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Abstract
Background  To establish and validate a radiomics-based model for staging liver fibrosis at contrast-enhanced CT images.
Materials and methods  This retrospective study developed two radiomics-based models (R-score: radiomics signature; 
R-fibrosis: integrate radiomic and serum variables) in a training cohort of 332 patients (median age, 59 years; interquartile 
range, 51–67 years; 256 men) with biopsy-proven liver fibrosis who underwent contrast-enhanced CT between January 2017 
and December 2020. Radiomic features were extracted from non-contrast, arterial and portal phase CT images and selected 
using the least absolute shrinkage and selection operator (LASSO) logistic regression to differentiate stage F3–F4 from 
stage F0–F2. Optimal cutoffs to diagnose significant fibrosis (stage F2–F4), advanced fibrosis (stage F3–F4) and cirrhosis 
(stage F4) were determined by receiver operating characteristic curve analysis. Diagnostic performance was evaluated by 
area under the curve, Obuchowski index, calibrations and decision curve analysis. An internal validation was conducted in 
111 randomly assigned patients (median age, 58 years; interquartile range, 49–66 years; 89 men).
Results  In the validation cohort, R-score and R-fibrosis (Obuchowski index, 0.843 and 0.846, respectively) significantly 
outperformed aspartate transaminase-to-platelet ratio (APRI) (Obuchowski index, 0.651; p < .001) and fibrosis-4 index (FIB-
4) (Obuchowski index, 0.676; p < .001) for staging liver fibrosis. Using the cutoffs, R-fibrosis and R-score had a sensitivity 
range of 70–87%, specificity range of 71–97%, and accuracy range of 82–86% in diagnosing significant fibrosis, advanced 
fibrosis and cirrhosis.
Conclusion  Radiomic analysis of contrast-enhanced CT images can reach great diagnostic performance of liver fibrosis.

Keywords  Radiomics · Contrast-enhanced CT · Liver fibrosis · Prediction model · Cirrhosis · Noninvasive · Machine 
learning · Obuchowski index · Calibration · Decision curve analysis
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Background

Liver fibrosis is an important cause of morbidity and mor-
tality in patients with chronic insults (e.g. viral hepatitis, 
alcohol and non-alcoholic fatty liver diseases [NAFLD]) 
and complications mainly occur in advanced fibrosis [1]. 
Fibrosis staging is an essential step in the clinical assessment 
of patients with chronic liver disease to identify those who 
require treatment [2]. Liver biopsy is the current reference 
method for staging fibrosis, but it has defects including inva-
siveness, sample biases and interobserver variability [3–6]. 
Therefore, there is a need for noninvasive and accurate meth-
ods for staging liver fibrosis.

2018 practice guidance of the American Association for 
the Study of Liver Diseases (AASLD) recommended mul-
tiphase CT or MRI for initial diagnostic testing in at-risk 
patients with abnormal surveillance test results [7]. Com-
pared to MRI, CT offers unique advantages including low 
cost, fewer contradictions, nearly ubiquitous availability and 
whole organ imaging capacity [8]. To date, several studies 
have evaluated the ability of contrast-enhanced CT imaging 
to determine the severity of liver fibrosis [8–10]. However, 
the sample sizes of these studies were not big enough and 
that may not be sufficient for development and validation 
of models.

In the era of personalized medicine, radiomics has 
allowed large number of quantitative features to be extracted 
from images that provide information on shape, signal inten-
sity and texture [11, 12]. Our previous study established and 
validated a radiomics-based model at non-contrast CT for 
the prediction of cirrhosis in patients with hepatitis B virus 
(HBV) [13]. We hypothesized that a model based on radi-
omics features extracted from contrast-enhanced CT images 
may improve the staging of liver fibrosis. Therefore, the aim 
of this study was to develop and validate a radiomics model 
for the prediction of liver fibrosis using contrast-enhanced 
CT in the liver.

Materials and methods

This retrospective study was approved by the institutional 
review board of our institution, and the requirement for writ-
ten informed consent was waived.

Patients

Among the 1779 consecutive patients who underwent 
abdominal contrast-enhanced CT at our institution between 
January 2017 and December 2020, patients over 18 years 
who had available pathologic records of liver fibrosis within 
3 months of liver images at 1.5 mm thickness were retrospec-
tively reviewed. Of 927 eligible patients, 484 were excluded 
due to conditions that may interfere with the extraction of 
radiomic features of their nontumorous right hepatic lobes, 
including large (≥ 10 cm) or multiple (≥ 5) hepatic masses 
(n = 276), a tumor thrombus in the portal vein larger than 
the segmental branch (n = 63), bile duct obstruction (n = 29), 
previous surgical resection on the right hepatic lobe (n = 28), 
poor image quality because of metal or respiratory motion 
artifacts (n = 60) and incomplete clinical data (n = 28).

A total of 443 patients, including 345 men (median age, 
56 years; age range, 28–86 years) and 98 women (median 
age, 61 years; age range, 40–84 years), were finally included 
in this study cohort. This cohort was randomized in a three-
to-one ratio into training and validation cohorts, respec-
tively, using computer-generated random numbers without 
matching of any patient characteristics.

332 patients (median age, 59  years; age range, 
28–86 years; 256 men [median age, 58 years; age range, 
28–86 years] and 76 women [median age, 63 years; age 
range, 47–84 years]) were included in the training cohort 
and 111 (median age, 56 years; age range, 35–75 years; 89 
men [median age, 56 years; age range, 35–75 years] and 
22 women [median age, 55 years; age range, 40–68 years]) 
were in the validation cohort. The flow diagram for the 
study population is shown in Fig. 1 and Table 1 shows the 
demographic and clinical characteristics of the cohorts. The 
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median interval between CT images and pathologic evalua-
tion was 15 days ± 18 (standard deviation; range, 1–76 days).

Reference standard for liver fibrosis

Liver pathologic examination served as the reference 
standard for staging liver fibrosis. Liver specimens were 
obtained by liver resection (n = 308); liver transplantation 
(n = 32); or percutaneous liver biopsy (n = 103) (Table 1), 
which were histologically analyzed by two pathologists in 
consensus. Fibrosis stage was determined according to the 
Metavir scoring system [14], as follows: F0, no fibrosis; 
F1, portal fibrosis without septa; F2, portal fibrosis with 
rare septa; F3, numerous septa without cirrhosis; F4, cir-
rhosis. F ≥ 2 was considered as significant fibrosis and 
F ≥ 3 as advanced fibrosis.

Serum fibrosis tests

The aspartate aminotransferase-to-platelet ratio index 
(APRI) and the fibrosis-4 index (FIB-4) were calculated 
as (aspartate aminotransferase [international units/liter]/
upper normal limit × 100/platelet counts [× 109/liter]) 
and (age [years] × aspartate aminotransferase [interna-
tional units/liter])/(platelet counts [× 109/liter] × alanine 
aminotransferase [international units/liter]1/2) [15, 16], 
respectively. These indices were calculated using the 

results of laboratory tests performed within 26 days ± 13 
(range 3–76 days) from obtaining results of pathologic 
examination of the liver.

CT image acquisition

Contrast-enhanced CT scans were acquired in the axial plane 
with 0.75–1.5-mm-thick sections and a 0.75–1.5-mm recon-
struction interval. Image acquisition parameters are detailed 
in Appendix E1 (online resource).

Radiomic feature extraction and selection

One reader (S.N.T., with 7 years of clinical experience in 
abdominal radiology) selected regions of interest (ROIs) 
in the liver of all patients. ROIs for the liver were deline-
ated along the margin of the right hepatic lobe, at the level 
of the right portal vein, by excluding large hepatic ves-
sels and masses on non-contrast (mean area of ROIs, 48 
cm2 ± 16; range 17–108 cm2), arterial (mean area of ROIs, 
48 cm2 ± 18; range 16–108 cm2) and portal (mean area of 
ROIs, 51 cm2 ± 18; range 16–109 cm2) venous phases CT 
images using 3D slicer (version 4.11.1; http://​www.​slicer.​
org) (Fig. 2). To explore the stability of each feature, 30 
patients were randomly chosen; reader 1 repeated image 
segmentation twice and reader 2 independently performed 
segmentation to evaluate the intra- and interobserver 

Fig. 1   Patient selection flow 
chart. CT computed tomography

http://www.slicer.org
http://www.slicer.org
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reproducibility. The reproducibility was quantified by the 
intraclass correlation coefficient (ICC).

Image preprocessing and feature extraction were per-
formed using the open-source Pyradiomics package (ver-
sion 2.2.0: http://​www.​radio​mics.​io/​pyrad​iomics.​html). The 
voxel spacing was standardized with the size of 1 × 1 × 1 mm 
and voxel intensity values were discretized with a bin 
width of 25 HU to reduce the interference of image noise 
and normalize intensities [17], respectively. We extracted 

837 radiomic features (18 first-order statistics, 75 textural 
features and 744 wavelet transformations) from each two-
dimensional segmentation, giving a total of 2511 for every 
phase CT images (non-contrast, arterial and portal venous 
phases). The z-scores were used to standardize values of 
features and the mean and standard deviation determined 
in the training cohort were applied in the validation cohort.

A three-step procedure was followed to select signifi-
cant radiomic features. First, the reliability of each feature 

Table 1   Patient characteristics

Except where indicated, data are numbers of patients, with percentages in parentheses
ALT alanine transferase, APRI aspartate transaminase-to-platelet ratio, AST aspartate transaminase, FIB-4 
fibrosis-4 index, HCC hepatocellular carcinoma, INR international normalized ratio, NAFLD non-alcoholic 
fatty liver diseases
*Data are medians, with interquartile range in parentheses

Parameter Development (n = 332) Validation (n = 111) p value

Sex 0.60
 No. of men 256 (77.1) 89 (80.2)
 No. of women 76 (22.9) 22 (19.8)

Age (years)* 59 (51–67) 58 (49–66) 0.49
 Men 57 (50–66) 58 (49–66)
 Women 63 (56–69) 56 (54–59)

Underlying liver disease 0.19
 Hepatitis B 176 (53.0) 70 (63.1)
 Hepatitis C 13 (3.9) 6 (5.4)
 NAFLD 11 (3.3) 2 (1.8)
 Primary biliary cirrhosis 6 (1.8) 0 (0)
 None 126 (38.0) 33 (29.7)

Hepatic tumor 0.84
 HCC 121 (36.5) 41 (36.9)
 Other malignancy 21 (6.3) 5 (4.5)
 Hemangioma 66 (19.9) 20 (18.0)
 None 124 (37.3) 45 (40.6)

Pathologic confirmation method 0.54
 Percutaneous liver biopsy 74 (22.3) 29 (26.1)
 Liver resection 232 (69.9) 76 (68.5)
 Liver transplantation 26 (7.8) 6 (5.4)

Laboratory findings*
 AST (IU/mL) 29.8 (20.9–39.3) 29.2 (21.6–46.6) 0.26
 ALT (IU/mL) 27.3 (19.3–45.2) 32.1 (21.2–49.5) 0.16
 Total bilirubin (ng/mL) 12.7 (9.5–17.8) 13.7 (9.7–17.6) 0.42
 Platelet count (109/L) 138 (95–184) 143 (87–180) 0.91
 INR 1.03 (0.97–1.10) 1.01 (0.96–1.08) 0.31
 APRI 0.6 (0.3–1.0) 0.6 (0.3–1.3) 0.30
 FIB-4 2.4 (1.6–4.1) 2.7 (1.7–4.4) 0.96

Metavir fibrosis stage 0.10
 F0 43 (13.0) 10 (9.0)
 F1 60 (18.1) 14 (12.6)
 F2 40 (12.0) 24 (21.6)
 F3 56 (16.8) 20 (18.0)
 F4 133 (40.1) 43 (38.8)

http://www.radiomics.io/pyradiomics.html
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was qualified using ICC and features with ICC more than 
0.9 were kept for further analysis [18]. Second, irrelevant 
features that weakly correlated with fibrosis stage were 
removed; the correlation between each radiomic feature 
and metavir fibrosis stage was evaluated using the Kend-
all correlation coefficient. Features with correlation coef-
ficients less than 0.15 were eliminated. The final step in 
feature selection was performed using the least absolute 
shrinkage and selection operator (LASSO) logistic regres-
sion algorithm with penalty parameter tuning conducted 
by tenfold cross-validation [19], between stages F0–F2 
and F3–F4, and features with nonzero coefficients were 
considered independently related to fibrosis stage.

Clinical factors selection

We devised a three-step procedure for selection of clini-
cal factors. First, we used kendall correlation analysis to 
screen out factors with significant correlation (kendall 
correlation analysis, p < 0.05). Second, forward condi-
tional logistic multivariable analysis was used to select 
factors for the discrimination between stages F0–F2 and 
F3–F4 (input and output p value: 0.05 and 0.1, respec-
tively). Third, a function on the basis of the variance 

inflation factor (VIF) was conducted to check for the 
collinearity of variables included in the regression equa-
tions [20]. Variables with VIF greater than 10 (indicating 
multicollinearity) were excluded.

Model establishment and validation

The radiomics signature for the prediction of fibrosis 
(R-score) was created using support vector machine (SVM) 
as a multi classification to distinguish among stages F0, F1, 
F2, F3 and F4. SVM can be used to carry out general regres-
sion and classification and it was performed using “e1071” 
package (https://​CRAN.R-​proje​ct.​org/​packa​ge=​e1071) on R 
software (version 3.6.1, http://​www.r-​proje​ct.​org).

Multivariate linear regression analysis (Appendix E2 in 
online resource) was performed to establish a final model 
(R-fibrosis) based on radiomics signature (R-score) and clin-
ical factors for the prediction of fibrosis. The performance of 
models was tested in the independent validation cohort using 
the equation derived from the training cohort.

Fig. 2   ROIs for the liver at contrast-enhanced CT. ROIs were delin-
eated along the margin of the right hepatic lobe, at the level of the 
right portal vein, by excluding large hepatic vessels and masses on 

non-contrast, arterial and portal venous phases CT images. CT com-
puted tomography, ROI region of interest

https://CRAN.R-project.org/package=e1071
http://www.r-project.org


632	 Hepatology International (2022) 16:627–639

1 3

Statistical analysis

Categorical and continuous variables were compared using 
χ2 test and the Mann–Whitney U test, respectively. The cor-
relation between results calculated from models and patho-
logic liver fibrosis stage was evaluated using the spearman 
correlation analysis. Performance of models for staging liver 
fibrosis was evaluated using receiver operating characteris-
tics (ROC) curve analysis, area under the curve (AUC) value 
and the Obuchowski index, a multinomial version of ROC 
curve analysis adapted for ordinal references such as metavir 
staging of liver fibrosis [21]. The Obuchowski index is a 
weighted average of the areas under the curve obtained for 
all possible pairs of fibrosis stages to be differentiated and it 
estimates the probability that a test will correctly rank two 
randomly chosen patients with different stages of fibrosis. 
The optimal thresholds of models were determined using 
the ROC analysis by maximizing the Youden index. Delong 
nonparameteric approach was used to compare AUC values 
[22]. Calibration curves were plotted to evaluate the cali-
bration of the established model, accompanied by the Hos-
mer–Lemeshow test. Additionally, a decision curve analysis 
(DCA) was performed to assess the clinical usefulness and 
net benefits of the developed radiomics models [23]. A two-
sided p value less than 0.05 was indicative of a statistically 
significant difference.

Results

Characteristics of the study cohorts

The baseline characteristics of all patients are summarized 
in Table 1. There were no significant differences in clinical 
and pathological characteristics between the training and 
validation cohorts. No differences were found in rates of 
significant fibrosis (Training: 69.0%, 229 of 332; Valida-
tion: 78.4%, 87 of 111; p = 0.06), serious fibrosis (Training: 
56.9%, 189 of 332; Validation: 56.8%, 63 of 111; p = 0.97) 
and cirrhosis (Training: 40.1%, 133 of 332; Validation: 
38.8%, 43 of 111; p = 0.81) between the two cohorts. Results 
of APRI and FIB-4 were similar (p > 0.05 for both) between 
the two study cohorts.

Fibrosis‑related clinical factors

In the training cohort, platelet (PLT) count, glutamyl trans-
peptidase (GGT), albumin (ALB), albumin to globulin ratio 
(A/G) and total cholesterol (TC) were identified as independ-
ent fibrosis predictors by the multivariable logistic regres-
sion analysis (Table 2). The VIF of TC was 10.7 (over 10), 
indicating the collinearity, in which the variable should be 

excluded. According to the Kendall correlation coefficient 
of GGT and PLT (0.15 and − 0.292, respectively), the GGT 
to PLT ratio was involved in the prediction model.

Radiomic feature selection and signature 
construction

Among 2084 radiomic features with high stability, 320 
features with significant correlations to fibrosis stage were 
identified. And then, 21 independent features with nonzero 
coefficients were finally selected by the LASSO logistic 
regression (Fig. 3). A radiomic signature was constructed 
using SVM algorithm. The type of SVM was “eps-classifi-
cation”, of which the kernel function was radial basis. The 
value of gamma and epsilon was 0.045 and 0.1, respectively. 
The total number of support vectors was 153.

The R-score showed a positive correlation with liver 
fibrosis stage (r = 0.717, p < 0.001; Fig. 4). In the training 
cohort, the R-score showed AUCs of 0.904 (95% confidence 
interval [CI] 0.865, 0.942), 0.911 (95% CI 0.880, 0.943) and 
0.844 (95% CI 0.800, 0.889) for the diagnosis of significant 
fibrosis, advanced fibrosis and cirrhosis. The Obuchowski 
index, which indicates the overall accuracy of multiclass 
liver fibrosis staging, was 0. 847 (95% CI 0.797, 0.897) 
(Table 3). The R-score showed favorable discriminatory 
ability, with AUCs of 0.875 (95% CI 0.781, 0.969), 0.900 
(95% CI 0.842, 0.959) and 0.857 (95% CI 0.790, 0.925), for 
significant fibrosis, advanced fibrosis and cirrhosis in the 
validation cohort (Table 4).

Development and validation of the prediction 
model

A prediction model (R-fibrosis) integrated the R-score, GGT 
to PLT ratio, A/G and ALB (0, > 40 g/L; 1, ≤ 40 g/L). The 
equation for R-fibrosis derived from the training cohort was:

R- f ib ros i s  =  1 .675  ×  R- sco re  +  0 .107  ×  GGT/
PLT + 0.121 × ALB × A/G.

The R-fibrosis showed a positive correlation with liver 
fibrosis stage (r = 0.743, p < 0.001; Fig. 4). In the training 
cohort, AUCs of R-fibrosis for diagnosing significant fibro-
sis, advanced fibrosis and cirrhosis were 0.905 (95% CI 
0.867, 0.943), 0.915 (95% CI 0.884, 0.946) and 0.915 (95% 
CI 0.884, 0.946), respectively. And the Obuchowski index 
was 0.852 (95% CI 0.807, 0.898).

Table 4 summarizes the diagnostic performance of R-fibro-
sis, R-score, APRI and FIB-4 in the validation cohort. The 
AUCs of R-fibrosis and R-score for aiding in diagnosis of sig-
nificant fibrosis (0.901 and 0.875, 95% CI [0.818, 0.984] and 
[0.781, 0.969]), advanced fibrosis (0.883 and 0.900, 95% CI 
[0.822, 0.945] and [0.842, 0.959]) and cirrhosis (0.860 and 
0.857, 95% CI [0.791, 0.930] and [0.790, 0.925]) were higher 
than the AUCs for APRI (range 0.653–0.692) and FIB-4 
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(range 0.701–0.714) (Fig. 5). Using thresholds determined in 
the training cohort, R-fibrosis and R-score had a sensitivity 
range of 70–87%, specificity range of 71–97%, and accuracy 
range of 82–86% in diagnosing significant fibrosis, advanced 
fibrosis and cirrhosis in the validation cohort (Table 5).

Calibration curves of the R-fibrosis and R-score demon-
strated great agreement between predicted and actual signifi-
cant fibrosis, advanced fibrosis and cirrhosis in the valida-
tion cohort (Fig. 5). The Hosmer–Lemeshow test yielded a 

p value of > 0.05, suggesting no departure from the good fit. 
The decision curve analysis for the R-fibrosis, R-score, APRI 
and FIB-4 are presented in Fig. 5. R-fibrosis and R-score 
provided higher net benefit compared with other models and 
simple strategies of all patients or no patients across the 
majority of the range of reasonable threshold probabilities 
in the validation cohort. No obvious differences were found 
in terms of clinical benefit between R-fibrosis and R-score.

Table 2   Clinical characteristics 
of the training cohort related to 
fibrosis

b coefficients are from multivariable logistic regression. Clinical variables found to be significantly related 
to cirrhosis through spearman correlation analysis entered into forward conditional logistic multivariate 
analysis
ALB albumin, ALP alkaline phosphatase, ALT alanine aminotransferase, Apo A1 apolipoprotein A1, Apo 
B apolipoprotein B, AST aspartate aminotransferase, A/G albumin to globulin ratio, CB conjugated biliru-
bin, CRP C reactive protein, GGT​ glutamyl transpeptidase, GLOB globulin, Hb hemoglobin, HDL-C high 
density lipoprotein cholesterol, INR international normalized ratio, LAP leucine arylamidase, LDH lactate 
dehydrogenase, LDL-C low density lipoprotein cholesterol, PLT blood platelet, PT prothrombin time, RBC 
red blood cell, TB serum total bilirubin, TBA total bile acid, TC total cholesterol, VIF variance inflation fac-
tor

Variables Kendall correlation analysis Multivariable analysis Collinearity Sta-
tistics

Coefficient p value b coefficient p value Tolerance VIF

Age (years) − 0.042 0.33 NA NA NA NA
Sex (male, female) 0.087 0.10 NA NA NA NA
RBC (109/L) − 0.107 0.01 NA 0.53 0.284 3.52
PLT (109/L) − 0.292  < 0.001 − 0.012  < 0.001 0.699 1.43
Hb (g/L) − 0.106 0.02 NA 0.66 0.276 3.63
ALT (U/L) 0.089 0.04 NA 0.54 0.123 8.10
AST (U/L) 0.164  < 0.001 NA 0.98 0.115 8.68
ALP (U/L) 0.147 0.001 NA 0.81 0.202 4.95
GGT (U/L) 0.150 0.001 0.007 0.004 0.469 2.13
LDH (U/L) 0.045 0.298 NA NA NA NA
TB (umol/L) 0.000 0.99 NA NA NA NA
CB (umol/L) 0.169  < 0.001 NA 0.23 0.104 9.59
ALB (g/L) − 0.117 0.007 0.139 0.002 0.491 2.04
GLOB (g/L) 0.081 0.06 NA NA NA NA
A/G − 0.104 0.02 − 1.668  < 0.001 0.693 1.44
TBA (umol/L) 0.213  < 0.001 NA 0.22 0.528 1.89
LAP (U/L) 0.056 0.20 NA NA NA NA
TC (mmol/L) − 0.184  < 0.001 − 0.399 0.02 0.093 10.70
HDL-C (mmol/L) 0.009 0.83 NA NA NA NA
LDL-C (mmol/L) − 0.171  < 0.001 NA 0.20 0.045 22.03
Apo A1 (g/L) 0.010 0.83 NA NA NA NA
Apo B (g/L) − 0.168  < 0.001 NA 0.63 0.087 11.48
CRP (mg/L) 0.101 0.02 NA 0.49 0.512 1.95
PT (s) 0.189  < 0.001 NA 0.40 0.017 59.27
INR 0.210  < 0.001 NA 0.35 0.017 60.28
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Discussion

The aim of this study was to develop and validate radi-
omics-based models on contrast-enhanced CT radiomics 
for liver fibrosis. We concluded that radiomics analysis of 
contrast-enhanced CT allows for more accurate staging of 
liver fibrosis compared with other models. The R-fibrosis 

and R-score created by the training cohort data predicted 
the staging of liver fibrosis in the validation cohort with 
AUCs of 0.84–0.90 and accuracies of 82–86%. In agree-
ment with our hypothesis, radiomics models (Obuchowski 
index, 0.84–0.85) outperformed custom serum indices 
(Obuchowski index, 0.65–0.68).

There are various less-invasive methods for staging liver 
fibrosis including serological markers and elastography. 

Fig. 3   Selections of radiomic features using the LASSO regression. a 
Optimal λ value was determined by the LASSO model using tenfold 
cross-validation via minimum criteria. The AUC curve was plotted 
versus log(λ). Dotted vertical lines were drawn at the optimal val-
ues using the minimum criteria and the 1 standard error of the mini-

mum criteria (the 1—standard error criteria). The optimal λ value of 
0.0376 was chosen. b LASSO coefficient profiles of the 320 selected 
features is presented. AUC​ area under the curve. LASSO least abso-
lute shrinkage and selection operator

Fig. 4   Box-and-whisker plot of the R-score and R-fibrosis for each 
pathologic liver fibrosis stage in the training cohort. Boxes, thick 
horizontal bars within the boxes, and whiskers represent interquartile 

ranges (IQRs), medians and 1.5 × IQR, respectively. Both R-score and 
R-fibrosis have positive correlations with liver fibrosis stage (r > 0.7, 
p < 0.001 for both)
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Ultrasound-based elastography (including transient elas-
tography [TE] and two-dimensional shear wave elastog-
raphy [2D-SWE]) and magnetic resonance elastography 
(MRE) are known to have great diagnostic performance 
for staging liver fibrosis [19, 24, 25]. However, elastog-
raphy techniques are not widely used in China because 
of high prices and limited cost-effectiveness for general 
hospitals. HBV carriers are frequently suggested to receive 
annual contrast-enhanced CT or MRI in China. Our pre-
vious study developed a radiomics-based model at non-
contrast CT for predicting cirrhosis [13] and this study 

used contrast-enhanced CT for further investigation (sig-
nificant & advanced fibrosis). Ultrasonography is used as 
the initial tool for early screening of liver tumor in patients 
with chronic hepatitis in the world. However, the normali-
zation of ultrasound images is difficult and software that 
can preprocess and extract radiomic features from two-
dimensional images is rare. We are also researching the 
image processing algorithms for future consideration of 
ultrasound images.

This study considered not only chronic liver diseases but 
also liver masses to make the R-fibrosis and R-score suit-
able for major kinds of patients with liver fibrosis. Fibrosis 
staging can help guide the treatment plans. Both contrast-
enhanced CT and MRI are recommended by guidelines 
for early detection of liver tumor for patients with chronic 
liver diseases [7, 26], and many studies have focused on 
image data mining at MRI involving image findings and 
texture analysis [27–29]. A study conducted by Park et al. 
[29] analyzed Gadoxetic Acid-enhanced MRI for stag-
ing liver fibrosis using radiomics and obtained radiomics 
fibrosis index with the AUC range of 0.89–0.91 (similar to 
R-score and R-fibrosis). Actually, CT is more readily avail-
able than MRI. Computer-aided visual assessment of liver 
or spleen volume and homogeneity on CT allowed for the 
detection of fibrosis stage but showed neglect of multiclass 
accuracy [10, 30]. Moreover, none of them were validated 
in independent test data sets. A deep convolutional neural 
network (DCNN) system for staging liver fibrosis was devel-
oped using portal venous phases CT images [31]. Unlike 
texture analysis, the DCNN system extracted and analyzed 
features from cropped and zoomed images. Diagnostic per-
formance of the DCNN system is not greater than us (AUC 
range 0.73–0.76), although there should be a head-to-head 
comparison for comparing these two methods. A recent 
study revealed that DCNN system should be established 
based on the entire upper abdomen at CT images which can 
significantly improve diagnostic performance (AUC range 
0.88–0.92) [32].

Table 3   Diagnostic performance of models for staging liver fibrosis 
in the training cohort

Data in parenthesis are 95% confidence intervals
AUC​ area under the curve, R-score radiomics signature for the predic-
tion of fibrosis, R-fibrosis final established model for the prediction of 
fibrosis

Parameter R-score R-fibrosis

Significant fibrosis (F2–F4)
 AUC​ 0.904 (0.865, 0.942) 0.905 (0.867, 0.943)
 Threshold − 0.258 − 0.403
 Sensitivity (%) 92.1 (87.9, 95.3) 94.8 (91.0, 97.3)
 Specificity (%) 76.7 (67.3, 84.5) 74.8 (65.2, 82.8)
 Accuracy (%) 87.3 (83.9, 90.9) 88.6 (85.1, 92.0)

Advanced fibrosis (F3–F4)
 AUC​ 0.911 (0.880, 0.943) 0.915 (0.884, 0.946)
 Threshold 0.167 0.332
 Sensitivity (%) 83.6 (77.4, 88.7) 85.8 (79.9, 90.5)
 Specificity (%) 89.3 (83.1, 93.7) 87.9 (81.6, 92.7)
 Accuracy (%) 86.1 (82.4, 89.9) 86.7 (83.1, 90.4)

Cirrhosis (F4)
 AUC​ 0.844 (0.800, 0.889) 0.857 (0.814, 0.899)
 Threshold 0.503 0.950
 Sensitivity (%) 60.7 (50.8, 70.0) 65.4 (55.6, 74.4)
 Specificity (%) 95.6 (92.0, 97.8) 90.2 (85.6, 93.8)
 Accuracy (%) 84.3 (80.4, 88.3) 82.2 (78.1, 86.4)

Obuchowski index 0.847 (0.797, 0.897) 0.852 (0.807, 0.898)

Table 4   Areas under the curve and Obuchowski indexes of R-score and serum fibrosis tests for staging liver fibrosis in the validation cohort

Data in parenthesis are 95% confidence intervals
APRI aspartate aminotransferase-to-platelet ratio index, AUC​ area under the curve, FIB-4 fibrosis-4 index, R-score radiomics signature for the 
prediction of fibrosis, R-fibrosis final established model for the prediction of fibrosis
*Significantly different from the results of R-score (p < 0.05)
§Significantly different from the results of R-fibrosis (p < 0.05)

Parameter R-score R-fibrosis APRI FIB-4

Significant fibrosis (F2–F4) 0.875 (0.781, 0.969) 0.901 (0.818, 0.984) 0.692 (0.581, 0.804) *§ 0.713 (0.619, 0.808) *§

Advanced fibrosis (F3–F4) 0.900 (0.842, 0.959) 0.883 (0.822, 0.945) 0.673 (0.569, 0.776) *§ 0.714 (0.617, 0.811) *§

Cirrhosis (F4) 0.857 (0.790, 0.925) 0.860 (0.791, 0.930) 0.653 (0.533, 0.772) *§ 0.701 (0.581, 0.820) *§

Obuchowski index 0.843 (0.808, 0.877) 0.846 (0.812, 0.880) 0.651 (0.561, 0.742) *§ 0.676 (0.606, 0.780) *§
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The established radiomic signature (R-score) in this study 
included 4 first-order statistics and 17 textural features. As 
similar to previous studies [33, 34], most of (90.5%, 19 of 
21) these included features were processed by wavelet trans-
form. 12 features were derived from non-contrast CT and 
others were from arterial (4) and portal (5) venous phases, 
of which the cause might be non-contrast CT can provide 
more stable features without effects of personal intake. The 
final model (R-fibrosis) included GGT/PLT, ALB and A/G 

in addition to R-score. Results calculated by R-score are 
decision values of all binary classifiers computed in multi-
class classification. It is normal for established models to get 
negative values. We aimed to develop models with detailed 
cutoff values for multiclass classification in this study to be 
easily applied in other centers. The predictive value of the 
GGT to PLT ratio for significant fibrosis and cirrhosis was 
confirmed by Lemoine et al. [35] and Lu et al. [36]. ALB 
has been confirmed as an independent indicator of advanced 

Fig. 5   Calibration curves (left) and decision curve analysis (right) 
for each model in the validation dataset. R-score and R-fibrosis were 
established due to the training cohort and validated for the prediction 
of significant fibrosis (a), advanced fibrosis (b) and cirrhosis (c). In 
decision curve analysis, the y-axis measures the net benefit, which 

was calculated by summing the benefits (true-positive results) and 
subtracting the harms (false-positive results), weighting the latter by 
a factor related to the relative harm of an undetected fibrosis status 
compared with the harm of unnecessary treatment
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liver fibrosis in patients with NAFLD [37], and it can also 
significantly contribute to the index for staging liver fibrosis 
in patients with viral hepatitis [38, 39]. A/G was used as 
biomarkers in many cases such as tumor prognosis [40–42] 
and chronic diseases [43–45], but only one study involved 
A/G into the fibrosis markers [46]. The specificity of A/G for 
fibrosis might not be so high, and thus we make it comput-
able when ALB ≤ 40 g/L.

There were several limitations in our study. First, the 
limited population size and the unbalanced distribution of 
the patient population restricted the great establishment of 
the prediction model. Moreover, the retrospective study may 
introduce selection biases, and there were larger numbers 
of patients with advanced fibrosis (i.e. stages F3&F4) than 
others (i.e. stages F0–F2). Second, the proposed radiom-
ics-based model was established using data obtained from 
a single center. Our model needed to be further validated 
by prospective multicenter studies with considerably large 
datasets. Third, image findings related to significant fibro-
sis (a nodular or irregular hepatic surface, parenchymal 
abnormalities, a blunt liver edge, intrahepatic morphologi-
cal changes and clinical manifestations of portal hyperten-
sion) were not considered in this study. The main reason 
is that these image findings are frequently suggestive of 
cirrhosis [47]. Fourth, this study did not consider different 
etiologies on feature extraction. Different etiologies have a 
certain impact on fibrosis, indicating the possibility of differ-
ent feature values caused by different etiologies. Therefore, 
subgroup analysis should be conducted in different etiolo-
gies to ensure the objectivity of the results. Finally, because 
elastography methods (TE or 2DSWE) were not performed 
for these patients, we were unable to compare the efficacy of 
our model with that of elastography for staging liver fibrosis.

Conclusions

In conclusion, we proposed a noninvasive and convenient 
radiomics-based model at contrast-enhanced CT images 
which allowed for accurate diagnosis of clinically significant 
liver fibrosis. Compared with our previous radiomics model 

based on non-contrast CT scans, R-fibrosis can additionally 
become as an update version for the prediction of significant 
and advanced fibrosis.
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*Threshold values were derived from the training cohort

Parameter Model Threshold value* Sensitivity (%) Specificity (%) Accuracy (%)

Significant fibrosis (F2–F4) R-score − 0.258 83.9 (73/87) [76.0, 91.8] 87.5 (21/24) [73.2, 99.9] 84.7 (94/111) [77.9, 91.5]
R-fibrosis − 0.403 87.4 (76/87) [80.2, 94.5] 70.8 (17/24) [51.2, 90.4] 83.8 (93/111) [76.8, 90.7]

Advanced fibrosis (F3–F4) R-score 0.167 71.4 (45/63) [60.0, 82.9] 95.8 (46/48) [90.0, 99.9] 82.0 (91/111) [74.7, 89.2]
R-fibrosis 0.332 76.2 (48/63) [65.4, 87.0] 91.7 (44/48) [83.6, 99.8] 82.9 (92/111) [75.8, 90.0]

Cirrhosis (F4) R-score 0.503 69.8 (30/43) [55.5, 84.1] 91.2 (62/68) [84.3, 98.1] 82.9 (92/111) [75.8, 90.0]
R-fibrosis 0.950 79.1 (34/43) [66.4, 91.7] 89.7 (61/68) [82.3, 97.1] 85.6 (95/111) [78.9, 92.2]

https://doi.org/10.1007/s12072-022-10326-7


638	 Hepatology International (2022) 16:627–639

1 3

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 
2005;115(2):209–218

	 2.	 Liver European Association for Study Of and Higado Asociacion 
Latinoamericana Para El Estudio Del, EASL-ALEH Clinical Prac-
tice Guidelines: Non-invasive tests for evaluation of liver disease 
severity and prognosis. J Hepatol, 2015. 63(1): 237–64.

	 3.	 Perrault J, Mcgill DB, Ott BJ, et al. Liver biopsy: complica-
tions in 1000 inpatients and outpatients. Gastroenterology. 
1978;74(1):103–106

	 4.	 Strassburg CP, Manns MP. Approaches to liver biopsy techniques–
revisited. Semin Liver Dis. 2006;26(4):318–327

	 5.	 Maharaj B, Maharaj RJ, Leary WP, et al. Sampling variability and 
its influence on the diagnostic yield of percutaneous needle biopsy 
of the liver. Lancet. 1986;1(8480):523–525

	 6.	 Regev A, Berho M, Jeffers LJ, et al. Sampling error and intrao-
bserver variation in liver biopsy in patients with chronic HCV 
infection. Am J Gastroenterol. 2002;97(10):2614–2618

	 7.	 Marrero JA, Kulik LM, Sirlin CB, et al. Diagnosis, Staging, and 
Management of Hepatocellular Carcinoma: 2018 Practice Guid-
ance by the American Association for the Study of Liver Diseases. 
Hepatology. 2018;68(2):723–750

	 8.	 Daginawala N, Li B, Buch K, et al. Using texture analyses of 
contrast enhanced CT to assess hepatic fibrosis. Eur J Radiol. 
2016;85(3):511–517

	 9.	 Simpson AL, Adams LB, Allen PJ, et  al. Texture analysis 
of preoperative CT images for prediction of postoperative 
hepatic insufficiency: a preliminary study. J Am Coll Surg. 
2015;220(3):339–346

	10.	 Romero-Gomez M, Gomez-Gonzalez E, Madrazo A, et al. Opti-
cal analysis of computed tomography images of the liver predicts 
fibrosis stage and distribution in chronic hepatitis C. Hepatology. 
2008;47(3):810–816

	11.	 R. J. Gillies, P. E. Kinahan, H. Hricak, Radiomics: Images Are 
More than Pictures, They Are Data. Radiology. 278(2): 563–77.

	12.	 Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour 
phenotype by noninvasive imaging using a quantitative radiomics 
approach. Nat Commun. 2014;5:4006

	13.	 Wang JC, Fu R, Tao XW, et al. A radiomics-based model on non-
contrast CT for predicting cirrhosis: make the most of image data. 
Biomark Res. 2020;8:47

	14.	 Bedossa P, Poynard T. An algorithm for the grading of activity 
in chronic hepatitis C. The METAVIR Cooperative Study Group. 
Hepatology. 1996;24(2):289–293

	15.	 Wai CT, Greenson JK, Fontana RJ, et al. A simple noninvasive 
index can predict both significant fibrosis and cirrhosis in patients 
with chronic hepatitis C. Hepatology. 2003;38(2):518–526

	16.	 Vallet-Pichard A, Mallet V, Nalpas B, et al. FIB-4: an inexpensive 
and accurate marker of fibrosis in HCV infection. comparison 
with liver biopsy and fibrotest. Hepatology. 2007;46(1):32–36

	17.	 Van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational 
radiomics system to decode the radiographic phenotype. Cancer 
Res. 2017;77(21):e104–e107

	18.	 Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing 
rater reliability. Psychol Bull. 1979;86(2):420–428

	19.	 Friedrich-Rust M, Ong MF, Martens S, et al. Performance of tran-
sient elastography for the staging of liver fibrosis: a meta-analysis. 
Gastroenterology. 2008;134(4):960–974

	20.	 O’brien Rm. A caution regarding rules of thumb for variance 
inflation factors. Qual Quant. 2007;41(5):673–690

	21.	 Lambert J, Halfon P, Penaranda G, et al. How to measure the 
diagnostic accuracy of noninvasive liver fibrosis indices: the area 
under the ROC curve revisited. Clin Chem. 2008;54(8):1372–1378

	22.	 Delong ER, Delong DM, Clarke-Pearson DL. Comparing the 
areas under two or more correlated receiver operating char-
acteristic curves: a nonparametric approach. Biometrics. 
1988;44(3):837–845

	23.	 Steyerberg EW, Vickers AJ. Decision curve analysis: a discussion. 
Med Decis Making. 2008;28(1):146–149

	24.	 Herrmann E, De Ledinghen V, Cassinotto C, et al. Assessment 
of biopsy-proven liver fibrosis by two-dimensional shear wave 
elastography: an individual patient data-based meta-analysis. 
Hepatology. 2018;67(1):260–272

	25.	 Singh S, Venkatesh SK, Wang Z, et al. Diagnostic performance of 
magnetic resonance elastography in staging liver fibrosis: a sys-
tematic review and meta-analysis of individual participant data. 
Clin Gastroenterol Hepatol. 2015;13(3):440–451 (e6)

	26.	 Easloffice Easloffice Eu European Association for the Study of the 
Liver. Electronic Address and Liver European Association for the 
Study of The, EASL Clinical Practice Guidelines: Management 
of hepatocellular carcinoma. J Hepatol, 2018. 69(1): 182–236.

	27.	 Watanabe H, Kanematsu M, Goshima S, et al. Staging hepatic 
fibrosis: comparison of gadoxetate disodium-enhanced and diffu-
sion-weighted MR imaging–preliminary observations. Radiology. 
2011;259(1):142–150

	28.	 Petitclerc L, Sebastiani G, Gilbert G, et al. Liver fibrosis: review 
of current imaging and MRI quantification techniques. J Magn 
Reson Imaging. 2017;45(5):1276–1295

	29.	 Park HJ, Lee SS, Park B, et al. Radiomics analysis of gadox-
etic acid-enhanced MRI for staging liver fibrosis. Radiology. 
2019;290(2):380–387

	30.	 Son JH, Lee SS, Lee Y, et al. Assessment of liver fibrosis sever-
ity using computed tomography-based liver and spleen volu-
metric indices in patients with chronic liver disease. Eur Radiol. 
2020;30(6):3486–3496

	31.	 Yasaka K, Akai H, Kunimatsu A, et  al. Deep learning 
for staging liver fibrosis on CT: a pilot study. Eur Radiol. 
2018;28(11):4578–4585

	32.	 Yin Y, Yakar D, Rajo D, et al. Liver fibrosis staging by deep 
learning a visual-based explanation of diagnostic decisions of the 
model. Eur Radiol. 2021;31(12):9620–9627

	33.	 Ji GW, Zhang YD, Zhang H, et al. Biliary Tract Cancer at CT: 
a radiomics-based model to predict lymph node metastasis and 
survival outcomes. Radiology. 2019;290(1):90–98

	34.	 Xu X, Zhang HL, Liu QP, et al. Radiomic analysis of contrast-
enhanced CT predicts microvascular invasion and outcome in 
hepatocellular carcinoma. J Hepatol. 2019;70(6):1133–1144

	35.	 Lemoine M, Shimakawa Y, Nayagam S, et al. The gamma-glu-
tamyl transpeptidase to platelet ratio (GPR) predicts significant 
liver fibrosis and cirrhosis in patients with chronic HBV infection 
in West Africa. Gut. 2016;65(8):1369–1376

	36.	 Lu XJ, Li XH, Yuan ZX, et  al. Assessment of liver fibrosis 
with the gamma-glutamyl transpeptidase to platelet ratio: a 

http://creativecommons.org/licenses/by/4.0/


639Hepatology International (2022) 16:627–639	

1 3

multicentre validation in patients with HBV infection. Gut. 
2018;67(10):1903–1904

	37.	 Angulo P, Hui JM, Marchesini G, et al. The NAFLD fibrosis 
score: a noninvasive system that identifies liver fibrosis in patients 
with NAFLD. Hepatology. 2007;45(4):846–854

	38.	 Fujita K, Nomura T, Morishita A, et al. Albumin-bilirubin score 
differentiates liver fibrosis stage and hepatocellular carcinoma 
incidence in chronic Hepatitis B virus infection: a retrospective 
cohort study. Am J Trop Med Hyg. 2019;101(1):220–225

	39.	 Fujita K, Oura K, Yoneyama H, et al. Albumin-bilirubin score 
indicates liver fibrosis staging and prognosis in patients with 
chronic hepatitis C. Hepatol Res. 2019;49(7):731–742

	40.	 Omura S, Taguchi S, Miyagawa S, et al. Prognostic significance of 
the albumin-to-globulin ratio for upper tract urothelial carcinoma. 
BMC Urol. 2020;20(1):133

	41.	 Lv GY, An L, Sun XD, et al. Pretreatment albumin to globulin 
ratio can serve as a prognostic marker in human cancers: a meta-
analysis. Clin Chim Acta. 2018;476:81–91

	42.	 Zhang CC, Zhang CW, Xing H, et  al. Preoperative Inversed 
Albumin-to-Globulin Ratio Predicts Worse Oncologic Prognosis 
Following Curative Hepatectomy for Hepatocellular Carcinoma. 
Cancer Manag Res. 2020;12:9929–9939

	43.	 Park J, Kim HJ, Kim J, et al. Predictive value of serum albu-
min-to-globulin ratio for incident chronic kidney disease: 

a 12-year community-based prospective study. PLoS ONE. 
2020;15(9):e0238421

	44.	 Liu XR, Qi YY, Zhao YF, et  al. Albumin-to-globulin ratio 
(AGR) as a potential marker of predicting lupus nephritis in 
Chinese patients with systemic lupus erythematosus. Lupus. 
2021;30(3):412–420

	45.	 Niedziela JT, Hudzik B, Szygula-Jurkiewicz B, et al. Albumin-to-
globulin ratio as an independent predictor of mortality in chronic 
heart failure. Biomark Med. 2018;12(7):749–757

	46.	 Feng G, Zheng KI, Li YY, et al. Machine learning algorithm 
outperforms fibrosis markers in predicting significant fibro-
sis in biopsy-confirmed NAFLD. J Hepatobiliary Pancreat Sci. 
2021;28(7):593–603

	47.	 Huber A, Ebner L, Heverhagen JT, et al. State-of-the-art imaging 
of liver fibrosis and cirrhosis: a comprehensive review of cur-
rent applications and future perspectives. Eur J Radiol Open. 
2015;2:90–100

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Radiomics analysis of contrast-enhanced CT for staging liver fibrosis: an update for image biomarker
	Abstract
	Background 
	Materials and methods 
	Results 
	Conclusion 

	Background
	Materials and methods
	Patients
	Reference standard for liver fibrosis
	Serum fibrosis tests
	CT image acquisition
	Radiomic feature extraction and selection
	Clinical factors selection
	Model establishment and validation
	Statistical analysis

	Results
	Characteristics of the study cohorts
	Fibrosis-related clinical factors
	Radiomic feature selection and signature construction
	Development and validation of the prediction model

	Discussion
	Conclusions
	Acknowledgements 
	References




