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Abstract
Objectives: This study describes the development and deployment of a machine learning (ML) model called Vent.io to predict mechanical 
ventilation (MV).
Materials and Methods: We trained Vent.io using electronic health record data of adult patients admitted to the intensive care units (ICUs) 
of the University of California San Diego (UCSD) Health System. We prospectively deployed Vent.io using a real-time platform at UCSD and 
evaluated the performance of Vent.io for a 1-month period in silent mode and on the MIMIC-IV dataset. As part of deployment, we included a 
Predetermined Changed Control Plan (PCCP) for continuous model monitoring that triggers model fine-tuning if performance drops below a 
specified area under the receiver operating curve (AUC) threshold of 0.85.
Results: The Vent.io model had a median AUC of 0.897 (IQR: 0.892-0.904) with specificity of 0.81 (IQR: 0.812-0.841) and positive predictive 
value (PPV) of 0.174 (IQR: 0.148-0.176) at a fixed sensitivity of 0.6 during 10-fold cross validation and an AUC of 0.908, sensitivity of 0.632, 
specificity of 0.849, and PPV of 0.235 during prospective deployment. Vent.io had an AUC of 0.73 on the MIMIC-IV dataset, triggering model 
fine-tuning per the PCCP as the AUC was below the minimum of 0.85. The fine-tuned Vent.io model achieved an AUC of 0.873.
Discussion: Deterioration of model performance is a significant challenge when deploying ML models prospectively or at different sites. 
Implementation of a PCCP can help models adapt to new patterns in data and maintain generalizability.
Conclusion: Vent.io is a generalizable ML model that has the potential to improve patient care and resource allocation for ICU patients with 
need for MV.

Lay Summary
Earlier identification of patients at the highest risk of requiring mechanical ventilation (MV) offers an opportunity for timely medical interventions 
and efficient resource allocation. In this study, we developed a machine learning (ML) model called Vent.io for the prediction of MV up to 
24 hours in advance using a combination of vital signs, laboratory measurements, comorbidities, medications, and demographic features. 
We trained Vent.io using intensive care unit (ICU) data from the University of California San Diego (UCSD) Health System and deployed it in our 
real-time predictive analytics platform with a Predetermined Changed Control Plan (PCCP) for continuous model monitoring that triggers model 
fine-tuning if performance drops below a specified area under the receiver operating curve (AUC) threshold of 0.85. Vent.io was prospectively 
validated after 1 month of deployment at UCSD and achieved an AUC of 0.908, meaning no model fine-tuning was required. We then simulated 
local deployment of Vent.io at an external site by evaluating Vent.io on the MIMIC-IV dataset. The resulting AUC of 0.73 was below the PCCP 
threshold, so Vent.io was fine-tuned using MIMIC-IV data, resulting in an AUC of 0.873. These results show Vent.io is generalizable and can aid 
clinicians in identifying high-risk patients for MV.
Key words: risk scoring system; machine learning; mechanical ventilation; electronic health records. 

Introduction
Invasive MV is a vital intervention required for approximately 
40% of the patients admitted to intensive care units (ICUs) 
due to severe respiratory failure, acute respiratory distress syn-
drome (ARDS), or other life-threatening conditions.1 How-
ever, its use is complicated by the risk of ventilator-induced 
lung injury and complications resulting from prolonged MV.2

Appropriate and timely triage of patients at the highest risk of 

requiring MV is critical. Earlier identification of this high-risk 
population offers an opportunity for timely medical interven-
tions and allows hospital systems to allocate resources more 
efficiently.3

ML techniques are being increasingly integrated into medi-
cal practice4 and may be especially valuable in the data-rich 
environment of the intensive care unit (ICU).5 ML algorithms 
can help identify complex patterns, often before they are 
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obvious clinically, to enhance diagnostic and predictive capa-
bilities to improve clinical care across different medical prob-
lems.6 However, existing MV early prediction systems 
generally focus on model development and validation7–11 and 
often fail to report on their deployment and ongoing moni-
toring, which is equally important. Deploying the MV early 
prediction system in clinical practice can provide timely refer-
ence for clinicians. However, a static model’s predictive per-
formance may deteriorate from development to deployment 
due to the shifts in patient populations, disease epidemiology, 
clinical care practices, and healthcare policies.12 Therefore, 
dynamic monitoring is essential to be integrated into the 
model development process to build a reliable and durable 
MV early prediction system.

We previously developed a deep learning algorithm called 
VentNet to predict the need for MV up to 24 hours in 
advance using a combination of vital signs, laboratory meas-
urements, and demographic features.13 However, the model 
had limitations including lack of data on medications and 
comorbidities and lack of prospective validation and deploy-
ment. In the current study, we modified VentNet and devel-
oped an enhanced model named Vent.io. We incorporated an 
expanded labeling scheme to address various physiological 
states of respiratory failure and added 16 laboratory meas-
urements, 11 SIRS and SOFA components, 12 types of medi-
cations, and 62 comorbidities to improve the generalizability 
of the model. The refined Vent.io model was then deployed 
in our predictive analytics platform, at the University of Cali-
fornia San Diego (UCSD) Health System, for real-time early 
prediction of MV needs with a Predetermined Changed Con-
trol Plan (PCCP) for continuous model monitoring. The 
United States Food and Drug Administration (FDA) has pub-
lished guidance for the ongoing maintenance and iterative 
improvement of clinical decision support software under the 
Software as a Medical Device (SaMD) designation.14 As part 
of FDA guidance, a PCCP is recommended for SaMDs to 
ensure ongoing effectiveness in the face of any encountered 
changes, such as when a SaMD is deployed at a different set-
ting or underlying data distributions are shifted. Formally, a 
PCCP is a plan outlining the planned modifications to a 
SaMD, the protocol for implementing and controlling those 
modifications, and the assessment of the impacts of the modi-
fications.15 For our use case, the PCCP systematically tracked 
the model’s area under the receiver operating curve (AUC) 
over time. If performance fell below the specified AUC 
threshold of 0.85, the PCCP triggered model fine-tuning 
which involves retraining the model using prospective data. 
This fine-tuning process helps the model adapt to new pat-
terns in the prospective cohort and maintain generalizability 
instead of being deployed with subpar performance. Overall, 
we aimed to develop a ML model for the prediction of MV 
using electronic health record (EHR) data, deploy it in the 
real-time setting, and evaluate its performance in a prospec-
tive cohort and a simulated external setting.

Methods
Study design and patient cohorts
We first conducted a retrospective cohort study using de- 
identified EHR data of all adult patients (≥18 years) who 
were admitted to the ICU between January 1, 2016 and 
December 31, 2023 at 2 hospitals within the UCSD Health 
System. Additionally, prospective data were collected from 

January 1, 2024 to January 31, 2024. Furthermore, we used 
data from ICU patients within the MIMIC-IV v2.2 data-
base.16 This study was completed in accordance with the ethi-
cal standards of the UCSD on human experimentation. IRB 
approved protocol #800258 with waiver of consent (“A 
Real-Time Multimodal Data Integration Model for Predic-
tion of Respiratory Failure in Patients with COVID-19”) was 
initially approved on August 30, 2021, with a latest approval 
date of February 8, 2024.

Patients were excluded if (1) their ICU length of stay was 
less than 5 hours, (2) they were mechanically ventilated 
before ICU admission, (3) there was no measurement of heart 
rate, blood pressure or labs prior to the prediction start time, 
or (4) had a Do Not Resuscitate (DNR) order in place. Time-
stamps up to 24 hours before and after surgery were also 
excluded to remove surgery-related ventilation events. For 
prediction purposes, patients were monitored throughout 
their ICU stay until either (1) the time of MV or (2) the time 
of transfer out of the ICU. To allow for adequate data collec-
tion, predictions commenced 4 hours after ICU admission 
and were updated on an hourly basis based on the newest 
clinical data.

The overall dataset was divided into a development cohort 
consisting of UCSD encounters and a local validation cohort 
consisting of MIMIC-IV encounters. The UCSD development 
cohort was further randomized into a training cohort (con-
sisting of 80% of encounters) and testing cohort (consisting 
of the remaining 20% of encounters). The development 
cohort was used for model training and internal testing while 
the local validation cohort was solely used for model testing 
purposes with model parameters initialized from the final 
UCSD trained model. We utilized a custom 5-point labeling 
scale for MV (Section S1) for use during training to account 
for the various physiological states of respiratory failure. For 
model evaluation purposes, a Vent.io score of ≥3 was defined 
as the positive class, and a Vent.io score of <3 was defined as 
the control class.

Model features
Data from UCSD Health System were extracted from a clini-
cal data repository (Epic Clarity; Epic Systems). Vent.io 
model features are similar to a previously published model 
called DETERIO17 and consisted of 50 vital signs and labora-
tory measurements, 6 demographic features, 11 Systemic 
Inflammatory Response Syndrome (SIRS) and Sequential 
Organ Failure Assessment (SOFA) criteria, 12 medication 
categories, and 62 comorbidities (Section S2). The vital signs 
and laboratory measurements were grouped into 1-hour time 
series bins to account for varying data sampling frequencies. 
Variables sampled more than once per hour were resampled 
into hourly bins using the median. Updates were made hourly 
with new data and if no new data were present, existing val-
ues were carried forward for up to 24 hours. All remaining 
missing values were replaced using mean imputation. We 
reported missing data on an hourly basis for the 50 vital signs 
and laboratory measurements (Table S2). In addition to the 
142 clinical variables, we calculated 150 features derived 
from the 50 vital signs and laboratory measurements. For 
each vital sign and laboratory measurement, we derived base-
line values (mean value measured over the previous 72 
hours), local trends (change since last measurement), and the 
time since the variable was last measured (TSLM). Predic-
tions were made on an hourly basis using all 292 features.
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Model development, evaluation, and statistical 
analyses
Vent.io is a 3-layer feedforward neural network of size 100, 
80, and 64, similar to a previously published model for early 
prediction of sepsis called COMPOSER.18 Vent.io was 
trained using a temporal difference learning approach to pre-
dict the future value of a patient state using the value itera-
tion algorithm,19 starting from fifth hour of ICU admission 
up to the first instance of MV or transfer out of the ICU. In 
this context, the patient state was represented as a 64-dimen-
sional vector, which was mapped to a single state value 
through a fully connected neural network layer. All model 
development and training was done using Tensorflow 2.10.

Model performance was evaluated by thresholding on the 
predicted state value. For control patients, the model was 
trained to predict up to ICU discharge or 14 days, whichever 
occurred first. Vent.io included a conformal prediction mod-
ule similar to COMPOSER designed to identify out-of- 
distribution samples, thereby establishing the model's 
“conditions for use.”20 The parameters of Vent.io were ran-
domly initialized and optimized using the training dataset 
from the development cohort with L1-L2 regularization and 
dropout in the hidden layers to prevent overfitting. The deci-
sion threshold was chosen corresponding to 60% sensitivity 
at the encounter level based on clinical feedback to reduce the 
number of false positives. A predicted risk score beyond this 
threshold meant that Vent.io predicted that the patient would 
undergo MV within the prediction window (up to 24 hours 
before the time of MV T0). A predicted risk score less than 
the decision threshold meant that Vent.io did not predict MV 
within the prediction window. Additionally, Vent.io was 
made interpretable by calculating the relevance score of each 
input variable for every predicted risk score. To compute the 
relevance score, we took the derivative of the risk score with 
respect to all input features and multiplied it by the input fea-
tures. The most relevant features contributing to the risk 
score have the largest magnitude of the relevance score with 
the direction of influence determined from the sign of the 
input gradients.

We have reported the median and interquartile range for 
all continuous variables and percentages for all binary varia-
bles. The area under receiver operating characteristic curve 
(AUC) has been reported at the hourly window level. Specif-
icity (SPC), sensitivity (SEN), and positive predictive value 
(PPV) at a fixed decision threshold have been reported at the 
encounter level. The procedure to determine the number of 
true positives, false positives, true negatives, and false nega-
tives required to compute SPC, SEN, and PPV at the encoun-
ter level has been described in Section S3. AUC was 
calculated under the same end-user clinical response policy as 
our prior paper13 where alarms fired up to 72 hours in 
advance were suppressed and the model silenced for 6 hours 
after an alarm was fired.

Predetermined change protocol plan
Our PCCP for Vent.io is tailored to 2 scenarios: existing and 
new healthcare systems. In existing systems, model perform-
ance is monitored continuously over rolling 1-month win-
dows, using real-time gold-standard labels derived from bulk 
FHIR data. If performance falls below the PCCP threshold, 
data from the preceding 4 months is extracted via bulk FHIR 
for model fine-tuning. In new healthcare systems, a one-time 

bulk FHIR data pull (over the preceding 5 months or more) 
establishes baseline performance. If performance is below the 
threshold, these data are temporarily split 80/20 for fine- 
tuning and testing, respectively. The model is deployed in the 
new healthcare system only if the testing performance 
exceeds the PCCP threshold. After deployment or fine- 
tuning, performance monitoring resumes on a rolling win-
dow basis. This approach ensures ongoing model quality and 
regulatory compliance, allowing for system-specific adjust-
ments in both existing and new healthcare environments.

Prospective development at UCSD health
The Vent.io model was deployed in “silent mode” for real- 
time early prediction of MV within a 24-hour window in the 
ICU on a cloud-based platform. Our cloud-based analytics 
platform was developed to have real-time access to data ele-
ments in the EHR by leveraging the FHIR and HL7v2 stand-
ards.21 The real-time platform extracted data at an hourly 
resolution of all the active patients across all of ICUs within 
UCSD Health System using FHIR APIs with OAuth 2.0 
authentication. It processes an input feature set consisting of 
laboratory measurements, vitals measurements, comorbid-
ities, medications, and demographics and passes these data to 
the Vent.io inference engine. The inference engine consisted 
of Vent.io microservice hosted within an EC2 instance. The 
Vent.io risk scores generated by the Vent.io pipeline were 
written to a flowsheet within the EHR using an HL7v2 out-
bound message. The schematic diagram of the real-time 
deployment pipeline is shown in Figure 1. The Vent.io pipe-
line was deployed in silent mode for the real-time prediction 
of requiring MV across all ICUs within the UCSD Health Sys-
tem starting from January 1, 2024 with the PCCP in place.

Results
Patient characteristics
From UCSD Health System, 26 045 and 276 ICU encounters 
were included in the development and real-time prospective 
validation cohorts, respectively, after applying the exclusion 
criteria. Patient characteristics from these 2 cohorts are listed 
in Table 1. To evaluate the external generalizability of the 
Vent.io model, 35 534 encounters from the MIMIC-IV data-
base were used for local validation with patient characteris-
tics listed in Table 2.

Model performance on the UCSD development and 
prospective cohorts
Vent.io achieved improved performance on the UCSD cohort 
based on a 10-fold cross-validation median AUC of 0.897 
(IQR: 0.892-0.904) using the expanded feature set compared 
to a median AUC of 0.886 (IQR: 0.878-0.892) from Ven-
tNet. At a 60% sensitivity level, Vent.io had a median specif-
icity of 0.825 (IQR: 0.812-0.841) and PPV of 0.162 (IQR: 
0.148-0.176). The final model with the conformal prediction 
module using fixed parameters from the best-performing 
cross validation fold had an AUC of 0.908, sensitivity of 
0.602, specificity of 0.81, and PPV of 0.174. Vent.io also 
demonstrated robust performance when applied to the pro-
spective data from UCSD. The final model achieved a sensi-
tivity of 0.632, specificity of 0.849, and PPV of 0.235. Since 
the AUC was above the minimum of 0.85 established by the 
PCCP, further model fine-tuning was not required. Top pre-
dictive features included respiratory rate, heart rate (HR), 
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lymphocytes differential, blood urea nitrogen (BUN), albu-
min, oxygen saturation (O2Sat), and white blood count 
(Figure 2A). In terms of directionality, an elevated respiratory 
rate, HR, and BUN and a lower lymphocyte differential 
count, albumin, and O2Sat increased the risk for the need for 
MV (Figure 3A).

Model performance on the MIMIC-IV cohort
We used ICU encounters from the MIMIC-IV database to 
simulate the deployment of Vent.io at an external site. The 

final Vent.io model trained using UCSD data obtained an 
AUC of 0.73, lower than the minimum of 0.85 set by the 
PCCP, prompting a fine-tuning process. Starting with the 
parameters from the final Vent.io model, we fine-tuned Vent. 
io with different proportions of MIMIC-IV training data. 
Acceptable performance was achieved with 25% or more of 
the training data used to fine-tune the model (Figure 4). Res-
piratory rate, HR, BUN, O2Sat, and WBC remained top fea-
tures when evaluating Vent.io on MIMIC data with the same 
directionality while lymphocyte differential count and 

Figure 1. Schematic diagram of the Vent.io real-time deployment pipeline. The real-time platform extracts data at an hourly resolution of all active 
patients using FHIR APIs and passes the input feature set (consisting of laboratory measurements, vitals measurements, comorbidities, medications, 
and demographics) to the Vent.io inference engine. The Vent.io risk scores generated by the Vent.io pipeline are then written back to the EHR as a flow 
sheet item through an HL7 device data interface. The flowsheet then triggers a nurse facing Best Practice Advisory that alerts the caregiver that the 
patient is at risk of needing mechanical ventilation within a 24-hour window. AWS ¼ Amazon Web Services; EC2¼Elastic Compute Cloud; FHIR ¼ Fast 
Healthcare Interoperability Resources; HL7¼ health level 7; RDS ¼ relational database service.

Table 1. Patient characteristics for the UCSD cohort.

Development Prospective validation

Non-ventilated Ventilated Non-ventilated Ventilated

No. of encounters (%) 24 715 (94.9%) 1330 (5.1%) 260 (94.2%) 16 (5.8%)
Age (in years), median [IQR] 61.7 [48.4-72.7] 61.6 [40.1-71.6] 65.0 [54.9-75.3] 62.0 [52.7-68.1]
Gender (male), % 58.4 63.4 56.2 68.8
Race

White, % 48.7 49.1 45.4 37.5
African American, % 7.7 6.2 5.4 6.3
Asian, % 6.3 6.5 9.2 6.3

ICU length of stay (in hours), median [IQR] 51.8 [32.5-93.4] 222.3 [123.4-384.6] 73.2 [45.3-132.1] 337.4 [247.5-463.2]
CCI, median [IQR] 2 [0-3] 2 [1-3] 2 [1-5] 3 [2-6]
SOFA, median [IQR] 1 [2-4] 8 [10-12] 3 [1-4] 9 [7-11.5]
Mortality, % 3.5 33.6 2.7 18.8
Time from ICU admission to T0 (in hours), median [IQR] N/A 28 [11-57] N/A 15 [6.5-55.5]

CCI ¼ Charlson comorbidity index; ICU ¼ intensive care unit; SOFA ¼ Sequential Organ Failure Assessment; T0 ¼ time of mechanical ventilation initiation.
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albumin are replaced by pH and partial pressure of oxygen 
(Figures 2B and 3B).

Discussion
Our study adds to the existing literature in several important 
ways. First, we updated a deep learning model that allows the 
prediction of the need for MV for inpatients at risk of respira-
tory failure. Second, our model is externally generalizable 
with minor local retraining to a large external cohort of 
patients. Third, we have conducted a real-time implementa-
tion of our algorithms in the electronic health record which 
should form the basis for prospective randomized trials in the 

near future. Our updated model utilizes an expanded labeling 
scheme that incorporates intermediate phenotypes such as 
severe hypoxemia. The increased granularity of the labels 
enables our model to account for patients who are at 
increased risk for MV but have not been put on a ventilator. 
Furthermore, the addition of specific features such as medica-
tions and comorbid conditions leads to clinical actionability. 
Our algorithm also considers code status such as “Do Not 
Intubate/Resuscitate” and exclusion of patients intubated for 
surgical cases. Together, these changes enable Vent.io to 
make more accurate predictions.

Accurate and early prediction of patients at high risk for 
invasive MV is an important support tool for clinicians to 

Table 2. Patient characteristics for the MIMIC cohort.

Non-ventilated Ventilated

No. of encounters (%) 30 075 (84.6%) 5459 (15.4%)
Age (in years), median [IQR] 64 [51-76] 65 [55-75]
Gender (Male), % 60.8 52.0
Race

White, % 69.2 69.4
African American, % 13.2 8.8
Asian, % 3.3 2.8

ICU length of stay (in hours), median [IQR] 141 [85-237] 257 [158-423]
CCI, median [IQR] 5 [2-7] 5 [3-7]
SOFA, median [IQR] 1 [1-3] 2 [1-3]
Mortality, % 5.8 19.7
Time from ICU admission to T0 (in hours), median [IQR] N/A 10 [6-25]

CCI ¼ Charlson comorbidity index; ICU ¼ intensive care unit; SOFA ¼ Sequential Organ Failure Assessment; T0 ¼ time of mechanical ventilation initiation.

Figure 2. Population-level plot of top contributing factors to the increase in model risk score. The x-axis represents hours prior to onset time of 
mechanical ventilation. The y-axis represents the top factors (sorted by the magnitude of relevance score) across the patient populations at the (A) UCSD 
cohort and (B) MIMIC cohort. Resp rate ¼ respiratory rate; HR ¼ heart rate; Lymphocytes diff ¼ lymphocyte differential count; BUN ¼ blood urea 
nitrogen; O2Sat ¼ oxygen saturation; WBC ¼ white blood count; AST ¼ aspartate aminotransferase; RDW ¼ red blood cell distribution width; PaO2 ¼

partial pressure of oxygen; PTT ¼ partial thromboplastin time; PaCO2 ¼ partial pressure of carbon dioxide; FiO2 ¼ fraction of inspired oxygen.
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guide clinical care and decisions. For VentNet, we previously 
showed that it outperformed the ROX index22 in terms of 
AUC.13 The retrospective performance of Vent.io exceeds an 
existing commercial algorithm for respiratory failure, 

CLEWICU,23 in terms of sensitivity (60.2% vs 53.7%) and 
PPV (17.4% vs 4.7%) with the caveat that the models were 
evaluated on different datasets. Providing early identification 
allows additional time for clinicians to implement interven-
tions such as diuretic or antimicrobial administration to avoid 
progression to MV as well as allocate resources appropriately 
if a patient does require intubation. For example, notifying the 
patient care team, via the EHR, that a patient is high risk for 
invasive MV in the next 12-24 hours can provide a trigger to 
promote patient re-assessment by the treatment team or even 
rapid response team evaluation. Hospital rapid response sys-
tems, including rapid response teams, emphasize the impor-
tance of early recognition of patient deterioration, resulting in 
improvements in patient outcomes such as hospital length or 
stay24 and improved patient safety.25

Using ML models generated in one health system and apply-
ing them to another can lead to challenges such as degradation 
of model performance due to differences in variables such as 
EHR data constructs and clinical/administrative practices.26

Transfer learning allows fine-tuning of a model on a small 
amount of local, site-specific data making the algorithm 
adaptable across different healthcare systems.27–29 In this 
study, we provide an example of successful application of 
transfer learning techniques to generalize model performance 
at an external site. We found Vent.io performed similarly to 
the UCSD dataset once fine-tuned using only 25% of the 
MIMIC training data via transfer learning. This approach is 
practical and allows site-specific tailoring the model using a 

Figure 3. Directionality with respect to influence of top factors contributing to an increase in the risk score. The x-axis represents the percentage 
contribution of each feature to the risk score. The y-axis represents the top factors (sorted by the magnitude of relevance score) across the patient 
populations at the (A) UCSD cohort and (B) MIMIC cohort. Resp rate ¼ respiratory rate; HR ¼ heart rate; Lymphocytes diff ¼ lymphocyte differential 
count; BUN ¼ blood urea nitrogen; O2Sat ¼ oxygen saturation; WBC ¼white blood count; AST ¼ aspartate aminotransferase; RDW ¼ red blood cell 
distribution width; PaO2 ¼ partial pressure of oxygen; PTT ¼ partial thromboplastin time; PaCO2 ¼ partial pressure of carbon dioxide; FiO2 ¼ fraction of 
inspired oxygen.

Figure 4. Local validation results using a fine-tuned Vent.io model on 
varying percentages of MIMIC training data.
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small amount of data while maintaining model performance 
and ensures privacy of institutional patient data. We have pre-
viously applied this approach to the early detection of sep-
sis;28,29 however, our novel use of this technique for a ML 
algorithm to predict the need for MV demonstrates the feasi-
bility of using this approach across different disease processes.

Finally, we present one of the first examples of real-time 
live score generation for a MV prediction algorithm. Prior 
algorithms have largely used retrospective data or delayed 
data via data warehouses.7–11 The integration of the model 
using FHIR allows real-time score generation, which is an 
essential step towards integration into clinical practice.30 We 
also present our post-implementation monitoring protocol 
with integration of a PCCP to identify issues with model deg-
radation and ensure consistent model performance. Although 
we did not need to fine-tune the model at the UCSD Health 
System, as the performance was acceptable per the PCCP, 
our real-time pipeline makes use of FHIR to assign gold- 
standard labels to patients that can be used to fine-tune the 
model if required. Implementing a real-time score generation 
process and ensuring continued model accuracy using a 
silent-mode prospective approach prioritizes patient safety. 
This successful real-time pipeline will lay the groundwork for 
future clinical integration and prospective randomized trials.

Despite our study’s strengths, we acknowledge several limi-
tations. First, our techniques rely on the electronic health 
record, which may be susceptible to errors in some cases. For 
example, we define the need for MV based on the documen-
tation of PEEP and FiO2 in the EHR. However, there may be 
delays or misclassification on this basis. We observed an 
increased prevalence of MV in the MIMIC cohort compared 
to the UCSD cohort likely due to lack of ventilation measure-
ments for non-ED and non-ICU stays, meaning patients ven-
tilated in non-ICU units would not be excluded if they were 
ventilated before ICU admission. Second, we have not con-
ducted a randomized controlled trial using our approach. 
Thus, we cannot say with confidence that our new deep 
learning algorithm improves clinical outcomes. However, we 
are now in a strong position to design such studies based on 
our new findings.
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