile Dermatomyositis (JDM) as a con-
venient disease model to show how longitudinal de-
sign and analysis can be used in rheumatic diseases.
Multiple cross-sectional studies have determined that,
when assessed 2-3 years after diagnosis, there are three
disease course patterns in JDM: monocyclic, polycyclic or
chronic [20–23]. Although previous studies have shown
that a substantial proportion of patients have active dis-
ease many years after the diagnosis [24, 25], these studies
could not differentiate patients with active disease
throughout their entire disease course from those with a
polycyclic course. A longitudinal study can help to clarify
this question.
The study population was 95 JDM patients followed at

The Hospital for Sick Children, Toronto, Canada. Infor-
mation about this cohort has been previously reported
[26, 27]. We used clinical data from the first four years
of follow-up to demonstrate the application of longitu-
dinal analytic methods. The frequency of patients’
visits was based on the severity of their disease, i.e.,
the visit schedule was irregular across the population.
See Additional file 1: Appendix for the baseline char-
acteristics of this cohort.
The primary outcome was the modified Disease Activity

Score (DASm) [27, 28]. The skin component of modified
DAS (SDAS) scores up to 4 points and the musculoskel-
etal component (MDAS) up to 7 points.
We used: 1) The DASm at diagnosis (bDAS) as an

example of a time-invariant (unchanging) prognostic fac-
tor; and 2) The steroid dose (in mg/kg) or methotrexate
use (yes or no) from visits before each DASm measure-
ment as examples of time-varying (changing) prognostic
factors. As we used bDAS as a predictor, we excluded
the first visit DASm (bDAS) in this dataset. We tested 3
different lag times (of 3, 6 and 12 months) when the
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time-varying predictor (treatment) was measured (e.g.,
methotrexate use 3 months before, 6 months before or
12 months before DASm measurement).

Questions and answers
Question 1: What is the disease activity course for a
population of JDM patients?
The GEE, which determines the mean population disease
activity trajectory, is frequently used to answer this kind of
question [7]. The GEE calculates the average DASm of the
whole population at each visit. These population averages
are then joined to make a “trajectory” of DASm for the
whole population over time. The GEE assumes that the
measurement schedule is unrelated to the outcome, i.e.,
both sick and well patients are presumed to have the same
visit schedule on average. As sicker patients were likely
seen more frequently than those who were well, this as-
sumption was probably not supported in our clinic-based
cohort. However, there have been extensions of the GEE
(the weighted GEE) that allow GEE to be used even when
the measurement schedule is related to the outcome [29].
The GEE is the most popular method used for longitu-

dinal analysis for several reasons [30]. With the GEE, the
mean population response at each occasion is modelled
as the result of only the prognostic factors of interest
and not of previous responses or random effects (indi-
vidual heterogeneity) [9]. If the researcher’s interest is in
the average population prognosis, then the GEE provides
a simple interpretation [31].
We will briefly discuss the results when we used the

GEE to analyze our study cohort. From the smoothed
local regression plot of Fig. 1 [32], we can see that the
average population DASm decreases rapidly and then
plateaued to a lower degree of disease activity. This is
clinically sensible as there are effective treatments for

lowering disease activity in JDM, yet many patients re-
main chronically active.
In summary, the GEE is a good choice for analyzing

studies where the overall population prognosis is the
primary interest, e.g., when addressing questions about
population trends or healthcare utilization.

Question 2a: How do we determine the disease activity
course of an individual with JDM?
The best way to address this question is to use the
MRM, a so-called subject-specific model, that allows for
potential inference at the level of the individual [1, 33].
For a continuous outcome like DASm, the MRM also
provides us with the average population trajectory. The
smoothed plot (Fig. 2) shows the DASm trajectories of
both the individual patients (gray lines) and the mean
population trajectory (bold black line) [32]. As the
outcome is continuous, fitting the MRM resulted in a
similar longitudinal trajectory to that derived from the
GEE. However, if the outcome is not continuous, calcu-
lating the mean population trajectory from the MRM is
very complex.
In the MRM, each individual’s trajectory is different

from the mean population trajectory because of “random
effects.” Random effects are a combination of unmeasured
prognostic factors, confounders, environmental factors
and genetic factors, which account for heterogeneity
within the population [31]. Any difference between an in-
dividual’s trajectory and the average population trajectory
is the result of that individual’s random effects; this forms
the basis for individual level inference from the MRM.
Random effects may be applied at intercepts, which repre-
sent between-individual differences. When random effects
are applied to slopes, this allows individuals’ time trend to
deviate from the average population trajectory. Although
the random effects are taken into account in modeling,

Fig. 1 Population-averaged modified DAS trajectory in JDM patients (representation of GEE). Disease activity score, DAS. Total population = 95
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the results reported are that of the mean population
trajectory in this case.
Although the results of the MRM may appear much

like the GEE in continuous outcomes models, the inter-
pretations are very different. The MRM models the
average of individuals’ trajectories (subject specific) but
the GEE models the trajectory from DASm averages at
each time point (population average). Practically, in the
context of the continuous outcomes models, the forms
and the results from the 2 models are very similar. The
differences between MRM and GEE are obvious when
the outcomes are non-continuous, e.g., binary or or-
dinal [9, 34–36]. Taking the example of a random inter-
cepts (logistic) MRM, where the outcome could be
disease remission (yes/no), and a time-invariant covari-
ate could be calcinosis at baseline (yes/ no), the odds of
remission would correspond to the effect of calcinosis
plus an individual’s random effects. The effect of calci-
nosis therefore changes with different individuals. The
odds ratios estimated by the logistic MRM are subject
specific as these additionally adjust for heterogeneity
between individuals. In the binary outcome GEE, the
odds ratio corresponds to odds of an event among
those with baseline calcinosis divided by the odds of an
event in those without. As these are ratios of subpopu-
lation risks, the GEE estimates are termed population
average. From this, it should also be obvious that the
results of non-continuous MRM will always be greater
that than of non-continuous GEE due to inclusion of
the random effects. The choice of model depends on
the purposes of the study. If the mean prevalence of
disease remission in a population over time predicted
by baseline calcinosis is of interest, the GEE is suitable.
If the investigators want to study individuals’ risk
factors for personal predictions, then the MRM is the
model of choice. As the estimates of the MRM are

adjusted for random effects (unobserved individual
characteristics), the results reflect the effect of baseline
calcinosis status of an individual with a specific random
effect (or individuals with the same random effect).

Question 2b: How do we predict the disease activity course
of an individual with JDM?

i) Time-invariant prognostic factor
The MRM can be used to determine the individual
level predictive effect of a time-invariant prognostic
factor, such as the baseline DASm (bDAS), on the
trajectory of disease activity. From Fig. 3, we can
see that the average trajectory for individuals with
a higher bDAS had a faster initial improvement

Fig. 2 Plot of all JDM patients’ individual and the population-averaged modified DAS trajectories (representation of MRM). Disease activity score,
DAS. Total population = 95
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Fig. 3 Effect of baseline (time-invariant) modified DAS on the
modified DAS trajectory in JDM patients (MRM). Activity Score,
DAS; Baseline modified DAS (bDAS)
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(up to month 10) followed by persistently higher
activity, compared to the average trajectory of
individuals with a lower bDAS (p < 0.0001). Baseline
state therefore predicted the rate of change of the
slope of the trajectory. We can therefore tell patients
that their disease activity will likely improve within
1 year (with treatment). Those who are more active
initially (higher bDAS) will likely see a relatively
faster improvement in their symptoms compared
to those who are less weak.

ii) Time-varying prognostic factor
Using the MRM, we tested the individual level
effects of time-varying prognostic factors, including
corticosteroid and methotrexate exposures from 3,
6 and 12 months before each visit. In this case, the
time-varying predictors tested did not influence the
DASm trajectory. Had these time-varying predictors
been significant, their effects would have been to shift
the trajectory up or down, corresponding to slower or
faster resolution of disease activity.
In summary, if the primary interest of a study is to
understand how covariates impact disease course,
based on the individual patient’s prognosis trajectory,
the MRM is the best choice. The MRM is also more
suitable when there is significant heterogeneity in
individuals’ disease courses in the population.

Question 3a: Are there different patterns (or subgroups) of
disease activity course among individuals with JDM?
The models used in the preceding sections assumed that
the shape of patient trajectories were homogenous, i.e.,
all patients follow the same disease course. If the investi-
gator suspects that his study population contains hetero-
geneous patient trajectories, then latent class trajectory
analysis (LCTA) (Additional file 1: Appendix) can be
used to identify distinct subgroups with different disease
trajectories (those with a clinically distinct prognosis)
[10, 37].
When we applied LCTA to our cohort, we found

three distinct subclasses. Each of these three subclasses
has a class-specific average population disease activity
trajectory, derived using individuals’ trajectories (with
the MRM as in question 2a). From Fig. 4, we can see
that Class 2 patients have high disease activity at diag-
nosis, and then rapidly improve. Class 1 patients have
moderate disease activity at diagnosis that improves
gradually to low disease activity over time. Class 3
patients have high disease activity at diagnosis that im-
proves very gradually. For this kind of model, we deter-
mine a probability of belonging in each of the three
classes but for each individual, but the probability of
any individual of belonging to each class varies. When
classified according to the highest probability of class

membership for each individual, 42% are in class 1, 55%
in class 2 and 3% in class 3. None of the patients was
classified into 2 classes with similar probabilities, i.e.,
was ambiguous in the class membership probability
(see Additional file 1: Appendix).
The LCTA is very flexible (Additional file 1: Appendix):

1) More than one and more than one kind of outcome
trajectory can be modelled at a time (see next section);
and 2) Trajectories of different subclasses can take on
different shapes (reflecting different patterns of outcome
evolutions) [37–39].

Question 3b: What factors predict an individual’s
membership in the different subgroups of disease activity?
The LCTA allows us to study the effects of time-invariant
baseline factors, such as bDAS, in predicting membership
in distinct subgroups. We use the bDAS to predict mem-
bership in the three subclasses. The higher the bDAS, the
less likely is a patient to belong in class 1 (OR 0.11, 95%
CI 0.02-0.63) or 2 (OR 0.27, 95% CI 0.05-1.41) compared
to class 3. Furthermore, the higher the bDAS, the less
likely is a patient to belong to class 1 (OR 0.41, 95% CI
0.25-0.68) compared to class 2. This means that those
with highest bDAS are most likely to belong to class 3,
with chronic high-grade disease activity. High bDAS pa-
tients are less likely to improve substantially or go into
low disease activity states unlike those whose initial bDAS
are low to moderate. This may appear different from the
results of MRM where high bDAS predicted quicker
resolution. In MRM, the whole population was studied
together although there was significant heterogeneity
within the population. LCTA allows us to group patients
into more homogeneous subgroups and then more pre-
cisely clarify the effect of potential baseline membership
predictors.
Time-varying covariates can also be studied in LCTA

and can be formulated in different ways depending on
the underlying question [40, 41]. As the computations
are very complex and interpretations challenging, we
chose to leave out time-varying covariates for this
review.
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Fig. 4 Latent classes of JDM disease activity trajectories (LCTA).
Disease Activity Score, DAS. Class 1, n = 49; Class 2, n = 43; Class
3, n = 3
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In summary, if a researcher suspects that there are
several prognostic subgroups within the study population,
the LCTA can be used to identify these subpopulations.
Baseline factors may identify patients’ memberships in
different prognostic subpopulations, thus allowing more
individualized management. Time-varying covariates can
also be studied but interpretations are more complex
(Additional file 1: Appendix).

Question 4a: What are the separate disease activity courses
for the skin and musculoskeletal components of JDM and
what is the relationship between these two disease
components?
In this case, we have two potential outcomes: the modified
skin (SDAS) and musculoskeletal (MDAS) components of
JDM. We are interested in how the disease courses evolve
over time and the correlation of disease activity in the two
components of JDM over time. The best way to study
how two different outcomes evolve simultaneously over
time is a joint model as shown in Fig. 5 (Additional file 1:
Appendix) [12–14, 42, 43]. The joint model refers to the
concurrent modeling of two outcome trajectories (SDAS
and MDAS) in one model. The basic model used here to
model the trajectories is also the MRM.
The two disease components of JDM follow different

trajectories. The MDAS improves more rapidly (within
the first 10 months after diagnosis) to minimal activity. In
contrast, the SDAS improves less rapidly and persists at a
low activity level for almost 20 months (Fig. 5). The two
disease components therefore follow discordant courses,
as confirmed by the low correlation between the two

trajectories (r = 0.32) [13]. This relationship between two
or more outcome trajectories can only be studied using
the joint model and not by using separate models for the
individual components.
In our example above, both outcomes were treated as

continuous outcomes. However, outcomes of different
natures can be jointly modeled. We can model a con-
tinuous outcome (e.g., DASm), with a time-to-event
outcome (e.g., calcinosis), a binary outcome (e.g., nail-
fold capillary abnormality) or a count (e.g., active joint
count). Furthermore, as alluded to previously, more
than one outcome can be jointly studied in the LCTA;
in this case, members within the same subclass of joint
outcomes would have similar trajectories or risk of
events [38, 39, 44]. This way of examining outcomes
more closely resembles the real world where several
clinically relevant outcomes may be considered equally
important in clinical decision making.

Question 4b: What factor(s) predicts the joint disease
activity courses of the skin and musculoskeletal
components of disease in an individual with JDM?
We evaluated the predictive effects of bDAS (time-in-
variant) on the joint MDAS and SDAS trajectories
(Table 1). In this joint model, individuals with higher
bDAS have a faster decline in the slope of the MDASm
trajectory; but bDAS does not significantly affect the
slope of the SDAS trajectory. Prior treatment with
methotrexate or steroid (time-varying factors) does not
significantly influence the MDAS and SDAS trajectories,
perhaps because everyone received the same protocol of
treatment. Thus, joint modeling can distinguish the
prognostic effects of predictors for the major compo-
nents of JDM disease activity.
In summary, if a researcher is interested in more than

one (or more than one kind of ) outcome and wants to
evaluate the relationship (i.e., correlation) among these

Fig. 5 Musculoskeletal and skin disease activity trajectories in JDM
(joint multivariate modeling). Disease Activity Scores, DAS;
Musculoskeletal DAS, MDAS; Skin DAS, SDAS. MDAS and SDAS are
components of the modified DAS. The left y axis (black) represented
the MDAS (maximum score = 7) and the right y-axis (grey) represented
the SDAS (maximum score = 4). The MDAS and SDAS curves are colour
coded to match their respective axes

Table 1 Predictors identified from the joint multivariate model
of MDAS and SDAS

Predictor Outcome Predictor Estimate Standard Error p

bDAS MDAS 0.0363 0.0316 0.25

SDAS 0.0214 0.0342 0.53

Timea*bDAS MDAS 1.0140 0.1321 <0.0001

SDAS 0.0362 0.1261 0.77

Steroidb MDAS -0.0919 0.0753 0.22

SDAS 0.1211 0.0688 0.08

bDAS Baseline DASm measurement; Time *bDAS denotes the crossing of a
time term with bDAS
aThe shapes of the MDAS and SDAS models are defined using 2 time terms each
(fractional polynomials). MDAS and SDAS crossed with their common time form
(p = –1,) of their respective fractional polynomials (see Additional file 1: Appendix)
bSteroid treatment from 3 months before each occasion of DASm measurement,
i.e., it is a time-varying predictor. Significant results have been bolded
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outcomes over time, the joint model can be used. The
joint model can be used in the LCTA context so that la-
tent classes of the different outcomes of interest can be
delineated. The joint model also allows direct compari-
sons of the differing effects of the same predictors on
multiple outcomes simultaneously.

Conclusions
In this paper, we have illustrated the use of longitudinal
design and analysis in studying prognosis. Longitudinal
studies are superior to cross-sectional studies as they
use all available data, thereby giving a more complete
view of patients’ outcomes.
We have presented four different ways of analyzing

longitudinal observational data depending on the
question(s) of interest. The GEE is best used if a
population-level view is preferred and the visit schedule
is not related to the outcome studied. This population
view may be more relevant to health services re-
searchers addressing population level questions, e.g.,
healthcare utilization. The MRM should be used if an
individual level view is of interest. The LCTA should be
used when the researcher wants to identify subgroups
of patients within a heterogeneous cohort, with differ-
ent outcome trajectories, and identify the factors pre-
dicting their membership in these subgroups. Joint
modeling is best used to study the evolution and

correlation among multiple outcome trajectories and
the differing effects of predictors on simultaneous mul-
tiple outcome trajectories. We have summarized salient
points about the four models in an overview table
(Table 2). These four methods can also be combined
with other methods, e.g., propensity scoring [45] and
marginal structural modeling [46], to answer other
kinds of questions (e.g., therapeutic) in a longitudinal
study [47].
While the methods presented in this paper have the po-

tential to transform our understanding of prognosis, we
acknowledge that these methods could be challenging to
use without necessary expertise. We therefore recommend
consulting with biostatisticians knowledgeable in these
methods to help design and analyze longitudinal studies.
Our review is not meant to be an exhaustive review of all
available longitudinal analytic methods. For example,
Markov multistate models can also be used to determine
patients’ transition between disease states longitudinally
[15]. In the interest of simplicity, we tested a minimum
number and kind of predictors in these models. In prac-
tice, more predictors can be tested in these models, with a
far greater confidence in predicting individuals’ disease
trajectories.
The methods outlined in this paper will allow for a

more complete understanding of longitudinal outcomes
and a more precise understanding of the effects of

Table 2 Overview of the 4 modern longitudinal analytic methods

Model Questions Advantages Disadvantages

GEE What is the averaged outcome
trajectory for the population?
(Trajectory of averages)

Parameter estimates robust to misspecification
of the covariance structure.
Both time-invariant and time-varying predictors
can be studied.

No individual level inference
Assumes missing data to be
missing completely at random
(MCAR), which may not be true
for many longitudinal studies.

MRM What is the outcome trajectory
of the individual?
What is the average outcome
trajectory for the population?
(Average of trajectories)

Individual level inference possible with the
incorporation of random effects.
Both time-invariant and time-varying predictors
can be studied.
Assumes missing data to be missing at random
(MAR), which is more likely in longitudinal studies.

Misspecification of covariance
structure may bias parameter
estimates45

LCTAa Are there distinct subgroups within
the study population?
What are the trajectories of the
identifiable subgroups within the
population?

Objectively identifies latent distinct subgroups
within a heterogenous population.
Able to use time-invariant factors to predict group
membership. Able to study effects of time-varying
covariates in different ways (depending on question
and underlying theoretical framework)
Assumes data to be missing at random (MAR).

Complex and time-consuming
computing procedures.
Interpretation of time-varying
covariates can be challenging
depending on the formulation.

Joint Modelb What are the trajectories of (multiple)
outcomes of interest?
What is the correlation between the
outcome trajectories of interest
(i.e., are the trajectories concordant or
discordant)?

Multiple outcome trajectories of disparate nature
(e.g., continuous with binary, binary-poisson,
continuous-survival) can be studied simultaneously.
Objective determination of the longitudinal correlation
of the trajectories.
Joint model with time-to-dropout may be used as a
means to adjust for data missing not at random (MNAR).

Modeling procedures can be
complex with increasing number
and kinds of outcomes modeled
jointly.

aUsually modeled with MRM as the base model
bMRM may be used as the base model for continuous, binary and count data. Proportional hazard is used for time-to-event outcomes
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predictors. Combination of these methods with molecular
information holds great potential to transform clinical
practice towards the ultimate goal of precision medicine.

Additional file

Additional file 1: Appendix of longitudinal analysis methods for
prognosis study in rheumatic diseases. (DOCX 1112 kb)
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