
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ORIGINAL RESEARCH ARTICLE
published: 11 September 2014
doi: 10.3389/fneur.2014.00173

Divergent temporal expression of hyaluronan metabolizing
enzymes and receptors with craniotomy vs. controlled-
cortical impact injury in rat brain: a pilot study
Guoqiang Xing*, Ming Ren and Ajay Verma

Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA

Edited by:
Yumin Zhang, Uniformed Services
University of the Health Sciences,
USA

Reviewed by:
Sonia Villapol, Georgetown University,
USA
Zhihui Yang, University of Florida, USA

*Correspondence:
Guoqiang Xing, Lotus Biotech.com,
John Hopkins University-MCC, 9601
Medical Center Drive, Suite 227,
Rockville, MD 20850, USA
e-mail: gxing99@yahoo.com

The views expressed in this article are
those of the authors and do not
necessarily reflect the official policy
or position of the Department of the
Navy, Department of Defense, nor
the U.S. Government.

Traumatic brain injury (TBI) triggers many secondary changes in tissue biology, which ulti-
mately determine the extent of injury and clinical outcome. Hyaluronan [hyaluronic acid
(HA)] is a protective cementing gel present in the intercellular spaces whose degrada-
tion has been reported as a causative factor in tissue damage. Yet little is known about
the expression and activities of genes involved in HA catabolism after TBI. Young adult
male Sprague-Dawley rats were assigned to three groups: naïve control, craniotomy, and
controlled-cortical impact-induced TBI (CCI-TBI). Four animals per group were sacrificed
at 4 h, 1, 3, and 7 days post-CCI. The mRNA expression of hyaluronan synthases (HAS1-
3), hyaluronidases (enzymes for HA degradation, HYAL 1–4, and PH20), and CD44 and
RHAMM (membrane receptors for HA signaling and removal) were determined using real-
time PCR. Compared to the naïve controls, expression of HAS1 and HAS2 mRNA, but
not HAS3 mRNA increased significantly following craniotomy alone and following CCI with
differential kinetics. Expression of HAS2 mRNA increased significantly in the ipsilateral
brain at 1 and 3 days post-CCI. HYAL1 mRNA expression also increased significantly in
the craniotomy group and in the contralateral CCI at 1 and 3 days post-CCI. CD44 mRNA
expression increased significantly in the ipsilateral CCI at 4 h, 1, 3, and 7 days post-CCI (up
to 25-fold increase). These data suggest a dynamic regulation and role for HA metabolism
in secondary responses to TBI.

Keywords:TBI, secondary injury factors, hyaluronic acid, receptor, synthesis, degradation, hyaluronidase, rat brain

INTRODUCTION
Traumatic brain injury (TBI) is the leading cause of mortal-
ity in children and young adult under 44 years of age in the
USA. Brain tissues that are not destroyed immediately follow-
ing the primary injury may undergo sub-acute injury or delayed
death caused by secondarily generated auto-destructive factors
(1, 2). Despite extensive research, the mechanism underlying
TBI-induced secondary injury remains to be fully elucidated.

Hyaluronan [hyaluronic acid (HA)] is a stable sulfate-free
mucopolysaccharide (glycosaminoglycan) containing about 2,500
repeating acetylglucosamine and glucuronic acid disaccharide
units and is synthesized by a class of integral membrane proteins,
i.e., hyaluronan synthases (HAS1, HAS2, and HAS3). The three
HAS genes show distinct patterns of expression during develop-
ment and their protein products play significantly different roles
in the formation of the HA matrix and in response to different
stimuli (3–5).

Both HAS1 and HAS2 synthesize high-molecular-weight HA,
whereas HAS3 produces lower molecular weight HA (3). The
expression of the three HAS isoforms is more prominent in grow-
ing cells than in resting cells and is differentially regulated by
various stimuli, suggesting distinct functional roles of the three
proteins. HAS lengthens hyaluronan by repeatedly adding glu-
curonic acid and N -acetylglucosamine to the nascent polysac-
charide. HA is extruded via ABC-transporter through the cell

membrane into the extracellular space (6). Hyaluronan forms a
protective cementing gel in intercellular spaces throughout the
body and acts as a binding and lubricating agent as well as antiox-
idant (7, 8). Hyaluronan also modulates cell migration, adhesion,
wound healing, and tumor invasion (9, 10). The concentration of
high-molecular-weight hyaluronan is high in the brains of young
rats, but it decreases with aging whereas the low molecular weight
hyaluronan increases with aging (11, 12).

As the HAS enzymes are important in cell development and
proliferation, they must be strictly regulated. This regulation
may occur transcriptionally and post-transcriptionally by nat-
urally occurring anti-sense HAS2 (13–17), by changes in the
levels of the sugar substrates needed for HA production, and
by modification of the enzymes through HAS dimerization or
monoubiquitination (18, 19).

Recent studies in peripheral tissues have implicated a critical
role of altered hyaluronan (HA) metabolism in the pathophysiol-
ogy and healing process of injured tissues. Significantly increased
HA production (by 32-fold in the circulation) has been found
as a characteristic of patients with acute peripheral lung injury
(20) and block HA production by hyaluronan synthase inhibitors
effectively suppressed staphylococcal enterotoxin-induced inflam-
mation (21).

The high-molecular-weight hyaluronan is readily degraded into
small molecules after tissue injury (22), primarily by increased
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levels of hyaluronidases (HYALs) and reactive oxygen species
(ROS) (23). The degraded hyaluronan fragments play impor-
tant roles in inflammation, innate immunity, cell prolifera-
tion, and wound healing through its antioxidant properties
and through interacting with its primary cell surface receptors,
CD44, RHAMM, and toll-like receptor 4 (TLR-4) (24–26). The
increased fragmentation of HA in the early stages of injury
could exert antioxidant effect against ROS and stimulate white
blood cells-mediated immune response by up-regulating CD44
(27, 28). Increased levels of hyaluronan and CD44 could also
stimulate cell proliferation and migration as found in cancer
malignancy (29–31).

Hyaluronidases are a family of lysosomal enzymes that are cru-
cial for the spread of bacterial infections and venoms toxins and
the progression of cancer (32–34). Six HYAL genes have been
identified [HYAL1, HYAL2, HYAL3, HYAL4, PH20, and HYAL-
like pseudogene (HYALP1)] (35–38). Hyal-1 and Hyal-2 are the
major mammalian HYALs in somatic tissues, and that they act
in concert to degrade high-molecular-weight hyaluronan to the
tetrasaccharide (37). HYAL1 is highly expressed in the serum too.
HYAL2 enzymes have an acidic pH-optimum with an activity that
is considerably lower than for other types of HYALs. HYAL3 is
highly expressed in testis and bone marrow but low in other tis-
sues. HYAL4 is expressed in placenta and skeletal muscle and it
may form a complex with HYALP1 and PH-20. Human HYALP1
is a pseudogene with mutation in genomic DNA and cDNA
(36). HYALs are absent or lowly expressed in normal adult brain.
However, injury-induced HYAL expression and HA degradation
may alter brain tissue hydration and osmotic balance resulting in
edema, and promotes cell proliferation and migration.

Altered HA metabolism has been reported at protracted peri-
ods following stroke in human (39) and following middle cerebral
artery occlusion (MCAO) in the rat (40). In the human study, the
production of total HA and low molecular mass 3–10 disaccha-
rides of HA (o-HA) was increased in post-mortem tissue and in
the serum of patients at 1, 3, 7, and 14 days (peaking at 7 days)
after ischemic stroke. Hyaluronidase activity was also increased in
serum samples (peaking after 3 days) that may underlie the subse-
quent increase in o-HA (39). Moreover, HA synthases (HAS1 and
2) and HYALs (HYAL1 and 2) protein expression was increased
in inflammatory cells from both stroke and peri-infarcted regions
of the brain, with HYAL1 upregulated in microvesssels and intra-
cellularly in neurons, while HAS2 became translocated into the
nuclei of neurons in peri-infarcted areas (39). And the HA recep-
tor CD44 was increased in infiltrating mononuclear cells in the
inflammatory regions. Similar results were found in the rat model
of stroke (40).

Hyaluronic acid effects are mediated through two receptors,
CD44 and the receptor of HA mediated motility (RHAMM). CD44
is a member of the closely related cell surface glycoproteins [cell
adhesion molecules (CAMs)]. CD44 is a 742 amino acid single-
pass type I membrane protein that is involved in hematopoiesis,
lymphocyte activation, and tumor metastasis (41). CD44 mediates
both cell–cell and cell–matrix interactions and plays an essential
role in cell adhesion and cell migration. CD44 is expressed as
multiple isoforms in normal and cancer tissues throughout the
body due to alternative splicing events (42, 43). CD44 deficiency is
associated with decreased Cryptococcus neoformans brain infection

(44). When compared to wild type animals, mice deficient in
CD44 show significant reduction in ischemic infarct size and in the
expression of soluble interleukin-1β following transient (30 min
ischemia) and permanent (24 h) occlusion of the middle cerebral
artery (45). RHAMM, also known as CD168, is a matrix receptor,
which is linked to the plasma membrane by a GPI anchor and reg-
ulates cell motility. RHAMM is involved in glial cell locomotion
and may play a role in the motile behavior of glial cells in vivo after
CNS injury (46).

So far, no study has examined changes in the hyaluronan path-
way after TBI. Considering the importance of hyaluronan metab-
olism in maintaining the integrity of tissue structure and function
and tissue repair, we determined the mRNA expression of hyaluro-
nan receptors (CD44, RHAMM), hyaluronan synthases (HAS1,
HAS2, and HAS3), and HYALs (HYAL1, HYAL2, HYAL3, HYAL4,
and PH20) in rat brains after controlled-cortical impact-induced
TBI (CCI-TBI).

MATERIALS AND METHODS
ANIMALS AND CONTROLLED-CORTICAL IMPACT-INDUCED TBI
Forty-eight male Sprague-Daley rats (170–200 g) (Taconic Farm,
NY, USA) were randomly assigned to three different groups: (1)
naïve control; (2) craniotomy (sham CCI); and (3) CCI. Four
animals per group were sacrificed at 4 h, 24 h, 3 days and 7 days
post-CCI.

For the craniotomy-only and the CCI groups, animals were
initially anesthetized with 4% isoflurane in O2 with a vented anes-
thesia chamber connected to an isoflurane scrubber. The rats were
mounted in the injury device, secured by ear bars and incisor
bar and spontaneously anesthetized with a 1–2% isoflurane in O2

via blow-by nose cone connected to a charcoal canister passive
isoflurane scavenger. An incision and a 10-mm craniotomy are
made over the left primary and secondary motor cortex (bregma
3.70 mm, interaural 12.70 mm). After removal of the bone flap,
cortical injury was induced with a CCI device (47), with a pen-
etration depth of 1.5 mm, a velocity of 5 m/s, and a duration of
50 ms over the cortex. The bone scalp was replaced and sealed
with dental cement, and the scalp incision was closed with sta-
ples following the injury. For the craniotomy alone group, only
the cortical injury was excluded from the above animal proce-
dures. Animals were observed after the surgery till they recovered
from anesthesia. The animal body temperature was maintained at
between 35 and 37°C during the surgery by a warming lamp. All
CCI animals looked healthy before and after the CCI injury. All
CCI and sham CCI animals recovered from isoflurane anesthesia
and became mobile within 5 min after isoflurane discontinuation.
Although most CCI animal reassumed some exploratory behav-
ior 30 min after CCI, they did not regain full motor activity till
3 days post-CCI. Animals were sacrificed and transverse (i.e., con-
tralateral and ipsilateral CCI) hemispheres were collected at 4 h,
24 h, 3 days, and 7 days post-CCI (N = 4/group/time). For mRNA
analysis, the contralateral and ipsilateral hemispheres (coronal
sections containing the epicenter of the injury) of the CCI, and the
corresponding ipsilateral hemispheres of the naïve and sham rats
were separated, rapidly frozen in pre-cooled isopentane (on dry-
ice) and stored at −80°C. All animal procedures were approved
by the IACUC of the Uniformed Services University of the Health
Sciences (USUHS).

Frontiers in Neurology | Neurotrauma September 2014 | Volume 5 | Article 173 | 2

http://www.frontiersin.org/Neurotrauma
http://www.frontiersin.org/Neurotrauma/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Xing et al. TBI alters brain hyaluronan metabolism

RNA EXTRACTION, REVERSE TRANSCRIPTION, AND QUANTITATIVE
REAL-TIME PCR
Frozen transverse brain hemispheres were homogenized and total
RNA was extracted using RNeasy kit (Qiagen, Germany). Total
RNA was reverse transcribed into first-strand cDNA in a total vol-
ume of 20 µl using the M-MLV reverse transcriptase kit (Promega,
Madison, WI, USA). Quantification of mRNA expression was per-
formed in triplicate using the SYBR Green SuperMix (BioRad,
CA, USA) in a two-step PCR reaction procedure, performed on
the MyiQ single color real-time PCR detection system (BioRad,
CA, USA). One microliter cDNA from the RT-reaction was used
as the template for quantitative real-time PCR reaction with a
final PCR reaction volume of 25 µl, with the 5′ and 3′ gene-
specific PCR primer concentrations at 200 nM each. Real-time
PCR primers were designed using Primer3 software (Whitehead
Institute, MIT, MA, USA) according to the coding sequences of
each gene (Table 1). After the initial denaturation at 95°C for
3 min, 40 cycles of primer annealing and elongation were con-
ducted at 60°C for 45 s, followed by denaturation at 95°C for 10 s.
Fluorescent emission data were captured, and mRNA levels were
quantified using the threshold cycle value (Ct). To compensate for
variations in input RNA amounts and efficiency of reverse tran-
scription, qPCR data for mRNA for each sample were normalized
by reference to the data obtained for the house keeping beta-
actin (GenBank#. BC063166) determined from the same sample.
Fold change in mRNA expression was calculated using the equa-
tion: fold change= 2−∆∆Ct, where ∆Ct= target gene Ct – house

Table 1 | Primer sequences for real-time qPCR.

cDNA bp Sense primer (5′) Anti-sense primer (3′)

HAS1

(120)

AGTATACCTCGCGCTCCAGA ACCACAGGGCGTTGTATAGC

HAS2

(124)

ATAAGCGGTCCTCTGGGAAT CCCTGTTGGTAAGGTGCCTA

HAS3

(130)

AGCAGCGTGAGGTACTGGAT AGTCCTCCAGGAACTGCTGA

PH20

(117)

TGGTGAAACAGTTGCTCTGG GGATTCAGGGTGGTCTTCAA

HYLA1

(107)

ATGACCAGCTAGGGTGGTTG CTCTTGCACACGGTATCGAA

HYLA2

(107)

AGGCCTGTATCCACGTTTTG GTTCCACAGCTTCCTTCAGC

HYLA3

(145)

CACCAGATCCTCCACAACCT GAGGCTGCCTGGTAGACTTG

HYLA4

(133)

ACCCATCAATGGTGGTCTTC GCGCCAATATTCCCAGTCTA

CD44

(102)

GCTATCTGTGCAGCCAACAA AAGAGGAGCTGAGGCATTGA

RHAMM

(101)

TGCAAAGCCAGTCACTTCTG GACATTCCTCTCGGAGGTCA

Oligonucleotide sequences of qPCR primers.

keeping gene (β-actin) Ct, and ∆∆Ct is ∆Ct control – ∆Ct
CCI-TBI (or fold change)= 2(∆CT control – ∆CT CCI-TBI).

STATISTICAL ANALYSIS
Data were expressed as mean± SD. Differences in CD44/HAS/
HYAL mRNA expression among the naïve controls, craniotomy,
and contralateral and ipsilateral CCI-TBI brains at each time point
post-CCI were examined for statistical significance using one-
way ANOVA analysis followed by post hoc LSD test (two-tailed).
A difference with a p-value <0.05 was considered statistically
significant.

RESULTS
Fold change in mRNA expression between the control and
CCI/Craniotomy groups was calculated using the qPCR equa-
tion: fold change= 2−∆∆Ct, where ∆Ct= target gene Ct – house
keeping gene (β-actin) Ct, and ∆∆Ct is ∆Ct control – ∆Ct
CCI-TBI (or fold change). One-way ANOVA showed significant
effect of CCI/Craniotomy on HAS1 mRNA expression at 4 h, 24 h,
and 3 days after the injury (p < 0.01, respectively). Post hoc test
(two-tailed) showed that compared to that of the naïve control
animals, HA synthase 1 (HAS1) mRNA increased significantly
(by twofold) in the craniotomy (sham CCI-TBI) at 4 and 24 h
post-CCI (p < 0.01 and p < 0.05, respectively) before returning
to the control level 3 days after the craniotomy surgery. HAS1
mRNA expression also increased markedly (two to threefold) in
the contralateral and ipsilateral CCI hemispheres at 4, 24, and
72 h post-CCI. And the increase was significance in the contralat-
eral CCI (p < 0.05) and ipsilateral CCI (p < 0.01) hemispheres at
3 days post-CCI. Thereafter, HAS1 mRNA level returned to control
level 7 days post the surgery (Figure 1A).

One-way ANOVA showed significant effect of CCI on HAS2
mRNA expression at 24 h and 3 days post-CCI (p < 0.01, respec-
tively). Post hoc test showed that compared to the naïve controls,
HAS2 mRNA expression increased significantly (>twofold) in the
ipsilateral CCI hemisphere at 24 h and 3 days post-CCI (p < 0.01,
each) (Figure 1B). Thereafter, HAS2 mRNA level returned to basal
level 7 days post the injury. Although HAS2 mRNA also increased
considerably in the contralateral CCI at 4, 24, and 72 h post the
injury, the increase was not significant due to great within-group
variation.

No significant effect of craniotomy or CCI-TBI in HAS3 mRNA
or in PH20 mRNA expression level was found at anytime after
craniotomy and CCI-TBI (Figures 1C,D).

Compared to the naïve groups, hyaluronidase 1 (HYAL1)
mRNA expression level increased markedly but non-significantly
in the craniotomy group and in the contralateral CCI hemisphere
4 h after craniotomy or CCI (Figure 2A). That increase in HYAL1
mRNA level expression became significant in the craniotomy
group at 24 h post the surgery (p < 0.05), and in the contralat-
eral CCI hemisphere 72 h after CCI-TBI (p < 0.05), respectively
(Figure 2A). No significant change in HYAL1 mRNA was found
in the ipsilateral CCI hemisphere after CCI-TBI.

No significant change was found in HYAL2, HYAL3, and
HYAL4 mRNA expression in the craniotomy and CCI animals
after the surgeries (Figures 2B–D).
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FIGURE 1 | Quantitative real-time PCR determination of HAS1 (A),
HAS2 (B), HAS3 (C), and PH20 (D) mRNA expression in brain
homogenates of the control, craniotomy (sham CCI), contralateral

CCI, and ipsilateral CCI hemisphere at 4 h, 24 h, 3 days, and 7 days
post-CCI. Results are presented as the fold change relative to the control
group (=1). *p < 0.05; **p < 0.01.

One-way ANOVA showed significant effect of CCI-TBI on
brain CD44 mRNA expression at all four observation time points
after CCI. Post hoc test showed that compared to that of the naïve
controls, CD44 mRNA expression level increased significantly
in the ipsilateral CCI hemisphere (>twofold) 4 h, 24 h (by 25-
fold), 3 days (23-fold) post-CCI, and 7 days post-CCI (seven-
fold) (p < 0.01, each) (Figure 3A). CD44 mRNA also increased
significantly in the contralateral CCI hemisphere at 24 h (20-fold)
and 3 days (twofold) post-CCI (Figure 3A).

In contrast to CD44, RHAMM mRNA level only increased
briefly and significantly in the ipsilateral CCI (threefold)
(p < 0.05) 3 days post-CCI (Figure 3B).

DISCUSSION
In this study, we found significant sub-acute increases in brain
hyaluronic synthases (HAS1 and HAS2) mRNA and in CD44
mRNA expression after CCI-TBI and, to a lesser extent, after cran-
iotomy alone. Although the biological relevance of the increased
expression of HAS and CD44 remains to be fully understood,
the results suggest that brain HA metabolism could have been
altered and may represent a potentially important mechanism of
secondary injury and/or repair in TBI. So far there is a lack of infor-
mation about the regulation of brain HA metabolism after TBI,
but recent findings in stroke and in the peripheral tissues could

serve as the valuable guide for understanding HA metabolism in
injured brain (20, 39).

Altered HA metabolism has been reported at protracted peri-
ods following stroke in human (39) and following MCAO in the
rat (40). Recent studies in peripheral tissues have implicated a
role of altered hyaluronan metabolism in the pathophysiology
and healing process of injured peripheral tissues. Significantly
increased HA production (by 32-fold in the circulation) has been
reported in the acute phase of patients with direct lung injury (20)
and blocking HA production by hyaluronan synthase inhibitors
effectively suppressed staphylococcal enterotoxin-induced inflam-
mation (21), suggesting increased HA production is potentially
involved in the inflammatory or healing process after acute injury
or infection.

Studies of organ/tissue during development suggest that intact
high-molecular-weight HA is essential for normal vascular devel-
opment, tissue/organ structure, and functional integrity as absence
of HA in HAS2 knockout animal results in reduced HA production
and embryonic lethality due to severe cardiac and vascular
abnormalities (48). Under physiologic conditions, HA is present
as high-molecular-weight (HMW) polymers with an average mol-
ecular weigh between 3,000 and 4,000 kDa. HMW HA but not
low molecular weight HA is suggested to be able to modulate
cytoskeleton regulation, signal transduction, biosynthesis, redox

Frontiers in Neurology | Neurotrauma September 2014 | Volume 5 | Article 173 | 4

http://www.frontiersin.org/Neurotrauma
http://www.frontiersin.org/Neurotrauma/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Xing et al. TBI alters brain hyaluronan metabolism

FIGURE 2 | Quantitative real-time PCR determination of HYAL1 (A),
HYAL2 (B), HYAL3 (C), and HYAL4 (D) mRNA expression in brain
homogenates of the control, craniotomy (sham CCI), contralateral CCI,

and ipsilateral CCI hemisphere at 4 h, 24 h, 3 days, and 7 days post-CCI.
Results are presented as the fold change relative to the control group (=1).
*p < 0.05; **p < 0.01

FIGURE 3 | Quantitative real-time PCR determination of CD44 (A) and
RHAMM (B) mRNA expression in brain homogenates of the control,
craniotomy (sham CCI), contralateral CCI, and ipsilateral CCI

hemisphere at 4 h, 24 h, 3 days, and 7 days post-CCI. Results are
presented as the fold change relative to the control group (=1). *p < 0.05;
**p < 0.01.

regulation, and protein folding, and act as antioxidant to pre-
vent oxidative stress and cell death after UV-induced injury and to
stimulate wound healing (49, 50). However, naïve HA can undergo
rapid degradation after tissue injury resulting in accumulation of
degraded lower molecular weight species (51, 52) that can induce

the expression of a variety of inflammatory factors, including
chemokines, cytokines, growth factors, and adhesion molecules in
various cell types, indicating an important role of HA in inflamma-
tory processes (26). Studies also showed that degraded hyaluronan
products may have biological functions distinct from the native
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high-molecular-weight polymer. For instance, HA oligomers of
8–16 disaccharides have been found to induce angiogenesis (53,
54), and HA with low to intermediate molecular weight HA
(20–450 kDa) have been found to induce the expression of inflam-
matory genes in macrophages, endothelial cells, eosinophils, and
epithelial cells (51, 52, 55–60).

Recent studies showed that treatment with the tetrasaccha-
ride of HA (HA4), significantly enhanced axonal regenera-
tion/sprouting and improved motor function recovery after spinal
cord injury in rats and blocked NMDA-induced neuronal cell
death in vitro (61). Studies also showed that the hyaluronan recep-
tor RHAMM is required for neurite extension and motility in
primary neurons and neuronal cell lines (62). And disruption of
the hyaluronan-based extracellular matrix in spinal cord promotes
astrocyte proliferation (63) whereas HA coating onto the cortical
brain after brain damage significantly reduced gliosis, GFAP posi-
tive cells, and the thickness of scar formation in the injured brain
region at 8 and 12 weeks after the injury in rats (64). Brain tis-
sue scarring (gliosis) is believed to be the major cause of epileptic
focus after brain injury, and prevention of scarring could reduce
the incidence of seizure.

Several mechanisms have been identified for HA depoly-
merizing (and thus for CD44 induction) in injured tissues,
including HYALs-mediated and ROS-mediated HA depolymer-
izing processes (65–71). TBI-induced ROS, due to the release
of cellular debris of damaged/dead cells (72) and activation of
microglia, macrophages, and neutrophils, could directly fragment
HA randomly at internal glycoside linkages into smaller frag-
ments (73) and contribute to inflammation (74, 75). ROS-induced
Hyal2 expression and the sustained HA fragmentation have
been reported in the inflammatory airway lumen of smokers
(76). The increased fragmentation of HA in the early stages of
injury could exert antioxidant effect against ROS and stimulate
white blood cells-mediated immune response by up-regulating
CD44 (27, 28).

It has been reported that HYAL2 generates HA fragments of 1–
2 kDa (77) that contribute to fibrosis of injured lung tissue (78, 79).
Inhibition of hyaluronidase expression and hyaluronan degrada-
tion with specific HYAL1, HYAL2, and HYAL3 small interference
RNA (siRNAs) significantly reduced CD44 mRNA and protein
expression and pro-inflammatory cytokines in mouse synovial
fibroblasts after collagen-induced arthritis (80).

In this study, HYAL1 mRNA expression only increased briefly in
craniotomy and contralateral CCI-TBI 24 h and 3 days post-CCI.
The signaling pathways activating the expression of these genes in
TBI are unclear

The marked induction of CD44 mRNA expression after CCI-
TBI suggests that CD44 is critically involved in TBI-induced HA
catabolism. It is known that CD44-mediated binding, endocytosis,
and intracellular degradation of HA are an important mechanism
for the removal of local degraded HA within the injured tissues
(81–84). The acute and prolonged increase in CD44 mRNA expres-
sion is likely paralleled by a change in CD44 protein expression that
could reflect an increased production, binding, internalization,
and turnover rate of lower molecular weight HA after TBI (85).
Hyaluronans bound to CD44 are catabolized in lysosomes (86).
Although the mechanism of CD44 turnover in TBI has yet to be

fully understood, cytokines, CD44 phosphorylation and induction
of alternatively spliced isoforms of CD44 could be involved in the
removal of degraded hyaluronan products (39, 40, 64, 85, 87–93).

The increased HA synthases (HAS1 and HAS2) mRNA expres-
sion in the acute phase of TBI suggests that synthesis of new
HA may be critical for tissue/vascular repair and remodeling after
TBI (94, 95). This is supported by the experimental evidence that
absence of HA in HAS2 knockout animal causes vascular abnor-
malities (48), while overexpression of HAS2 promotes neointimal
formation after vascular injury (96).

An interaction between fragmented HA and CD44 could stimu-
late T-cell recruitment (to the sites of inflammation), macrophage
activation, neutrophil migration, endothelial cell activation, and
the expression of inflammatory genes by activated glial (immune)
cells in the injured tissue that could protect against further tis-
sue damage (94, 95, 97). CD44 activation has been shown to
protect against hyperoxia-induced lung injury and mortality by
a mechanism related to its ability to clear HA from the bron-
choalveolar space (98). Failure to clear hyaluronan fragments after
the injury may lead to unremitting inflammation. Study show that
in the absence of CD44, alveolar macrophages continue to produce
chemokines in response to hyaluronan fragments (99).

In this study, we observed parallel change in HAS1, HAS2, and
CD44 mRNA expression in the ipsilateral CCI and contralateral
CCI hemispheres, and to a lesser extent, in the craniotomy-only
group. Although craniotomy has long been used as a control of
TBI, it is itself a significant form of injury and can cause mor-
phological damage and functional change as revealed by recent
brain imaging and behavioral tests (100). Skull bone removal with
high-speed drilling during the craniotomy procedure may not
only induce persistent pathological changes in the affected adja-
cent cortical tissues including altered blood flow, inflammation,
and neural cell atrophy but may also cause severe and persistent
pain that could trigger HA degradation and systemic inflammatory
responses (100). Recent imaging studies have demonstrated a close
metabolic connectivity between brain hemispheres and between
anatomically separated brain regions (101–105). Although it is
not clear yet if this connectivity could have facilitated the trans-
fer of the degraded HA molecules from the ipsilateral hemisphere
to the contralateral side, significantly increased HA production
(32-fold increase in the circulation) has been reported in patients
with acute peripheral lung injury (20). Our observations and other
studies also suggest that brain edema can develop and spread to
other brain regions rapidly following TBI that may involve altered
HA metabolism. The parallel induction of HAS and CD44 mRNA
expression between the ipsilateral and contralateral CCI is consis-
tent with the recent reports of rapid and significant global reduc-
tion in cerebral blood flow (CBF), cerebral oxygen, and glucose
metabolic rate in craniotomized cats (106, 107) and alterations
in pyruvate metabolizing enzymes in rats with ipsilateral and con-
tralateral CCI and craniotomy (108). Thus, the synergistic changes
in HAS/HYAL/CD44 expression between the ipsilateral, contralat-
eral, and craniotomy could reflect differential brain lesions and
blood vessel damage between the ipsilateral/contralateral CCI
group and the craniotomy group. Further experiment is needed to
firmly establish a close relationship between HA catabolism and
HAS/HYAL/CD44 expression in TBI.
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There are limitations of the study. The protein expression
level for the HAS, HYAL HA-metabolizing isoenzymes, and CD44
receptors were not determined due to the lack of suitable specific
antibodies. Nor was the change in HA precursors (i.e., acetylglu-
cosamine and glucuronic acid) and the degraded HA products
determined after the CCI-TBI. Further study is warranted for
these measurements and to determine whether HA metabolism
(synthesis and degradation) is associated with the severity and
outcome of patients with severe TBI.

In summary, our study provides preliminary molecular evi-
dence of altered gene expression for HA-metabolizing enzymes
and receptors in animal model of TBI. Further study of HA metab-
olism could help us better understanding of the role of HA in
the inflammatory responses, secondary injury, and healing process
after TBI.
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