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Introduction

Salmonella enterica serovar Typhimurium (S. Typhimurium) 
is a well-characterized enteropathogen which causes both 
gastroenteritis and serious systemic infections. In humans, 
salmonellosis is mainly contracted by the ingestion of 
contaminated food or water. The annual cost of Salmonella 
infection in the US is estimated to be US$3 billion.1 Thus, 
Salmonella continues to have a big impact upon human life, and 
the control of this bacterium remains a significant challenge for 
the food industry.

The fact that Salmonella bacteria have been found in a number 
of different sites in the body during infection and at different 
stages of food processing reflects the ability of the microbes to 
thrive in many environmental conditions. Salmonella can sense 
its environment and rapidly adapt to changing conditions, a 
process which is mediated by regulation at the transcriptional, 
post-transcriptional and translational levels. The key players 
involved in this adaptation process are transcription factors 
and nucleoid-associated proteins, as well as the more recently 
identified regulatory small RNAs (sRNAs). Though the first 
evidence for the existence of bacterial sRNAs was reported in 
1967,2 most of the discoveries of bacterial sRNAs have only 
occurred in the last decade. The identification of sRNAs in 
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The combination of genomics and high-throughput cDNA 
sequencing technologies has facilitated the identification of 
many small RNAs (sRNAs) that play a central role in the post-
transcriptional gene regulation of Salmonella enterica serovar 
Typhimurium. To date, most of the functionally characterized 
sRNAs have been involved in the regulation of processes which 
are not directly linked to virulence. Just five sRNAs have been 
found to affect the ability of Salmonella to replicate within 
mammalian cells, but the precise regulatory mechanisms 
that are used by sRNAs to control Salmonella pathogenicity 
at the post-transcriptional level remain to be identified. It is 
anticipated that an improved understanding of sRNA biology 
will shed new light on the virulence of Salmonella.
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Enterobacteriaceae initially focused on non-pathogenic strains 
of Escherichia coli.3-6 The strategy for finding sRNAs involved 
bioinformatic screens that were validated by experimental 
approaches using transcriptomic tools such as tiling microarrays 
and high-throughput cDNA sequencing (RNA-seq).7 To date, 
hundreds of sRNAs have been identified in bacteria, but roles 
in virulence have only been elucidated for a minority. RNAIII 
of Staphylococcus aureus was the first regulatory sRNA shown 
to be involved in bacterial pathogenicity by targeting at least 
five mRNAs that encode virulence factors.8-10 Other examples 
of virulence-associated sRNAs have been described in a recent 
review.11

Here we survey the sRNAs identified in S. Typhimurium to 
date and discuss our current understanding of the role of sRNAs 
in the control of virulence. We then focus on the regulation of 
these sRNAs and their target mRNAs.

Small RNAs in bacteria. sRNAs are stable and abundant 
transcripts of about 50–500 nucleotides in length which are 
usually non-coding and exhibit a regulatory function. Post-
transcriptional gene regulation by sRNAs may occur in different 
ways by base-pairing interaction with a target RNA resulting 
in different outcomes or by directly binding to proteins to 
modulate their function.12-14 Two distinct classes of sRNAs have 
been identified: trans-encoded RNAs which are transcribed 
from intergenic regions of the genome, and cis-encoded RNAs 
which are encoded on the strand complementary to coding 
sequences or the 5' or 3' untranslated region (5' UTR, 3' UTR) 
of transcripts.15-17 The family of trans-encoded sRNAs usually 
requires the chaperone Hfq to stabilize the often imperfect 
base-pairing interaction with target mRNA.18 In contrast, cis-
encoded sRNAs possess a region of perfect complementarity to 
their target mRNA and Hfq is not needed for target binding. It 
is now clear that sRNAs are involved in many key physiological 
processes including anaerobic growth, nutrient availability, iron 
homeostasis and the response to oxidative, envelope and osmotic 
stress.9,19-23

Insights from sRNA research in Salmonella. Much of the 
initial investigation of riboregulation by sRNAs involved non-
pathogenic E. coli strains as a model. The more recent use of 
Salmonella as a model organism allows us to ask new questions 
about sRNAs involved in virulence in a variety of infection mod-
els, in the context of a well-established array of genetic tools. 
Next to E. coli, Salmonella is now the best-characterized model 
of sRNA-mediated regulation in Gram-negative bacteria. To 
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date, the largest sRNA regulon has been identified in Salmonella, 
with the GcvB sRNA controlling expression of ~1% of the S. 
Typhimurium genome (Fig.  1).24,25 These studies expand our 
view on the biological significance of sRNAs, establishing them 
as global gene regulators.

Key mechanistic findings from studies in Salmonella have 
advanced our basic understanding of sRNA-mediated regulation 
in bacteria. The distinct modular structure of sRNAs, including 
the highly conserved target binding region (also referred as to 
the “seed” region), was demonstrated for the σE-dependent 
sRNA RybB in Salmonella. Fusion of this seed region to an 
unrelated sRNA backbone permitted full repression of the RybB 
regulon.26-28

Current techniques for the discovery of sRNA targets. To 
complement the identification of new sRNAs, several methods 
allowing the discovery of sRNAs targets have been developed 
in Gram-negative bacteria. For trans-encoded sRNAs, the base-
pairing interaction with mRNAs is imperfect and often requires 
Hfq. One example is the Hfq-associated sRNA MicC sRNA 
which silences S. Typhimurium ompD mRNA and only requires 
a ⩽ 12-bp RNA duplex within the CDS (codons 23–26) for 
repression.29 Different bioinformatic tools allow the prediction 
of the binding regions of sRNA and mRNA by combining com-
parative genomics with a search for certain physical parameters. 
TargetRNA calculates optimal hybridization scores between an 
sRNA and all mRNAs in the genome.30 IntaRNA is a method for 
the prediction of interactions between two RNAs based on mini-
mization of an extended hybridization energy.31 Although most 

of these software tools can confirm previously known findings, 
they should be considered as predictive tools that often produce 
false-positive results and require experimental validation.

As the interaction of cis-encoded sRNAs involves a perfect 
match, the identification of their targets is more straightforward. 
IsrA is a cis-encoded RNA present on the complementary strand 
to the STM0294.1 gene, which encodes a protein with no clear 
functional annotation. Padalon-Brauch et al. have shown that 
IsrA is expressed during exponential phase, osmotic stress, perox-
ide stress and cold shock, and downregulated during stationary 
phase (Fig. 2). The expression of STM0294.1 shows the opposite 
pattern to that of IsrA, and so it has been suggested that IsrA 
could regulate transcription of STM0294.1.32

Pulse-expression of sRNAs has been developed as an efficient 
method to identify mRNA targets, because classical genetic 
approaches often result in quite subtle phenotypes for sRNA 
mutants.33,34 The technique involves the rapid overproduction of 
an sRNA followed by the use of a microarray to identify bacterial 
transcripts that were bound by the sRNA and subsequently 
degraded by an RNaseE-dependent mechanism.33 This approach 
has been used to elucidate large regulons of as many as 50 genes 
controlled by a single sRNA (Fig. 1).

The regulatory interaction between sRNAs and candidate 
mRNA targets must be confirmed within living bacterial cells, 
and can be done with a GFP-based two-plasmid reporter system. 
The ablation of GFP fluorescence by expression of the sRNA 
confirms the direct effect of an sRNA upon its mRNA target. 

Figure 1. An overview of published small RNA regulatory networks in S. Typhimurium.24,25,29,32,33,36,37,45,56,57,74,93-98
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This is measured accurately by flow cytometry, on agar plates 
or by determining the GFP protein levels by western blotting.35

The attribution of the role of a particular sRNA can be com-
plicated by functional redundancy as it is well known that sev-
eral sRNAs can silence the same target mRNA. For example, 
MicC, RybB, InvR and SdsR all negatively regulate the ompD 
gene (Fig. 1).26,29,36,37 In this case, the effect of deleting one sRNA 
could be masked by the action of the remaining three sRNAs, 
and it may be necessary to delete all the sRNAs regulating a 

particular pathway to observe a clear phenotype. Another exam-
ple of functional redundancy is the Csr system which modulates 
carbon metabolism and also regulates SPI1 and SPI2 expression 
through HilD.38 It comprises two sRNAs, CsrB and CsrC and 
the RNA chaperone CsrA.39,40 Although the single mutants ΔcsrB 
or ΔcsrC are not impaired in their ability to infect epithelial cells, 
a ΔcsrB ΔcsrC mutant shows a significant invasion defect. While 
complementation with either CsrB or CsrC leads only to partial 
restoration of wild-type levels of invasion, the presence of both 

Figure 2. Differential expression of S. Typhimurium island-encoded sRNAs during growth under various stress conditions determined by northern 
blot analysis32 or RT-PCR.57 Expression levels are shown as high, medium, low and no expression.32 Cultures of S. Typhimurium were grown under 
different conditions (described from left-hand side): Cells grown in LB to an OD600 of 0.3, 1 and 4.5; Oxygen limitation—overnight growth without agi-
tation in 50 mL Falcon tubes to an OD600 of 0.9; Osmotic stress—cells grown in LB containing elevated (0.5 M) NaCl levels for 30 min; Oxidative stress 
using 0.2 mM paraquat (PQ) and 1 mM hydrogen peroxide (H2O2); Iron limiting conditions—addition of 0.2 mM 2,2’ dipyridyl; pH stress – LB at pH 4.9 
(adjusted with HCl) and LBK media at pH 8.4; N min low Mg and N min high Mg – N minimal media with 10 µM MgCl2 (low magnesium) and 10 mM 
MgCl2 (high magnesium); Cold shock at 15°C and heat shock at 42°C; Intra-macrophage 1h and 8h – within activated J774.A1 macrophage cells assayed 
using gentamycin protection assay;32 In vitro conditions resembling the gastrointestinal tract.57
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being discovered in E. coli and Argaman et al. reported that 
about 24 sRNAs were conserved between Salmonella and E. 
coli.3,41 This important finding prompted the use of conserva-
tion analysis to discover new sRNAs in E. coli.5 The advent of 
bacterial whole genome sequencing and the use of RNA-seq led 

Table 1A. Thirty four S. Typhimurium sRNAs that are not required for murine virulence*

sRNA name (Alternative name) First reported in Upstream gene Downstream gene Relevant references

ArcZ (SraH, RyhA) E. coli yhbL acrB 74, 99

CsrB E. coli yqcC syd 100, 40
CyaR

(RyeE)
E. coli yegQ SL2113 93

DsrA E. coli yodD yedP
71, 75

GcvB (IS145) E. coli gcvA ygdI 101, 24, 25

GlmY (SroF, tke1) E. coli yfhK purG 102, 103

GlmZ (SraJ, k19, RyiA) E. coli yifK hemY 102, 103

InvR (STnc270) Salmonella invH SL2880 37

IsrB-1 (IS092) Salmonella SL0946 SL0947 32

IsrC (IS102) Salmonella envF msgA 32

IsrE (RyhB-2, RfrB) Salmonella SL1208 yeaQ 32

MicA (SraD) E. coli luxS gshA 104, 33, 96, 105

MicC (IS063, tke8) E. coli nifJ ynaF 29

MicF E. coli ompC yojN 106, 107, 95

MicM (RybC, ChiX, SroB) E. coli ybaK ybaP 63, 108

MntS (RybA) E. coli ybiP mntR 5

OmrA (RygB) E. coli aas galR 27

OmrB (t59, RygA, SraE) E. coli aas galR 27

RprA (ISO83) E. coli ydiK ydiL 72, 75

RybB (p25) E. coli SL0845 SL0846 5, 33, 109, 28, 26

RydB (tpe7, IS082) E. coli ydiH SL1302 5

RydC (IS067) E. coli SL1568 cybB 4, 110

SdsR (RyeB, tpke79) E. coli SL1806 SL1807 111, 36

RyfA (tp1, PAIR3) E. coli SL2496 sseB 5

RyhB (RyhB-1, SraI, IS176, RfrA) E. coli yhhX yhhY 5

SgrS (RyaA) E. coli yobN leuD 112, 94, 45

SibC (t27, RygC, QUAD1c) E. coli ygfA serA 113,114

SibD (tp8, RygD, C0730) E. coli yqiK rfaE 113,114

Spot42 (spf) E. coli polA yihA 115,116

SraA (psrA/t15) E. coli clpX lon 3

SraB (pke2) E. coli SL1126 yceD 3

SraF (tpk1, IS160, PRE-element) E. coli yceD ygjT 3, 117

SraL (RyjA) E. coli soxR SL4203 3

SroC E. coli gltJ gltI 63
Target mRNAs of some sRNAs are shown in Figure 1. *See ref. 61 for details of virulence experiments.

sRNAs expressed in trans is necessary to rescue the invasion 
defect, illustrating the difficulties in assigning virulence-associ-
ated functions to sRNAs.

Conservation of small RNAs between Salmonella and E. 
coli. The last decade witnessed increasing numbers of sRNAs 
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to the discovery of the widespread nature of sRNAs, many of 
which were found to be highly conserved in intergenic regions in 
bacteria. Approximately 400 sRNAs have now been predicted in 
about 70 microbial genomes, including those of the Escherichia, 
Shigella and Salmonella genera,42 and comparative analyses of the 
genomes of different Salmonella serovars and E. coli have shown 
the levels of sRNA conservation. Recent studies have reported 
similar levels (48–67%) of conservation among Salmonella and E. 
coli species.43,44 The large number of non-conserved small RNAs 
suggests that species-specific sRNAs could have specialized roles 
in pathogenicity. However, even highly conserved sRNAs were 
shown to regulate species-specific virulence factors as demon-
strated by Papenfort et al.45 In this study, the Salmonella-specific 
effector protein SopD was shown to be regulated by the ancestral 
sRNA SgrS, which is found in both pathogenic and non-patho-
genic species.

Expression profiles of S. Typhimurium sRNAs and their role 
during infection. S. Typhimurium and E. coli diverged from a 
common ancestor about 100–130 million years ago and share 
about 71% of their genetic information.46-48 S. Typhimurium 
possesses a unique set of attributes that allow it to survive in the 
hostile environments associated with each stage of animal infec-
tion, and to colonize different intracellular niches within mam-
malian cells. For instance, once ingested, this bacterium must 
first cope with an increase in temperature followed by the acidic 
environment of the stomach. In the intestine, the microorganism 
is subjected to increased osmolarity, a decrease in oxygen tension, 
bile and competition with the intestinal microbiota.49 Salmonella 
can subsequently enter and proliferate within non-phagocytic and 
phagocytic cells, where the pathogen resists intracellular defense 
mechanisms such as antimicrobial peptides, the acidification of 
the Salmonella-containing vacuole (SCV) and the production 
of reactive oxygen and nitrogen species. In response to these 
stressful conditions, S. Typhimurium must quickly modulate its 
transcriptional profile, raising the possibility that the rapid gene 
regulation mediated by sRNAs would be particularly relevant.50 
Monitoring sRNA expression could reveal patterns of induction 
relevant to the strategies used by Salmonella to survive within 
host cells.

An sRNA involved in Salmonella virulence was first reported 
in the year 2000.51 Deletion of the bi-functional transfer-mRNA 
(tmRNA), which rescues ribosomes stalled on defective mRNAs 

(reviewed in ref. 52), resulted in an avirulent Salmonella mutant 
in mouse infections. Binding of tmRNA to stalled ribosomes 
requires the small protein SmpB which has been shown to be 
important for proliferation of Salmonella in macrophages.53,54

In an attempt to find S. Typhimurium specific sRNAs that 
had not already been characterized in E. coli, the Altuvia lab used 
a computational approach to identify and validate 19 new sRNAs 
located in intergenic regions of the Salmonella pathogenicity 
islands (SPIs).32 The sRNA expression was monitored by northern 
blot analysis both in media mimicking infection-relevant stress 
conditions and directly inside macrophages. Many of the island-
encoded sRNAs were induced in conditions including station-
ary phase growth, in minimal medium, upon temperature shock, 
acidity and oxidative stress (Fig. 2). In macrophages, expression 
of IsrC and IsrN was induced early during infection and then 
decreased as the infection progressed, similar to the results shown 
earlier for OxyS in E. coli.20,55 Conversely, IsrE (RyhB2), RyhB1 
and IsrH showed increased levels of expression later during infec-
tion. The differential expression patterns suggest a role for sRNAs 
at different stages of infection. In contrast, IsrH has recently been 
shown to be downregulated during infection of fibroblasts, in 
which wild-type Salmonella is non-replicative.56

Two of the island-encoded sRNAs, IsrJ and IsrM, were found 
to be particularly important for Salmonella proliferation within 
non-phagocytic cells and/or macrophages.32,57 IsrJ is upregulated 
under conditions which promote invasion of epithelial cells and 
is positively regulated by HilA, the central transcriptional activa-
tor of SPI1. The deletion of isrJ results in a less invasive mutant 
strain that is impaired for translocation of the effector protein 
SptP, which is required for remodelling the host cell cytoskeleton 
after bacterial entry.32,58

The ΔisrM mutant showed a broad virulence defect, with 
reduced invasion of epithelial cells, lower intracellular replica-
tion/survival in macrophages, and reduced growth in the ileum 
and spleen of mice.57 IsrM post-transcriptionally represses the 
expression of virulence factors hilE and sopA. Most SPI1 genes are 
negatively regulated by HilE through sequestration of HilD, the 
major transcriptional activator of SPI1, while SopA is a secreted 
effector protein that is involved in causing inflammation and 
diarrhea.59,60 IsrM therefore aids in choreographing the expres-
sion of virulence factors.

Table 1B. Five sRNAs involved in virulence of S. Typhimurium

sRNA 
name

Target mRNA Role in virulence References

IsrJ Control of effector protein production 32

IsrM hilE, sopA
Modulates the expression of SPI1 proteins via hilE;

downregulates SopA
57

IstR tisAB SOS induced toxic peptide – Inhibits growth allowing DNA repair 62,61

OxyS
Regulates about 40 

genes; including rpoS
Inhibits alternate stress adaptation pathways during oxidative 

stress
20,32,61

SroA
Riboswitch element 

of the thiBPQ operon
Putative import of Thiamine and Thiamine pyrophosphate 61
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Another study to identify sRNAs required for S. Typhimurium 
virulence focused on 37 sRNAs that are conserved in both E. coli 
and S. Typhimurium. Single small RNA deletion mutants were 
tested by competitive index in the murine infection model. A 
key finding of this study was that 34 of the tested 37 sRNAs did 
not play a role in Salmonella virulence (Table 1A).61 Only two 
sRNA mutants, ΔsroA and ΔistR gave a reproducible attenuated 
phenotype in mice, with a reduced ability to compete with the 
wild-type strain (Table 1B). The IstR sRNA, which was origi-
nally identified in E. coli by the Altuvia lab in 2004, inhibits the 
synthesis of an SOS-induced toxic peptide.62 The SroA RNA is 
assumed to result from attenuated transcription of a riboswitch 
element of the thiBPQ mRNA that codes for proteins involved 
in thiamine uptake,63,64 but its function remains unclear. In con-
trast, one strain lacking the OxyS sRNA was shown to be hyper-
virulent. OxyS, a member of the OxyR regulon, is upregulated 
by micromolar levels of peroxide and coordinates the cellular 
response to oxidative stress.65

AmgR is a 1.2 Kb antisense transcript encoded on the comple-
mentary strand to the mgtCBR operon. The mgtC gene encodes a 
protein necessary for Salmonella to survive within macrophages, 
to grow in low Mg2+ environments and for virulence in mice.66 
PhoQ, the kinase in the PhoPQ two component regulatory sys-
tem, senses low levels of Mg2+ and the response regulator PhoP 
induces transcription of the mgtCBR operon. AmgR regulates 
expression of the mgtCBR operon by de-stabilizing the mgtC and 
mgtB transcripts in an RNaseE-dependent manner. An amgR 
mutant strain was found to be more virulent than the wild-type 
strain in mice. AmgR is PhoP-dependent and PhoP directly binds 
the amgR promoter, leading to amgR expression in low Mg2+ con-
ditions. Therefore, PhoP has an apparently paradoxical effect on 
mgtC expression as it directly activates both mgtC and amgR, but 
AmgR has a repressive effect on mgtC. This regulatory mecha-
nism may have evolved to titrate the levels of MgtC expressed at 
appropriate times during infection.67

The published roles of sRNAs in the virulence of S. 
Typhimurium are summarized in Tables 1A and 1B, and it 
is likely that the list of sRNAs that are required for infection 
will increase in the future. The expression profiles derived from 
northern blot and RT-PCR analyses of 19 island-encoded sRNAs 
are shown in Figure 2, and it is apparent that the levels of sRNAs 
vary in different environmental conditions. The recent profiling 
of 13 sRNAs during infection of fibroblasts showed that the levels 
of sRNAs varied during an infection time-course.56 The levels of 
regulatory sRNAs within bacterial cells are likely to give clues 
to their function, and so expression profiling should be a useful 
discovery tool in the future.

RpoS and Salmonella virulence. The alternative sigma fac-
tor RpoS (σ38) plays a key role in Salmonella infection and is 
required for full virulence of S. Typhimurium.68,69 Specifically, 
RpoS is important for persistence in lymphoid organs, such as the 
spleen and liver, and for the initial stages of infection in murine 
Peyer’s patches.69 RpoS also activates the plasmid-borne spvR and 
spvABCD genes, which are required for intracellular growth and 
systemic infection in mice and humans.70

In E. coli, the translation of RpoS is repressed by OxyS68 
and the sigma factor is positively regulated by 3 Hfq-dependent 
sRNAs, namely DsrA, ArcZ and RprA, which act by relieving the 
inhibitory secondary structure that prevents rpoS translation.71-73 
This type of regulation is conserved, but is less pronounced in 
Salmonella, questioning the significance of DsrA, ArcZ and 
RprA for Salmonella virulence.74,75 Further study of the function 
of the RpoS sigma factor in S. Typhimurium is required, and may 
lead to the identification of more links with sRNA biology.

Hfq as a mediator of sRNA regulation. The Hfq protein is a 
key player in the global post-transcriptional regulatory network 
that facilitates the interactions of Salmonella sRNAs with target 
mRNAs.18 Deletion of hfq in Salmonella gives rise to a non-motile 
strain which is highly attenuated in its ability to infect mice, 
invade epithelial cells, secrete virulence factors and to survive and 
proliferate within macrophages. These significant phenotypes 
suggest that Hfq interacts with a number of sRNAs which are 
involved in virulence.54,76,77 As most trans-acting sRNAs depend 
upon Hfq to stabilize their binding to target mRNAs, the chap-
erone can facilitate the binding of an sRNA to its target mRNA 
and thereby prevent translation or induce target degradation. 
Hfq can also bring about positive regulation by recruiting an 
sRNA to its target binding site and thereby de-stabilizing second-
ary structures which inhibit target translation.78,79 Additionally, 
Hfq can regulate sRNA levels independently from their mRNA 
targets by protecting sRNAs from endonucleolytic decay.80 There 
are several suggestions as to how Hfq regulates sRNAs by con-
trolling the base-pairing interaction between the sRNA and its 
target mRNA. The protein may act as a catalyst which increases 
the rate of complex formation between the trans-acting sRNA 
and an mRNA to stabilize the imperfect base-pairing between 
the two RNAs, as duplex formation in the absence of Hfq is rela-
tively poor.81,82

In E. coli, Hfq has been demonstrated to interact with other 
RNA-associated proteins, such as PNPase, an exoribonuclease, 
and PAP, a poly(A) polymerase which may add an additional 
level of sRNA regulation by Hfq.83 Recently, it was also sug-
gested that Hfq plays a role in transcription termination in E. coli 
by associating with the transcription termination factor Rho.84 
Furthermore, limiting concentrations of Hfq can regulate sRNAs 
as the abundance of Hfq per cell remains fairly constant while 
the amount of its target sRNAs can increase under certain con-
ditions.85 Sequestration of Hfq can therefore serve to modulate 
sRNA function by creating competition for binding between dif-
ferent sRNAs. This was demonstrated in E. coli when overexpres-
sion of one sRNA led to a decrease in the accumulation of other 
sRNAs, as Hfq protein levels become limiting.86 This method 
of regulation by Hfq was also suggested by the transcriptomic 
profile of a strain overexpressing ArcZ which showed some simi-
larities to that of an ∆hfq mutant, indicating that an individual 
sRNA may displace other sRNAs from Hfq.74

Future prospects: Next-Generation Sequencing. RNA-seq is 
now the tool of choice for the discovery of novel small RNAs in 
bacteria.77,87,88 The rapid reduction in the costs of RNA-seq will 
lead to increasing numbers of new sRNAs being identified in the 
near future. The addition of small RNA genes to existing genome 
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annotations will help to shed light on the complex nature of the 
bacterial transcriptome.

The recent publication of the transcriptional landscape of S. 
Typhimurium represents an important advance. An RNA-seq-
based approach was used to identify the major transcriptional 
start sites and to define the motif of σ70-dependent promoters.44 
About 140 sRNAs were found to be expressed at one stage of 
growth. The fact that 60 novel sRNAs were discovered in a single 
set of experiments suggests that next-generation sequencing-
based methods will make a big impact upon the RNA world.

In future, technical advances promise to extend the applicabil-
ity of RNA-seq for the monitoring of transcriptional changes in 
complex environments or from the very low (femtomolar) amounts 
of RNA obtained from infected animals.89,90 Another challenge 
will be to simplify the identification of mRNA targets. Until now, 
pulse overexpression of a small RNA and subsequent monitoring 

of transcript levels using a microarray has been widely used to iden-
tify many mRNA targets,91 but this is a labor-intensive approach. 
Sequence-based target prediction tools are available on the web, 
and as they become more effective they will be a valuable and cost-
effective alternative to experimental approaches.92

Although many un-answered questions remain about the pre-
cise role of sRNAs during the infection process, it is likely that 
the burgeoning field of sRNA biology will have a great impact on 
our understanding of Salmonella pathogenicity.
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