
Received: 20 December 2020 Revised: 9 June 2021 Accepted: 9 June 2021

DOI: 10.1002/sim.9115

R E S E A R C H A R T I C L E

Prospective individual patient data meta-analysis:
Evaluating convalescent plasma for COVID-19

Keith S. Goldfeld1 Danni Wu1 Thaddeus Tarpey1 Mengling Liu1,2

Yinxiang Wu1 Andrea B. Troxel1 Eva Petkova1,3

Division of Biostatistics, Department of
Population Health, New York University
Grossman School of Medicine, New York,
New York, USA
2Department of Environmental Medicine,
New York University Grossman School of
Medicine, New York, New York, USA
3Nathan Kline Institute for Psychiatric
Research, Orangeburg, New York, USA

Correspondence
Keith S. Goldfeld, Division of Biostatistics,
Department of Population Health, New
York University Grossman School of
Medicine, 180 Madison Ave., 5th floor,
New York, NY 10019, USA.
Email: keith.goldfeld@nyulangone.org

Funding information
National Center for Advancing
Translational Sciences, Grant/Award
Number: 3UL1TR001445-05S3

As the world faced the devastation of the COVID-19 pandemic in late 2019 and
early 2020, numerous clinical trials were initiated in many locations in an effort
to establish the efficacy (or lack thereof) of potential treatments. As the pan-
demic has been shifting locations rapidly, individual studies have been at risk
of failing to meet recruitment targets because of declining numbers of eligi-
ble patients with COVID-19 encountered at participating sites. It has become
clear that it might take several more COVID-19 surges at the same location to
achieve full enrollment and to find answers about what treatments are effec-
tive for this disease. This paper proposes an innovative approach for pooling
patient-level data from multiple ongoing randomized clinical trials (RCTs) that
have not been configured as a network of sites. We present the statistical analy-
sis plan of a prospective individual patient data (IPD) meta-analysis (MA) from
ongoing RCTs of convalescent plasma (CP). We employ an adaptive Bayesian
approach for continuously monitoring the accumulating pooled data via poste-
rior probabilities for safety, efficacy, and harm. Although we focus on RCTs for
CP and address specific challenges related to CP treatment for COVID-19, the
proposed framework is generally applicable to pooling data from RCTs for other
therapies and disease settings in order to find answers in weeks or months, rather
than years.
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1 INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic urgently requires rapid action to determine effective treatments.
Over 1000 clinical trials to test treatment options for COVID-19 have already been undertaken, but most have produced
inconclusive results.1 Although two vaccines have been authorized for emergency use, and other vaccine trials are under-
way, effective treatments for COVID are still needed. At the time of preparing this paper, the only treatment for COVID-19
that has been approved by the Food and Drug Administration of the United States is remdesivir,2 although the randomized
clinical trial (RCT) did not show a significant benefit with respect to mortality.
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The rapidly shifting locations of the pandemic constitute a major challenge for recruitment and completion of all
COVID-19 RCTs. Pooling existing and accumulating data from multiple studies holds promise for quickly finding answers
to urgently needed questions as is the case with the COVID-19 pandemic. In fact, several meta-analyses (MA) of aggregate
data from studies of treatments for COVID-19 have already been conducted in an attempt to rapidly address ques-
tions about efficacy and safety; treatment with steroids3 (by the World Health Organization, WHO) and treatment with
hydroxychloroquine4 are two examples. It is especially important during this crisis that pooling efforts are scientifically
justified and that the analyses are prespecified and inferentially rigorous.5 This will serve to ensure that the results are
convincing to the medical community.

A promising treatment for COVID-19 is the use of convalescent plasma (CP), a treatment that has shown potential
benefit as far back as the 1918 influenza pandemic. More recently, CP was also used to treat other related infections such as
Middle Eastern respiratory syndrome coronavirus (MERS-CoV). Several observational studies, retrospectively comparing
COVID-19 patients treated with CP to nontreated COVID-19 patients, have been undertaken.6-8 However, rigorous evalu-
ation of the efficacy of CP in treating COVID-19 requires RCTs. The first such RCT was conducted at seven medical centers
in Wuhan, China during the early stages of the pandemic.9 Unfortunately, this trial terminated early because insufficient
new cases were available for enrollment, and as a result, produced no conclusive evidence. Later, an RCT for CP from
India that enrolled the targeted sample size of 464 patients reported no differences in clinical outcomes between patients
treated with standard of care alone and those treated with standard of care plus CP.10 Based on a retrospective evaluation
of the transfused CP, however, the investigators found that about a quarter of the CP units used in the study lacked anti-
bodies, while most of the study participants already had high levels of antibodies in their own plasma at randomization.
A more recent RCT from Argentina also indicated lack of evidence for efficacy or harm for CP in a double-blind compari-
son against placebo.11 This well-executed RCT, which used CP with high levels of antibodies, targeted COVID-19 patients
with severe pneumonia. Numerous additional RCTs using CP have been initiated, but as the COVID-19 surge dissipated
where these trials started, the pool of eligible participants for these trials has diminished. Wooding et al provide a sum-
mary of registered RCTs on the efficacy and safety of CP for COVID-19 obtained from PubMed and summarized from
the WHO International Clinical Trials Registry and clinicaltrials.gov (as of July 2020).12 An impediment for recruitment
into trials using CP in the United States is the emergency use authorization of the use of CP.13 It is imperative to find a
solution to the problem caused by the mismatch between enrolling sites for RCTs and COVID-19 hotspots.5

This paper describes a meta-analytic approach to pooling individual patient data (IPD) from completed,
early-terminated, and ongoing RCTs for CP, as well as from new trials that might open up as the pandemic migrates to
new regional hotspots of COVID-19 infection. The goal is to continuously update and monitor the pooled IPD until suf-
ficient evidence emerges to warrant a reliable conclusion. Regardless of whether it is based on aggregate data or IPD, a
meta-analysis is typically conducted following the completion of all the studies being considered. This means that there
are very few unknowns regarding the number of studies and the sample sizes at the time of meta-analysis. In contrast,
we are conducting a meta-analysis in real-time to get answers as quickly as possible in light of the pandemic crisis. This
means the analytic framework needs to be flexible enough to accommodate an unknown number of RCTs with an unde-
termined number of patients. Given the uncertain nature of the trajectory of the pandemic around the world, we also do
not know the frequency and number of interim looks that will be required to closely monitor the incoming information to
reach a conclusion as quickly as possible. The methods described here provide a statistical road map for how to conduct
rigorous analysis in light of study uncertainty.

Pooling data from numerous trials and continuously monitoring the accumulating data presents logistical and
statistical hurdles.14 First, patient populations from different RCTs are heterogeneous with respect to demographic char-
acteristics, medical history, severity of the COVID-19 symptoms at time of randomization, and use of concomitant
medications. Additional challenges for all investigations of treatments for COVID-19 are the lack of sufficient experi-
ence with the disease at the start of the different RCTs, leading to rapidly changing patterns of treatment, and lack of
consensus about the most relevant clinical outcome: time to hospital discharge, survival free of ventilation, mortality,
and others have been used with various degrees of disagreement among the medical community regarding their impor-
tance. Complicating matters further for evaluation of CP is the fact that, unlike standard drug treatment, where the
capsules or injections contain a fixed amount of the active component, CP used for transfusion does not contain a uni-
form or standardized amount of antibody. A further challenge is the fact that although all CP RCTs to date use the
same experimental treatment (CP), they have compared CP to different control conditions: standard of care, saline, or
non-CP.

The statistical analysis plan (SAP) outlined in this paper is for the COMPILE (Continuous Monitoring of Pooled Inter-
national Trials of CP for COVID-19 Hospitalized Patients) study,15 and it is fundamentally a description of how we have
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addressed the challenges presented by an IPD MA analysis. COMPILE hypothesizes that the compilation of the pooled
datasets of IPD from RCTs will result in a data resource that can provide evidence with high degree of certainty regarding
the efficacy (or harm) and safety of CP as a treatment for COVID-19. COMPILE also aims to identify individual patient
characteristics as well as characteristics of the CP that lead to better or worse outcome with the treatment. Ultimately,
we feel that the heterogeneity of the patient populations and the variations in treatment enhance the likelihood of more
widely generalizable conclusions.

The statistical approach for the data monitoring and analysis of the COMPILE study is based on a Bayesian clinical trial
paradigm.16,17 It utilizes continuous monitoring, using Bayesian stopping rules that allow for efficient, real-time decisions
without penalties for multiple data looks and 𝛼-spending associated with the classic RCT group-sequential monitoring
approach.18,19 Given the urgent need to identify effective therapeutic options for treating COVID-19 in this world-wide
pandemic, frequent or continuous monitoring of the accumulating data collected in CP RCTs is critical. Bayesian monitor-
ing enables straightforward, actionable rules for efficacy, harm, and safety, all of which incorporate information accrued
across all studies; the process is based on estimation of the posterior probabilities, for example, of favorable or unfavorable
odds ratios. The stopping rules will pertain to the execution of the COMPILE meta-analysis itself, and will have no direct
bearing on the conduct of the individual studies. During a pandemic, the rapid dissemination of high-quality informa-
tion is paramount, so once the criteria have been met for stopping the meta-analysis, data collection will cease, the final
analyses will be conducted, and results will be published; the individual studies can choose to continue to enroll patients.

The paper is structured as follows. In Section 2 we describe the necessary infrastructure to successfully engage unre-
lated RCTs from around the world in a joint effort to address this humanitarian crisis. Section 3 provides an overview of
features characterizing the COMPILE study design. Highlights from the SAP of COMPILE, including a description of the
stopping rules, are presented in Section 4. We conclude with a summary of the current state of the COMPILE study in
Section 5.

2 LOGISTICS OF POOLING RCTS

The innovative approach to pooling IPD from completed and ongoing trials, including new trials that are in
the process of starting up, presents unique logistical challenges not typically encountered when designing a con-
ventional multisite RCT or MA of completed RCTs. Most critically important is the establishment of collabora-
tions with investigators conducting RCTs around the globe. The pace of the pandemic, and the way it ebbs and
flows in different parts of the world at different times, means that no single institution, or even single country,
might be able to gather enough information and high-quality data to understand in real time what therapies are
effective.

A logistical first step is to develop data sharing agreements that the RCT teams and their institutions consent to sign. To
be able to collect data from ongoing RCTs, the agreements must account for regulations regarding data sharing that vary
across different countries. For example, research data from the United States must be compliant with the Health Insurance
Portability and Accountability Act of 1996 (HIPAA), studies taking place within the European Union must satisfy the
General Data Protection Regulations requirements, and sharing of research data from India must be approved by the
Indian Council of Medical Research. A secure central repository needs to be established, along with a secure data transfer
protocol for submitting newly accumulated, completely de-identified, IPD to the repository on a regular basis. Because
of the variability in regulations for data sharing, this step is most crucially important for investigators and institutions to
agree to collaborate. For the COMPILE study, participating RCTs submit accumulated data every 2 weeks. Providing a
safe and secure platform for conducting analyses by different research teams is essential to ensure equitable data access.
This requires a virtual device infrastructure (VDI) where data are stored in a single location that is equipped with a range
of data analytic tools; approved investigators with passwords can obtain snapshots of the database and conduct analyses
within the VDI, without the need or ability of downloading the data and thus ensuring data integrity and security.

A collective data and safety monitoring board (cDSMB) needs to be established. Given the specific nature of the
prospective meta-analysis plan of ongoing studies, the cDSMB should involve members from the DSMBs of all collab-
orating RCTs. For ongoing RCTs, the Chair and the unblinded statistician from the individual RCT’s DSMB should be
members of cDSMB. A cDSMB Charter that specifies the responsibilities of the members of the Board must be drafted,
discussed, and approved by the cDSMB members. Governance documents are needed to specify the processes for deci-
sion making and the responsibilities of various committees and working groups. In addition, a study protocol is needed
that is accepted by all collaborating clinical trial teams. The SAP needs to be developed in a collaborative effort with
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participating study teams by team members who are blinded to the data from all studies, including their own study.
An essential component of the SAP is a description of the process of continuous monitoring that includes establishing
stopping rules for safety, efficacy and harm. This SAP, accepted by the cDSMB, is fundamental to the success of
the study.

Finally, an essential requirement for such pooling initiatives is that they should be open to all qualified clinical tri-
als. Ensuring the collaborations of all qualified RCTs would require a systematic and ongoing attempts to identify such
trials and a dedicated efforts to describe the pooling initiative, to explain its objectives and to assist the RCTs’ principal
investigators (PIs) and institutions in finalizing the data sharing agreements.

3 THE COMPILE STUDY

3.1 Study design characteristics

Here we summarize the basic design characteristics of the COMPILE study.

Inclusion of RCTs
There is a dedicated public website that describes the COMPILE study and allows investigators to apply for
participation.15 In addition, the NYU COMPILE team regularly checks clinicaltrials.gov and clinicaltrialsregis-
ter.eu to identify qualifying trials and conducts systematic targeted outreach to the their investigators.

Target population
Eligible patients are hospitalized with COVID-19 infection confirmed by polymerase chain reaction or antibody
testing, age 18 or over, and not on mechanical ventilation at the time of randomization.

Parallel arms
All RCTs were designed as parallel-arm trials comparing CP (and possibly other experimental treatments for
COVID-19) to a control. Only patients randomized to the CP or control arms are included in the COMPILE study.

Randomization
Only RCTs are included. The randomization schemes might differ across RCTs. When randomization is strati-
fied, the RCT provides information about the strata. The RCTs might use different randomization ratios, most
often 1:1 or 2:1 for CP:control.

Experimental treatment
CP administered to patients must have confirmed presence of SARS-CoV-2 antibodies documented by titer
quantities or by a qualitative assay, assessed prospectively (prior to transfusion) or retrospectively (after the
transfusion).

Control treatments
The control condition can be different in the collaborating RCTs. Possible controls are: (i) standard of care; (ii)
saline; (iii) non-CP.

Blinding
RCTs with standard of care as a control condition are not blinded; RCTs with saline or non-CP are
blinded.

Dosing
CP is provided in unit bags with 250 to 300 mL of plasma, varying across and within RCTs. Per protocol, the
amount of CP administered varies from 1 to 4 units between RCTs. The RCTs with saline or non-CP as control
used unit bags similar to those used for CP.
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Sample size
The number of studies included in the IPD MA will not be restricted. There is no predetermined maximum
number of patients. The COMPILE study will continue to collect data from the collaborating RCTs until either
stopping for safety, efficacy or harm is recommended, or until all RCTs have stopped recruitment, completed
follow-up, and resolved all outstanding data queries.

3.2 Evolving and unknown research environment

We recognize that the research environment is constantly changing as the pandemic ebbs and flows dramatically across
time and space. We do not have the benefit of knowing when and where a surge will occur next. The prime motivation
for the COMPILE study was the observation that many RCTs are unable to recruit sufficient patients following the rapid
decline of COVID-19 cases in a particular regions. Furthermore, we do not know which of those RCTs decided to end
for lack of patients and which ones decided to stay dormant until the next surge. This study proposes an approach for
designing, monitoring, and analyzing a study in the presence of unavoidable uncertainty during a pandemic.

3.3 Time points

Given the course of the COVID-19 disease and the currently understood mechanism of action of CP in this disease, the
results from CP treatment are expected to be manifested within one month. The primary time point for the COMPILE
study is 2 weeks post-randomization. Some studies were/are assessing patients at 2 weeks (day 14) and others at half
month (day 15). Therefore the primary time point is defined as day 14 ± 1 day. A secondary time point is day 28 ± 2 days.

3.4 Outcomes

Early on in the COVID-19 pandemic, the WHO proposed a measure of clinical status in COVID-19 patients; this WHO
clinical status scale has been used in COVID-19 treatment studies almost uniformly across the world. Initial versions of
the WHO scale had 7 or 8 points with the most severe status (death) denoted by 1.20,21 The WHO published an 11-point
version of the COVID-19 clinical status scale in June 2020,22 with values ranging from 0 = uninfected to 10 = dead, see
Table 1; larger values on this scale indicated more severe disease. A feature of the COMPILE trial was to establish a uniform
outcome measure by converting the previous 7- and 8-point scales to the more refined 11-point scale. This involved first
inverting the direction of the 7- and 8-point scales and then applying the conversion algorithm provided in the Appendix
(Section A.3).

Because of the importance of the WHO 11-point scale in COVID-19 research and its wide use, this measure obtained
at day 14 ± 1 following randomization is one of the bivariate outcomes in COMPILE. The second component of the
bivariate outcome is a binary indicator of requirement for mechanical ventilation or worse (level 7, 8, 9, or 10 on
WHO 11-point scale) at day 14 ± 1. This second primary outcome was selected based on its clinical importance, its
ease of interpretation, and its relevance to nonresearchers and the general public. The investigators from the par-
ticipating RCTs reached consensus on the bivariate outcomes, which may differ from individual RCT’s predefined
primary outcomes.

3.5 Data coordination and assessment process

A key element of the project is to assemble existing IPD from the collaborating RCTs into a single analytic data file. This
requires continuous updating of the pooled data set with new de-identified IPD from the ongoing RCTs and allowing for
the inclusion of new CP RCTs, see Appendix (Section A.1 for details). A minimal dataset (MDS) of IPD for the COMPILE
trial has been identified, see Appendix (Section A.2). Each collaborating RCT begins participation by programming the
extraction of the MDS from their RCT’s database and submitting their initial MDS deposit. Every other week thereafter,
the RCTs update their MDS with newly acquired observations from existing and new patients (in addition to correcting
errors in previous submissions).
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T A B L E 1 WHO 11-point COVID scale definition

0: Uninfected, no viral RNA detected

1: Asymptomatic, viral RNA detected

2: Symptomatic, independent

3: Symptomatic, assistance needed

4: Hospitalized, no oxygen therapy

5: Hospitalized, oxygen by mask or nasal prongs

6: Hospitalized, oxygen by noninvasive ventilation or high flow

7: Intubation & mechanical ventilation, pO2/FiO2 ≥ 150 (or SpO2/FiO2 ≥ 200)

8: Mechanical ventilation, pO2/FiO2 < 150 (or SpO2/FiO2 < 200) or vasopressors

9: Mechanical ventilation, pO2/FiO2 < 150 and vasopressors, dialysis, or ECMO

10: Dead

Abbreviations: pO2, partial pressure of oxygen; ECMO, extracorporeal membrane oxygenation; FiO2,
fraction of inspired oxygen; SpO2, oxygen saturation.

The COMPILE data analysis team merges the new MDSs and conducts a set of prespecified analyses before each
meeting of the cDSMB. COMPILE has established a rigorous predetermined process for continuous monitoring of the
accumulating data that will continue until sufficient evidence emerges to enable reliable and convincing conclusions
regarding the safety and efficacy (or harm) of CP in the target population. The schedule of cDSMB meetings is determined
by the members of the cDSMBs and can be as often as every 2 weeks, depending on the rate of data accumulation. The
cDSMB has a quorum when members from the individual DSMBs representing at least 80% of the collaborating RCTs
are present. The cDSMB reviews the reports and makes recommendations regarding the conduct of the COMPILE study
to the Steering Committee of the COMPILE Consortium, which consists of the PIs of the collaborating RCTs. Members
communicate the discussions and recommendations of cDSMB meetings to the individual RCT DSMBs and each DSMB
makes individual recommendations to the RCTs they are monitoring. The PIs of ongoing RCTs make individual decisions
whether to stop recruitment, to finish follow-up of the enrolled patients, or to continue their studies.

3.6 Interim monitoring

Given the urgency to identify effective therapeutic options for COVID-19 patients in this world-wide pandemic, frequent
or continuous monitoring of the accumulating data collected in CP RCTs is absolutely necessary. COMPILE utilizes con-
tinuous monitoring, using Bayesian stopping rules that allow for real-time decisions without the penalties for multiple
data looks. Classic RCT monitoring based on 𝛼-spending on the other hand is a less-efficient approach to this problem.17

The frequency of the cDSMB meetings will depend on the rate of data accumulation, but will not be less frequent than
once a month. The final analysis will occur when the cDSMB has recommended stopping the study for safety, efficacy, or
harm and the Consortium investigators have agreed to accept this recommendation. At each interim analysis, the posterior
distribution of the parameter describing the pooled treatment effect will be reported (graphically and analytically) and
the prespecified stopping criteria based on posterior probability calculations in terms of an odds ratio will guide the
recommendations of the cDSMB. The guidelines for stopping are based on the posterior probability that the odds ratio
exceeds a prespecified threshold.

4 STATISTICAL ANALYSIS

4.1 Primary efficacy analysis

The primary efficacy outcome is bivariate: (1) clinical status at 14 days ± 1 day post-randomization, assessed using
the WHO 11-point ordinal outcome scale and (2) a binary indicator WHO score between 7 and 10 at 14 days ± 1 day
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post-randomization (indicating ventilation requirement or death), see Sections 3.3 and 3.4. While the binary outcome is
properly viewed as a subset of the ordinal outcome, we have chosen to accommodate two key functions: efficiency and
interpretability. The ordinal scale provides the most efficient use of all available data and provides less variable estimates.
The binary outcome is more easily interpreted by clinicians and patients who will ultimately make the treatment deci-
sions. Taken together, the two outcomes provide a more complete picture for the research community with its myriad
interests and needs.

4.1.1 WHO score at 14 days

The analysis of the first component of the primary outcome will be a cumulative proportional odds model for the ordinal
WHO score at 14 days (±1 day). Let Y be the WHO 11-point scale, (Y = 0, … , 10), with

qy = P (Y = y) , y = 0, … , 10,
10∑

y=0
qy = 1,

and let

py = P (Y ≥ y) =
10∑

s=y
qs, y = 1, … , 10.

Assume that data from K RCTs are available, with nk subjects in the kth trial, k = 1, … ,K. Denote the outcome for the
ith patient from the kth trial on the 11-point WHO ordinal COVID-19 scale at 14 days (±1 day) by Yki = y, y = 0, … , 10,
and let xki denote a vector of covariates of length m = 5 that includes age, sex, baseline WHO score, duration of symp-
toms before randomization, and quarter of the year when the patient was enrolled (1 = January-March 2020, 2 =
April-June 2020, 3 = July-September 2020, 4 = October-December 2020, 5 = January-March 2021). Aki will indicate
the treatment assignment for the ith subject in the kth RCT; Aki = 0 if the patient was randomized to CP arm and
Aki = 1 if the patient was randomized to control. The following cumulative proportional odds (co) model for Yki will be
considered:

Yki ∼ Ordinal multinomial (pki) pki = {pkiy}10
0

logit (P (Yki ≥ y)) = 𝛼 + 𝜏yk + 𝜷xki + 𝛿kc Aki

𝛼 ∼ Normal (𝜇 = 0, 𝜎 = 0.1)
𝜏yk ∼ tstudent (df = 3, 𝜇 = 0, 𝜎 = 8) monotone within k
𝜷 ∼ Normal

(
𝝁 = 0,Σ = 2.52Im×m

)

𝛿kc ∼ Normal (𝜇 = 𝛿c, 𝜎 = 𝜂) c = 0, 1, 2 for the three control conditions
𝜂 ∼ tstudent (df = 3, 𝜇 = 0, 𝜎 = 0.25)
𝛿c ∼ Normal (𝜇 = −Δco, 𝜎 = 0.1)

− Δco ∼ Normal (𝜇 = 0, 𝜎 = 0.354). (1)

The parameters pkiy represent the respective probabilities for the ith subject in the kth RCT of being in state y at 14
days(±1 day). The four parameters of the cumulative log-odds model are 𝛼, 𝜏yk, 𝜷, and 𝛿kc . 𝛼 is a nuisance parameter, which
should be very close to 0. However, model fitting improves when 𝛼 can be freely estimated. 𝜷 is a vector of coefficients for
the five baseline covariates.

The 𝜏yk’s represent the RCT-specific intercepts or cut points for the cumulative odds model. Since CP treatment is
the reference, the log-odds defined from the cumulative probabilities of the CP arm are estimated by these 𝜏yk’s. All 𝜏yk,
y = 1, … , 10 satisfy the monotonicity requirements for the intercepts of the proportional odds model (ie, for all y > y′,
𝜏yk > 𝜏y′k).

𝛿kc is the kth RCT-specific “control effect.” Because all RCTs will have the experimental treatment arm of CP, but may
have different control treatment arms, the proposed statistical model has the following notation for control treatment effect
modeling: c denotes control treatment type and can represent one of three levels: standard of care, c = 0; non-CP, c = 1;
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saline, c = 2. Each of the K RCT’s will be associated with one level of c. Each 𝛿kc will be normally distributed around a
pooled “control effect” 𝛿c, with a SD 𝜂, also to be estimated. 𝜂 represents the variability in treatment effects across RCTs.

The proposed model conceptualizes the three control conditions as three “treatments” to be compared against the
reference condition of CP. Each 𝛿c is in turn modeled as having a normal distribution around a pooled “control effect”
−Δco. We use −Δco so that Δco will correspond to the difference of log-odds for CP and log-odds for control, rather than
control minus CP. Δco, the key parameter of interest, represents the pooled cumulative odds ratio across all RCT’s.

Further details regarding the prior distribution assumptions for the parameters described here are provided at the end
of this section in Section 4.1.3.

4.1.2 Binary indicator of WHO score between 7 and 10 at 14 days

The analysis of the second component of the primary outcome will be a logistic (l) regression model where the event
W = 1 if the patient has a WHO score between 7 and 10 at 14 days (± 1 day) post-randomization (and W = 0 otherwise).
The notation largely follows the model described for the first component of the primary outcome.

Wki ∼ Bernoulli (pki)
logit (P (Wki = 1)) = 𝜏k + 𝜷xki + 𝛿kc Aki

𝜏k ∼ tstudent (df = 3, 𝜇 = 0, 𝜎 = 8)
𝜷 ∼ Normal

(
𝝁 = 0,Σ = 2.52Im×m

)

𝛿kc ∼ Normal (𝜇 = 𝛿c, 𝜎 = 𝜂) c = 0, 1, 2 for the three control conditions
𝜂 ∼ tstudent (df = 3, 𝜇 = 0, 𝜎 = 0.25)
𝛿c ∼ Normal (𝜇 = −Δl, 𝜎 = 0.1)

− Δl ∼ Normal (𝜇 = 0, 𝜎 = 0.354). (2)

The parameters of the logistic model mirror the parameters in the cumulative odds model. The notable difference is
that 𝜏k replaces 𝜏yk, because there is only a single intercept for each RCT. The primary parameter of interest is Δl, the
pooled log-odds ratio for the binary outcome across all RCT’s.

4.1.3 Rationale for assumed prior distributions

The prior distributions we will use in Models (1) and (2) (above), and in Models (3), (4), and (5) (below) were
selected based on extensive simulations that had three goals: (i) to understand the behavior of the estimating proce-
dure in a variety of realistic situations for the number of the RCTs with different control conditions, sample sizes of
the different RCTs, and reasonable-to-anticipate variations in the CP effects across RCTs and between control con-
ditions; (ii) to compare the inferences from the Bayesian analysis with Bayesian monitoring to frequentist analysis
with frequentist interim monitoring (with 3 to 5 interim looks) and to anchor the prior distributions to results con-
sistent with inferences from frequentist analyses; this was an identified goal because the clinical community is still
more familiar with and more comfortable with inferences from frequentist analyses; and (iii) to assess any conver-
gence issues and sensitivity of the posterior distributions to variations in the postulated priors. Examples of simulation
methodology that helped inform these decisions are available online.23-27 The simulations were performed in R28 and
Stan.29

Prior distributions for parameters can range from skeptical to less skeptical to diffuse. The most skeptical distribu-
tions have most of the mass close to zero, which will pull the posterior estimates towards zero. Diffuse priors (eg, uniform
distributions) have mass spread out across the possible range of parameters, and allow the observed data to largely deter-
mine the shape of the posterior distribution. The overarching philosophy has been to be conservative (skeptical priors)
with respect to efficacy effects, to be moderately conservative (less skeptical priors) with respect to parameters that will
not influence decision making but are important to estimate, and to be least conservative or more flexible (diffuse pri-
ors) with respect to safety effects (to ensure we do not miss a safety issue) and nuisance parameters (to ensure stable
model fitting).
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Global intercept for the cumulative proportional odds models
In models (1) and (3), 𝛼 is a nuisance parameter, which should be very close to 0. However, model fitting improves
when 𝛼 can be freely estimated. We propose a highly informative prior centered around 0, to reflect the belief
that this parameter should be 0 while we allow its estimation, resulting in adequate estimation of the pooled
treatment effect and regression coefficients.

RCT-specific intercepts/cut points
𝜏yk are the RCT-specific cut points of the cumulative proportional odds model. They are constrained to be mono-
tonically increasing; the priors for these parameters are based on a modified t−distribution with 3 degrees of
freedom. (The tails are a compromise between a Cauchy distribution and a normal distribution with equivalent
scale parameters.) Stan implements this through the use of an inverse transformation function, where the MCMC
draws are on an unconstrained parameter space and transformed back to the desired monotonic parameters.30 In
the binary outcome models for efficacy (2) and for safety (5) as well as in (4) for evaluating the effect of different
antibody levels, the prior distribution for each 𝜏k is diffuse, which solves the problem by model fitting without
the introduction of global intercept.

Covariate coefficients
The covariate coefficients 𝜷 each have a diffuse prior on the log-odds scale, corresponding to little prior infor-
mation about the effects, and allowing the data to quickly prevail in the estimation. Note that the (relatively)
large variance of the Normal distribution (𝜎 = 2.5) makes the prior diffuse without the need for heavy tails
that the t− distributions allow. In this case, the Normal distribution and the t-distribution result in simi-
lar posterior distributions for the parameters, but the Normal distribution achieves somewhat better model
convergence.

RCT-specific treatment effect
The RCT-specific effects are denoted by 𝛿k. The prior distribution for the 𝛿k effect is centered on the control-type
effect 𝛿c associated with that RCT. The variation across RCTs (within each control type)—𝜂 in the prior
distribution—is a hyperparameter that will be estimated.

Between-RCT variation
The variation across RCTs 𝜂 will be estimated using an informative prior distribution t(df = 3, 0, 0.25). The
t−distribution with df = 3 has wider tails than the slightly more informative Normal(𝜇 = 0, 𝜎 = 0.25) distribu-
tion.

Control-type effect
The prior distribution for the effects associated with different control conditions (𝛿c for efficacy and 𝜃c for safety)
are centered on the pooled efficacy treatment effects −Δco and −Δl for the two components of the primary out-
come, and on the overall safety treatment effect −Θ, respectively. The three types of control (standard of care,
saline and non-CP) are not expected to differ greatly from each other. Thus, we impose an informative prior with
narrow tails.

Pooled treatment effects
In order to be conservative with respect to the efficacy analysis and to maintain desired operating char-
acteristics of the model, we impose a skeptical prior on the pooled treatment effects Δco and Δl that are
centered around 0. The 𝜎 = 0.354 of the Normal priors for the Δ’s (on the log-odds ratio scale) corresponds
to a prior for the efficacy odds ratio with 95% of the density between 0.5 and 2. With this postulated
skeptical prior we ensure that only large amount of information and strong evidence can alter the prior
belief.
With respect to safety analysis, we want the flexibility to act as soon as even relatively weak evidence for
safety concerns arises. Therefore, we use a diffuse prior for the pooled treatment effect on safety Θ, namely
tstudent (df = 3, 0, 𝜎 = 5.0).
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4.2 Secondary efficacy analyses

Several secondary analyses are planned; see Section 4.4. Here we outline the analytic principles for investigating interac-
tions between treatment and a prespecified covariate and the investigation of the effect of the quality and quantity of the
CP on its efficacy, by reporting the planned analysis for addressing these specific questions.

4.2.1 Effect of duration of COVID-19 symptoms prior to CP transfusion

The clinical understanding of the mechanisms of action of CP indicate that transfused antibodies should be most useful
when administered soon after a patient is infected but before the patient’s autoimmune system has had time to react
while the virus is potentially taking hold. Thus, the effect of duration of symptoms prior to treatment with CP is of high
importance, because knowledge of this feature could improve clinical practice. The COMPILE study collects information
on duration of symptoms in the format of an ordinal variable, because patients are often uncertain about the precise onset
of their symptoms: 0 to 3 days, 4 to 6 days, 7 to 10 days, 11 to 14 days, and >14 days. To explore the impact of symptom
duration on the CP effect on the WHO 11-point score, we will develop an extended version of the models described for
the primary outcomes (Section 4.1). The extended version of the models will include RCT-specific treatment by symptom
duration interaction parameters 𝛾(ks)c , s ∈ {1, 2, 3, 4, 5} that are assumed to be normally distributed with a control-type
mean 𝛾cs. In this model, there is an indicator variable dkis that equals 1 if the duration of symptoms for the ith patient in
the kth RCT falls in duration stratum s, and is 0 otherwise.

The extended version of the Bayesian model (1) is as follows:

Yki ∼ Ordinal multinomial (pki) pki = {pki}10
1

logit (P (Yki ≥ y)) = 𝛼 + 𝜏yk + 𝜷xki + Aki
(
𝛿kc + 𝛾(ks)c dkis

)
s = 1, … , 5 for symptom duration strata

𝛼 ∼ Normal (𝜇 = 0, 𝜎 = 0.1)
𝜏yk ∼ tstudent (df = 3, 𝜇 = 0, 𝜎 = 8) , monotone within k
𝜷 ∼ Normal

(
𝝁 = 0,Σ = 2.52Im×m

)

𝛿kc ∼ Normal (𝜇 = 𝛿c, 𝜎 = 𝜂) c = 0, 1, 2 for the three control conditions
𝜂 ∼ tstudent (df = 3, 𝜇 = 0, 𝜎 = 0.25)
𝛿c ∼ Normal (𝜇 = −Δ, 𝜎 = 0.1)

−Δ ∼ tstudent (df = 3, 𝜇 = 0, 𝜎 = 2.5)
𝛾(ks)c ∼ Normal (𝜇 = 𝛾cs, 𝜎 = 1)
𝛾cs ∼ Normal (𝜇 = −Γs, 𝜎 = 0.25)

−Γs ∼ tstudent (df = 3, 𝜇 = 0, 𝜎 = 1.5). (3)

The pooled effect of CP (on the log-odds scale) across all RCTs for patients with symptom duration s will be Δs =
Δ + Γs. In this exploratory analysis, we will estimate the posterior probability for Δs at each level of s to identify subgroups
that might warrant further study.

Model (2) for the binary component of the primary outcome will be extended in a similar way to evaluate the interac-
tion between treatment and duration of symptoms. Similar models will be employed to evaluate the interactions between
treatment and sex, age, and baseline clinical status (measured by WHO 11-point scale) on the primary and secondary
outcomes.

4.2.2 Effect of donor CP antibodies on the efficacy of CP

The primary analysis of COMPILE will address the question whether treatment with CP (yes/no) is efficacious against any
control treatment (standard of care, non-CP or saline). The statistical models to address this primary question are discussed
in Section 4.1. A second and equally important question that COMPILE aims to address is whether the quantity of CP
that was transfused and/or the amount of antibodies in the CP matters and if so, how the quantity of CP and/or the
amount of antibodies are related to the efficacy of treatment with CP. There are several ways to characterize the quality
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and quantity of CP. First, CP for transfusion comes in standardized units of sizes 250-300ml and the CP treatment in
the RCTs is indicated by the number of units. For example, RCTs collaborating in COMPILE used 1, 2, or 4 units of CP.
Second, in order for a sample of plasma to be considered convalescent for SARS-CoV-2, it must contain a certain amount
of anti-SARS-CoV-2 antibodies. While guidelines regarding which measurement platforms should be used to assess the
potency of the CP are beginning to emerge, RCTs across the globe have used different platforms that sometimes measure
different types of antibodies. The COMPILE Antibodies Subcommittee conducted an investigation to enable conversion of
measurements of antibodies obtained on different platforms in the different RCTs to a uniform scale. The Subcommittee
recommended that the CP levels be classified into two groups – one reflecting low levels (ie, levels that are expected to be
insufficient) or a second reflecting levels of antibodies that are not low. The third and most rigorous approach for assessing
the effect of antibody levels on the efficacy of CP is based on measurements of antibody titer in samples from all transfused
CP units performed on the same platform. Samples from almost all transfused CP units are preserved in all clinical trials.
Obtaining those measurements requires coordination that will take time, but this will provide the most definitive answer
to the question. In the meantime, we will use the measures described in the first two options as a surrogate for the actual
antibody titers from the third option. Below is the proposed analytic model that assumes that treatment is scored on a
3-point scale according to the second alternative:

• zero antibodies – subjects randomized to the control condition in the RCTs will be considered to have received this
level of treatment;

• low-level antibodies – subjects in the CP arm of the RCTs who received CP classified as low level according to the scale
proposed by the Antibodies Subcommittee;

• not low-level antibodies – subjects in the CP arm of the RCTs, who received CP classified as not low level according to
the scale proposed by the Antibodies Subcommittee.

Just as in the primary outcome model (1), the outcome is the WHO 11-point score at Day 14±1. The observed data are
Yki, the individual WHO score for the ith patient in the kth study; xki is a vector of covariates as in the previous models, and
aki takes a value of 0, 1, or 2, depending on the level of antibodies. For those randomized to the control condition, aki = 0.

For the purposes of addressing the specific question about the effect of the amount of antibodies, all control conditions
are considered the same, because the amount of antibodies received by the patients in the control arms is zero. In the
model below, the cumulative odds for patients receiving zero antibodies will be reflected in 𝜏yk, the study-specific baseline
log cumulative odds. The following model is proposed for the evaluation of the amount of antibodies in the CP:

Yki ∼ Ordinal multinomial (pki) pki = {pki}10
1

logit (P (Yki ≥ y)) = 𝛼 + 𝜏yk + 𝜷xki + 𝛿ktI (aki = t) t = 1 or 2 for low and not low levels of antibodies
𝛼 ∼ Normal (𝜇 = 0, 𝜎 = 0.1)

𝜏yk ∼ tstudent (df = 3, 𝜇 = 0, 𝜎 = 8) monotone within k
𝜷 ∼ Normal

(
𝝁 = 0,Σ = 2.52Im×m

)

𝛿kt ∼ Normal (𝜇 = 𝛿t, 𝜎 = 𝜂)
𝜂 ∼ tstudent (df = 3, 𝜇 = 0, 𝜎 = 0.25)
𝛿t ∼ Normal (𝜇 = 0, 𝜎 = 0.354). (4)

If it is possible to measure the antibodies on a single platform so that the measures across RCTs (or a subset of RCTs)
are directly comparable, we could extend the model further to include a continuous exposure Zki:

logit (P (Yki ≥ y)) = 𝛼 + 𝜏yk + 𝜷xki + 𝛿kZki.

4.3 Tertiary efficacy analyses

Mortality and time to hospital discharge
The tertiary outcomes will include overall mortality (time to death) and time to hospital discharge. The analysis
of overall mortality will be based on a (frequentist) log-rank stratified by RCT. Cox proportional hazards models
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will be employed to adjust for the covariates in the comprehensive covariates list (age, sex, etc.) and to evaluate
interactions of baseline characteristics with treatment. The proportional hazards assumption will be evaluated
using the method of cumulative martingale residuals.31

Time to discharge (also to be analyzed using frequentist methods) is defined as the duration from randomization
to hospital discharge to home, acute, or long-term care facilities. Death before discharge is a competing risk event
that precludes a successful discharge and thus will be properly accounted in the analysis of time to discharge.
Gray’s test32 will be used to compare the subdistribution hazards (cumulative incidence function, CIF) of time to
discharge between treatment groups. The Fine-Gray regression model33 will be employed to estimate treatment
effect on the CIF adjusting for the comprehensive list of covariates.

Precision medicine analysis
A very important question for patients, clinicians, and researchers is to determine what are the patient character-
istics associated with the greatest benefit from treatment with CP. These questions can be addressed using precision
medicine methodology. We will employ existing and newly developed methodologies to identify biosignatures
for response to CP treatment. Biosignatures are patient characteristics, or more likely combination of such char-
acteristics, that are associated with heterogeneity of treatment effect. In its simplest form, a biosignature is a
continuous variable (eg, a linear combination of baseline patient characteristics) that has a strong (large in mag-
nitude, significant) interaction with the treatment indicator in the model for the outcome.34,35 The methodologies
developed for discovery of such biosignatures for treatment response fall under the rubric of developing optimal
treatment decision rules; based on what is known about the patient at the time of treatment decision making,
the goal is to give a particular treatment only to patients who are likely to benefit. Precision medicine is a highly
active area of research, and new approaches are constantly being developed to address ever more complex clinical
circumstances.36-39

4.4 Summary of efficacy analyses

Table 2 provides a schematic representation of all the analyses that we plan to conduct for five outcomes: WHO score at
day 14±1, WHO score at day 28±2, mortality at day 14±1, mortality at day 28±2, and time to discharge. Stopping
rules for efficacy will be based on the noninteraction models of the bivariate primary outcome WHO score at day 14±1
and WHO score 7-10 (yes/no); the treatment comparison is any CP vs Control = 1, 2, and 3. Stopping COMPILE for
efficacy will be considered if both primary endpoints are met (see Section 4.6).

4.5 Safety analyses

We propose monitoring for safety based on adverse events related to the transfusion of plasma. Specifically, we will com-
pare the CP and control conditions with respect to the proportion of patients who experienced at least one of the following
adverse events: (i) transfusion related acute lung injury (TRALI); (ii) transfusion associated circulatory overload (TACO);
(iii) TRALI or TACO or COVID-19-related worsening symptoms—undifferentiated reaction (iv) arterial thrombotic event;
or (v) venous thrombotic event.

We will use logistic regression models to evaluate the binary safety outcomes. Let Zki be an indicator that the ith sub-
ject in the kth RCT experiences a transfusion-related event. Similar to the consideration in Section 4.1, to accommodate
the three different control conditions, we conceptualize the control conditions as three treatments to be compared against
the reference condition (CP). The effects of the control conditions C = c, c ∈ 0, 1, 2 on the transfusion-related adverse
events, will be denoted by Θc, c ∈ 0, 1, 2; we will impose a hyper-prior distribution for these three control effect param-
eters based on the assumption that they share the same prior distribution. The RCT-specific log odds of having a severe
transfusion-related event in the CP arm, the reference group, will be estimated by 𝛾k, which corresponds to the kth trial’s
intercept. The following logistic regression model will be used to model Z:

Zki ∼ Binomial (rki) 0 < rki < 1
logit (P (Zki = 1)) = 𝛾k + 𝜷xki + Aki𝜃kc

𝛾k ∼ tstudent (df = 3, 𝜇 = 0, 𝜎 = 2.5)
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𝜷 ∼ Normal
(
𝝁 = 0,Σ = 2.52Im×m

)

𝜃kc ∼ Normal (𝜇 = 𝜃c, 𝜎 = 𝜂) c = 0, 1, 2 for the three control conditions
𝜂 ∼ tstudent (df = 3, 0, 𝜎 = 0.25)
𝜃c ∼ Normal (𝜇 = −Θ, 𝜎 = 0.1)

−Θ ∼ tstudent (df = 3, 0, 𝜎 = 5.0). (5)

The parameters of this logistic model mirror the parameters in the pimary outcome Model 2. The primary parameter
of interest is Θ, the pooled log-odds ratio for an adverse event across all RCT’s. Note that the prior for −Θ has a larger SD
than the prior for the effect of the treatment (−Δ) in Model (2). This prior for −Θ is considerably less skeptical and would
allow for the posterior distribution to be largely determined by the data with smaller sample sizes. We take −Θ as the
mean of the distribution to which 𝜃c belongs, so that Θ will correspond to the difference of log-odds for CP and log-odds
for control, rather than control minus CP.

4.6 Stopping guidelines

Stopping for efficacy
The primary analysis of the bivariate primary outcome—the WHO 11-point ordinal scale at 14 days (±1 day)
and a binary indicator identifying if the WHO score ≥7 at 14 days (±1 day)—will be based on two models: the

T A B L E 2 Planned analyses

Interaction models

Description Day Adjustment Age Sex
Symptoms
duration

WHO
baseline

Primary analysis: comparison of CP vs Control (3 types)

1. WHO score: cum. prop. OR 14 Parsimoniousa x x x x

2. WHO 7-10 (yes/no) 14 Parsimonious x x x x

Secondary analyses: comparison of CP vs Control (3 types)

3. WHO score: cum. prop. OR 14 Expandedb x x x x

4. WHO 7-10 (yes/no) 14 Expanded x x x x

5. WHO score: cum. prop. OR 28 Expanded x x x x

6. WHO 7-10 (yes/no) 28 Expanded x x x x

Tertiary analyses: comparison of CP vs Control (3 types)

7. All-cause mortality (yes/no) 14 Expanded x x x x

8. All-cause mortality (yes/no) 28 Expanded x x x x

9. Time to discharge Expanded x x x x

Tertiary analyses: dose-response (comparison of no CP vs different number of CP units or levels of AB)

10. WHO score: cum. prop. OR 14 Expanded x x x x

11. WHO 7-10 (yes/no) 14 Expanded x x x x

12. WHO score: cum. prop. OR 28 Expanded x x x x

13. WHO 7-10 (yes/no) 28 Expanded x x x x

14. All-cause mortality (yes/no) 14 Expanded x x x x

15. All-cause mortality (yes/no) 28 Expanded x x x x

16. Time to discharge Expanded x x x x

Abbreviations: AB, antibodies; CP, convalescent plasma; RCT, randomized clinical trial; WHO, World Health Organization.
aParsimonious adjustment includes age, sex, WHO score at baseline, days since symptom onset and quarter when the patient was enrolled in the RCT.
bExpanded adjustment also includes past medical history and concomitant medications at time of randomization.
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cumulative proportional odds model (1) for the first component and the logistic regression model (2) for the
second component. In each model, the estimated log odds will be modeled as a function of a CP treatment
indicator, the covariates, and the random effects for RCTs. Details about the analytic model and the initial priors
were given in Section 4.1. The parameters of primary interest (the pooled treatment effects) in the cumulative
proportional odds and logistic models (1) and (2) are Δco and Δl, respectively. We have proposed considerations
for stopping the study based on the following posterior probabilities for the odds ratios (ORco = e−Δco and ORl =
e−Δl ):

P (ORco < 1) ≥ 0.95 & P (ORco < 0.8) ≥ 0.50,

and

P (ORl < 1) ≥ 0.95 & P (ORl < 0.8) ≥ 0.50.

When ORco < 1 and ORl < 1, CP is more effective than control; we will require a very high level of certainty that
this is the case. When ORco < 0.8 and ORl < 0.8, it is considered that the beneficial effect of CP is more than
trivial; we will require a moderate level of certainty that this is the case. The study will not be stopped unless all
four criteria are met.

Stopping for harm
Stopping for harm will be based on the models used for the primary efficacy analyses (1) and (2). Evidence for
harm due to CP will be based on the same odds ratios used in assessing evidence for efficacy. Observing odds
ratios (ORco or ORl) that exceed 1 will indicate that CP is less effective than control (ie, CP is harmful). The
stopping rule for harm is:

P (ORco > 1) ≥ 0.80 or P (ORl > 1) ≥ 0.80.

Note that the stopping rule for harm is much less stringent than the stopping rule for efficacy: the required
level of certainty about possible harm is set at a lower threshold (0.80) than the level of certainty concerning
efficacy (0.95); furthermore, it is sufficient if this lower level of certainty is satisfied with respect to only one of
the bivariate outcomes, not both as in the case of assessing efficacy.

Stopping for safety
In the logistic regression model Section 5 for evaluating safety, described in Section 4.5, the parameter of inter-
est (the overall CP effect on safety) is Θ. We propose stopping for safety based on the posterior probability for
the odds ratio (OR) of adverse events in the CP condition compared to the control condition (ORae = eΘ). The
proposed stopping rule enforces considerations for stopping for safety reasons, even if only a relatively weak
evidence for safety concerns is observed:

P(ORae > 1) ≥ 0.75.

No stopping rules based on symptoms duration and donor CP antibodies
The COMPILE study does not have stopping rules based on the analysis of symptoms duraration and donor CP
antibodies. At the end of COMPILE (due to either achieving one of the stopping criteria based on the primary
analyses or if all studies have stopped recruitment and completed follow-up) the posterior probabilities of Γs, s =
1 to 5 from (3) and of 𝛿t, t = 1 or 2 from (4) will be used to make recommendations regarding the effect of
symptom duration of the efficacy of CP and the therapeutic effects of CP with different levels of antibodies,
respectively.

4.7 Practical measures to minimize bias

All interim analyses will be conducted by unblinded biostatisticians who are coordinating with the cDSMB. The cDSMB
will review the results and make collective decisions. If there is a consensus among the cDSMB members that an action
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should be taken, a uniform recommendation will be passed to each of the individual RCT DSMBs. The recommendation
will not be shared with the individual RCT teams or the IPD MA study team until there is a consensus among the cDSMB
and the individual RCT DSMBs.

4.8 Documentation of interim analyses

Snapshots of the data available at each interim analysis will be preserved, as will all documentation of the analysis plans,
programming code, and reports provided at each interim analysis. It will be possible to fully recreate the decision process
from the trial archive at a time when any limitations of access to information by blinded statisticians becomes unnecessary.

5 DISCUSSION

This paper describes an innovative Bayesian design to pool data across multiple RCTs in order to rapidly test a treat-
ment for COVID-19 where the different trials share a common active treatment but where the control conditions can
vary across trials. The development of this design was motivated by the critical need to find effective and safe treatments
for COVID-19 patients in the context of a global pandemic. This approach highlights the flexibility and power of adap-
tive Bayesian approaches, particularly with respect to the need to implement complex statistical models with varying
degrees of hierarchy (eg, different RCTs and sites and control conditions). Additionally, the Bayesian approach lends itself
naturally to multiple interim analyses that are critical in emergency situations such as the COVID-19 pandemic.

This paper also discusses the numerous challenges of pooling IPD from unrelated RCTs in order to find answers
faster during a global health crisis. An initiative such as the COMPILE consortium has not been undertaken previously
and our experience in setting up, conducting, and reporting the results from the COMPILE study can be used to inform
future such endeavors. While the this project was conceived during a humanitarian crisis, we hope that more general
lessons can be learned; in particular, we hope that the good will among researchers around the globe exhibited in this
initiative will persist, and that international collaborations such as COMPILE will continue to make medical research
more generalizable and more efficient in non-crisis situations.

As of the writing of this paper, there are eight RCTs from around the world collaborating in the COMPILE consor-
tium, with data from over 1400 patients. The consortium is open for all RCTs of CP that include a target population of
hospitalized patients with confirmed COVID-19 who are not on mechanical ventilation at randomization. Discussions
about collaboration are ongoing with several other RCTs that are at different stages of development—from just beginning
recruitment to already fully completed.
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APPENDIX

A.1 Schema of COMPILE
Individual RCTs interested in participating in the COMPILE consortium sign a data sharing agreement. RCTs that have
already ended agree to submit the MDS of variables for their patients who qualify for the COMPILE study, and to respond
to questions from the data management and analysis teams until all queries are resolved. RCTs that are ongoing agree to
submit the MDS for qualifying patients enrolled since the study start until the time of signing the Consortium agreement.
They also agree to update the MDS every 2 weeks with new incoming patient data as well as to correct previously submitted
data sets. The updating and submission of the evolving MDS continues until ether the RCT is stopped or the COMPILE
study stops.

A secure FTP is provided for the submission of the MDSs, with individual passwords and folders for the individual
RCTs. The data management and analysis teams update the COMPILE dataset and perform the analyses stated in the
cDSMB Charter for review by cDSMB every 2 weeks.

The cDSMB, guided by the stopping rules spelled out in the Charter, makes recommendations to the RCTs’ investiga-
tors. Upon recommendation by the cDSMB to terminate the COMPILE study, the investigators from the individual RCTs
reserve the right to make their own decision regarding suspension their RCT. The PI of COMPILE in collaboration with
the PIs of the participating RCTs prepares a manuscript for publication and submits to a venue mutually agreed upon by

F I G U R E A1 Schema of continuous monitoring of pooled international trials of experimental treatment for COVID-19 hospitalized
patients [Colour figure can be viewed at wileyonlinelibrary.com]

https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssc.12278
https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssc.12278
http://wileyonlinelibrary.com
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T A B L E A1 WHO 7-points scale: inverted

1: Not hospitalized without limitation in activity

2: Not hospitalized with limitation in activity

3: Hospitalized not on supplemental oxygen

4: Hospitalized on supplemental oxygen

5: Hospitalized on noninvasive ventilation or high flow nasal cannula

6: Hospitalized on invasive mechanical ventilation or ECMO

7: Death

T A B L E A2 WHO 8-points scale: inverted

1: No clinical or virological evidence of infection

2: Not hospitalized without limitations on activities

3: Not hospitalized with limitation on activities

4: Hospitalized not on supplemental oxygen

5: Hospitalized on supplemental oxygen

6: Hospitalized on noninvasive ventilation or high flow nasal cannula

7: Hospitalized, on invasive mechanical ventilation or ECMO

8: Death

T A B L E A3 WHO Conversion convention from the 7- and 8-point scale to the 11-point scale

7-point 8-point 11-point

1 (if no viral RNA detected) 1 (if no viral RNA detected) 0

1 (if asymptomatic) 1 1

1 (if symptomatic, independent) 2 2

2 3 3

3 4 4

4 5 5

5 6 6

6 (if pO2/FIO2 ≥ 150 or SpO2/FIO2 ≥ 200) 7 (if pO2/FIO2 ≥ 150 or SpO2/FIO2 ≥ 200) 7

- - 8

6 (if pO2/FIO2 < 150 or SpO2/FIO2 < 200 or 6 (if pO2/FIO2
< 150 and vasopressors, dialysis, or ECMO)

7 (if pO2/FIO2 < 150 and vasopressors, dialysis, or
ECMO)

9

7 8 10

all PIs. After the main COMPILE manuscript is accepted for publication, the COMPILE database becomes available for
use by investigators from the participating RCTs as well as external investigators after approval by the COMPILE Publi-
cations Committee and signing of a data use agreement. Approved investigators are given password-protected access to a
“toolbox” with a wide range of software for analysis and a “sandbox” where they can analyze the COMPILE data, without
allowing the data to leave the secure platform.

A.2 Minimal dataset
Demographics and baseline clinical characteristics

Age
Sex
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T A B L E A4 Proportion of times (out of 2000) the stopping trigger was met under Bayesian and frequentist monitoring
approach. The frequentist looks are happening less frequently that the Bayesian looks to limit 𝛼−spending. The stopping rules are
Bayesian: P(ORco < 1) ≥ 0.95 and P(ORco < 0.8) ≥ 0.50 and P(ORl < 1) ≥ 0.95 and P(ORl < 0.8) ≥ 0.50 Frequentist:
O’Brian-Fleming approach with 5 data looks preserving overall 𝛼 = 0.05, with the respective 𝛼 values at each look shown under the
% information available

Bayesian approach O’Brian-Fleming approach

Information % of simulation trigger met Information % of simulations P < 𝜶

Effect (𝛿0, 𝛿1, 𝛿2) = (0, 0, 0)

20% 0.64 20%, 𝛼 = 0.000005 0

33% 0.2

40% 0.2 40%, 𝛼 = 0.0013 0

50% 0.39

60% 0.54 60%, 𝛼 = 0.0085 0.2

67% 0.39

80% 0.34 80%, 𝛼 = 0.0228 0.25

90% 0.25

100% 0.15 100%, 𝛼 = 0.0417 1.23

Type I error Total 3.1 Total 1.68

Effect (𝛿0, 𝛿1, 𝛿2) = (0.1, 0.2, 0.3)

20% 2.18 20%, 𝛼 = 0.000005 0

33% 3.77

40% 3.33 40%, 𝛼 = 0.0013 0.2

50% 2.73

60% 3.72 60%, 𝛼 = 0.0085 2.28

67% 2.58

80% 3.97 80%, 𝛼 = 0.0228 5.36

90% 2.98

100% 2.83 100%, 𝛼 = 0.0417 8.24

Power Total 28.09 Total 16.08

Effect (𝛿0, 𝛿1, 𝛿2) = (0.4, 0.5, 0.6)

20% 15.81 20%, 𝛼 = 0.000005 0.1

33% 22.13

40% 12.58 40%, 𝛼 = 0.0013 7.88

50% 12.68

60% 9.97 60%, 𝛼 = 0.0085 29.91

67% 4.91

80% 6.78 80%, 𝛼 = 0.0228 28.13

90% 4.28

100% 2.51 100%, 𝛼 = 0.0417 17.85

Power Total 91.65 Total 83.87
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Blood group
Quarter of enrollment
Duration since symptoms onset at time of randomization
Days since COVID-19 diagnosis at time of randomization
WHO clinical status score at randomization
Days from randomization to first transfusion (enter 0 for patients randomized to standard of care)

Medical history
History of diabetes
History of pulmonary disease
History of cardiovascular disease

Concomitant medications at randomization
Hydroxychloroquine
Antibacterial
Antiviral, not remdesivir
Remdesivir
Anti-inflammatory, not steroids
Steroids
Antithrombotic

Potential transfusion-related adverse events
Transfusion related acute lung injury (TRALI)
Transfusion associated circulatory overload (TACO)
Transfusion reaction other than TRALI and TACO
TRALI or TACO or COVID-19 worsening symptoms – un-differentiated reaction
Arterial thrombotic event
Venous thrombotic event

Outcomes
WHO score at day 14 ± 1
WHO score at day 28 ± 2
Days from randomization to discharge
Days from randomization to death

A.3 WHO clinical status scales
This appendix provides details on the 7- and 8-points WHO ordinal outcome measures and the algorithm for converting
those scales to the 11-points scale version in Table 2.

A.4 Sample simulation studies
This section of the appendix addresses the issue of Type I error in the proposed statistical analysis and monitoring plan.
We begin by stressing that the concept of P value is not relevant to the Bayesian framework, because P values assess the
probability of the data given the null hypothesis, whereas the Bayesian approach evaluates the probability of a hypothesis
given the data. One common feature of both Bayesian and frequentist monitoring guidelines is the probability that the
study will be stopped early under each of the guidelines.

The total number of subjects in the COMPILE study could not be predicted and the exact number of interim looks
could not be anticipated with any certainty. Using a range of assumptions, we compared the probability that a trigger
for stopping would be reached under the proposed Bayesian analysis and under frequentist monitoring rules using the
O’Brian-Fleming approach.

The simulations performed to design the COMPILE study are important in their own right, and, because of their
extensive volume, are a subject of another manuscript that we are preparing for publication. For illustration, we show here
a brief comparison of the proposed stopping guidelines to one possible frequentist stopping rule, in one set of conditions
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for the number of RCTs, number of RCTs per control condition, sample sizes of the RCTs, and number of interim looks.
In the example below, we use the cumulative odds model and the logistic model from the manuscript (Model 1 and Model
2), but without covariates.

Assumptions:

• 3 RCTs within each control type (standard of care, non-CP, and saline solution)
– 1 large RCT with n = 150
– 2 small RCTs, each with n = 75

• All RCTs are randomized in ratio 1:1 to CP vs control
• O’Brian-Fleming approach is with 4 interim and one final analysis at 20%, 40%, 60%, 80% and 100% of the data

available
• More frequent interim looks are assumed under the Bayesian paradigm at 20%, 33%, 40%, 50%, 60%, 67%, 80%,

90% and 100% information
• Three sets of control-specific treatment effects (as measured by log OR for (𝛿0, 𝛿1, 𝛿2) of the are considered

– (0,0,0), pooled effect on the log OR scale is 0
– (0.1, 0.2, 0.3), pooled effect is 0.2
– (0.4, 0.5, 0.6), pooled effect is 0.5

Table A4 below shows the results.
When the simulated effect is (𝛿0, 𝛿1, 𝛿2) = (0, 0, 0), the sum of the probabilities of meeting the efficacy trigger at all

interim looks under the Bayesian monitoring can be interpreted as a Type I error. When the efficacy of CP is simulated, the
sum over all interim looks of the probabilities of meeting the Bayesian trigger for stopping for efficacy can be interpreted
as power. The results show that the proposed analysis, including the priors and the stopping boundaries, conform with
the conclusions that would be obtained under frequentist monitoring and analysis. This example shows the investigations
that were done to study the operating characteristics of the proposed statistical plan for monitoring and analysis of the
COMPILE study, and illustrates the materials that were discussed with our clinical co-investigators concerned with Type
I error.


