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Abstract: (1) Background: Proprotein convertase subtilisin/kexin 9 (PCSK9) is responsible for the
degradation of the hepatic low-density lipoprotein receptor (LDLR), which regulates the circulating
cholesterol level. In this field, we discovered natural peptides derived from lupin that showed PCSK9
inhibitory activity. Among these, the most active peptide, known as P5 (LILPHKSDAD), reduced the
protein-protein interaction between PCSK9 and LDLR with an IC50 equals to 1.6 µM and showed
a dual hypocholesterolemic activity, since it shows complementary inhibition of the 3-hydroxy-3-
methylglutaryl coenzyme A reductase (HMG-CoAR). (2) Methods: In this study, by a computational
approach, the P5 primary structure was optimized to obtain new analogs with improved affinity to
PCSK9. Then, biological assays were carried out for fully characterizing the dual cholesterol-lowering
activity of the P5 analogs by using both biochemical and cellular techniques. (3) Results: A new
peptide, P5-Best (LYLPKHSDRD) displayed improved PCSK9 (IC50 0.7 µM) and HMG-CoAR (IC50

88.9 µM) inhibitory activities. Moreover, in vitro biological assays on cells demonstrated that, not
only P5-Best, but all tested peptides maintained the dual PCSK9/HMG-CoAR inhibitory activity
and remarkably P5-Best exerted the strongest hypocholesterolemic effect. In fact, in the presence of
this peptide, the ability of HepG2 cells to absorb extracellular LDL was improved by up to 254%.
(4) Conclusions: the atomistic details of the P5-Best/PCSK9 and P5-Best/HMG-CoAR interactions
represent a reliable starting point for the design of new promising molecular entities endowed with
hypocholesterolemic activity.

Keywords: PCSK9; HMG-CoA reductase; dual activity; hypercholesterolemia; peptide; lupin; drug
design; MM-GBSA

1. Introduction

Hyperlipidemia is a well-known risk factor for developing cardiovascular disease [1].
The most common drugs for hypercholesterolemia treatment are statins, which inhibit 3-
hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR), the rate-limiting enzyme
in cholesterol biosynthesis. This enzyme lowers intracellular cholesterol levels, leading
to an increased expression of LDL receptors (LDLR) on cell surfaces and a reduction of
serum LDL-cholesterol (LDL-C) via the activation of the sterol-regulatory element-binding
protein (SREBP)-2 transcription factor pathway [2]. Although this approach is considered
an efficient way to reduce circulating LDL-C, cardiovascular events still occur in some
patients. Moreover, statins induce known and serious side effects, such as headache, muscle
and joint pain, and a higher risk of developing diabetes.

Pharmaceutics 2022, 14, 665. https://doi.org/10.3390/pharmaceutics14030665 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics14030665
https://doi.org/10.3390/pharmaceutics14030665
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-7428-4486
https://orcid.org/0000-0001-6282-4273
https://orcid.org/0000-0002-9885-3065
https://orcid.org/0000-0002-3851-3392
https://orcid.org/0000-0002-0987-3014
https://orcid.org/0000-0002-3261-9356
https://doi.org/10.3390/pharmaceutics14030665
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics14030665?type=check_update&version=1


Pharmaceutics 2022, 14, 665 2 of 19

Another key player in the cholesterol homeostasis is the proprotein convertase subtil-
isin/kexin 9 (PCSK9) which was discovered in the 2003 and it has been recognized as one
of the most promising targets for counteracting hypercholesterolemia and atherosclerotic
cardiovascular diseases [3]. Under physiological conditions, the blood-circulating PCSK9
interacts with the low-density lipoprotein receptor (LDLR) on the liver cell membrane,
triggering the internalization of the LDLR/PCSK9 complex in a digestive vacuole [4]. Con-
sequently, the main biological activity of PCSK9 is the regulation of the LDLR population
on the liver cell surface, resulting in the tuning of the cellular capacity to capture circulating
LDL cholesterol (LDL-C). Accordingly, the inhibition of the PCSK9/LDLR interaction leads
to an increased LDLR population on the cell membrane, resulting in an enhanced capacity
to capture the blood-circulating LDL-C by liver cells [5].

The expression of PCSK9 is also controlled by the activity of SREBP-2 as well as a
specific transcriptional activator hepatocyte nuclear factor-1α (HNF-1α) [6], which is a
liver-enriched transcription factor regulating many target [7] genes in the liver and intestine.
In contrast, the ability of SREBP-2 to co-stimulate the PCSK9 and LDLR expression limits
the therapeutic efficacy of statins which are known to produce their effects via SREBP-2
activation. Indeed, it is well documented that statins improve the PCSK9 protein level
production through the augmentation of the intracellular HNF-1α levels [8].

Hence, in the last two decades, academia and pharmaceutical companies have fi-
nanced considerable research on the development of compounds capable of target PCSK9
developing different strategies including siRNA, anti-sense oligonucleotides (ASOs), pep-
tide inhibitors, and monoclonal antibodies (mAbs) [5,9–18]. In this field, we have recently
sorted out the most potent natural peptide (LILPKHSDAD, P5) derived from a peptic lupin
(Lupinus A.) protein hydrolysate [19] with hypocholesterolemic activity [20], which impairs
the PCSK9-LDLR interaction with an IC50 value of 1.6 µM [21]. In parallel, P5 reduces the
catalytic activity of HMG-CoAR with an IC50 value of 147.2 µM [22]; through the inhibition
of the enzyme activity, P5 increases the LDLR protein level in HepG2 cells through the
activation of SREBP-2, and through a downregulation of HNF-1α, it reduces the PCSK9
protein levels and its secretion in the extracellular environment [22]. This unique synergistic
multi-target inhibitory behavior of P5 determines the improved ability of HepG2 cells to
uptake extracellular LDL with a final hypocholesterolemic effect. P5 was successfully
transported by differentiated human intestinal Caco-2 cells [23] through transcytosis [24],
and, during transport, it was partially metabolized in a breakdown fragment (LPKHSDAD,
P5-met), which retained the biological activity of the parent peptide [24]. In facts, we
have demonstrated that P5-met reduces PCSK9-LDLR binding with a dose-response trend
and an IC50 of 1.7 µM and inhibits the HMG-CoAR with an IC50 of 175.3 µM [24]. At a
cellular level, such as P5, P5-met improves the LDLR and reduces PCSK9 levels, through
the modulation of both SREBP-2 and HNF-1α, respectively [24]. Therefore, since P5-met
displayed the same activity and behavior of the parent peptide, P5, our results indicated
that the first two amino acid residues (LI) do not play a key role in the interaction with
both PCSK9 and HMG-CoAR target.

These evidences clearly indicate that P5, with its dual-inhibitory activity, represents a
new alternative strategy to the use of single classical PCSK9 and HMG-CoAR inhibitors.
Notably, the strategy in which dual-inhibitors are employed may be more effective in
overcoming the deficits attributed to the classical use of statins (adverse effects and co-
stimulation of PCSK-9 and LDLR via a common transcriptional activator, i.e., SREBP-2,
in statin-treated patients limited the efficacy of these classical HMG-CoAR inhibitors)
or PCSK9 inhibitors (including expensiveness, low compliance of the patients, repeated
administrations, and injection site irritations) on health and to meet the desired health goals
and public priorities in terms of safety and cost-related issues.

Considering these observations, the overall aim of the present study is the develop-
ment of new P5 analogs able to target both PCSK9 and HMG-CoAR, therefore displaying
an improved and dual hypocholesterolemic activity. To achieve this objective, new P5
analogs with improved PCSK9 and HMG-CoAR inhibitory activity were computationally
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designed [25]. Hence, the theoretical study was validated and confirmed by performing
a detailed biological investigation on the most promising P5 analogs. Firstly, their ability
to inhibit the protein–protein interaction (PPI) between PCSK9 and LDLR and the HMG-
CoAR activity were evaluated using biochemical assays, respectively. Then, their effects
on the cholesterol pathway modulation on HepG2 cells were deep characterized, fostering
their dual inhibitory cholesterol-lowering activity. More in details, the effect of PCSK9
inhibition by P5 analogs on the LDLR protein levels on the surface of hepatocytes and their
effect to improve the functional ability of hepatocytes to uptake LDL from the extracellular
environment were assessed by performing in cell-western (ICW) [26] and LDL-uptake
assay [27], respectively, in the presence of PCSK9. In parallel, to assess the effects of P5
analogs on the cholesterol pathway upon HMG-CoAR inhibition, western blotting was per-
formed, monitoring the LDLR, SREBP-2, HMG-CoAR, PCSK9, and HNF-1α protein levels,
respectively. In addition, by performing ELISA experiments, the effects of P5 analogs on
the hepatic secretion of PCSK9 levels were assessed. Finally, LDL-uptake and ICW assays
were carried out to investigate the functional ability of hepatic cells to absorb extracellular
LDL upon treatment with P5 derived peptides.

2. Materials and Methods
2.1. System Setup and MD Simulations

The computational models utilized in this study were built starting from the coordi-
nates of the PCSK9/P5 complex model previously reported by us [21]. Here, the starting
PCSK9/P5 complex model was additionally equilibrated through 1 µs-long MD simula-
tions, utilizing the pmemd.cuda module of the AMBER20 package [28]. In particular, the
ff14SB AMBER force field [29] was used for simulating the protein atoms, while the TIP3P
model [30] was used to explicitly represent the water molecules (about 25,000). The sodium
ions were added to neutralize the overall charge of the simulation system and the MD
trajectories acquired during the production runs were examined by visual inspection by
means of VMD [31], ensuring that the thermalization did not cause any structural distor-
tion. This protocol was also utilized to perform MD simulations on the PCSK9 complexes
resulting from the mutations of the P5 sequence.

2.2. Cluster Analysis

The MD trajectory frames were analyzed by clustering the conformations adopted
by the small peptide backbone atoms in complex with PCSK9. The cluster analysis was
performed using the cpptraj module [32] of AMBER20 [28]. By this algorithm, the MD
frames were divided into clusters by the complete average linkage algorithm, and the
PCSK9/peptide complex conformations with the lowest root mean square deviation
(RMSD) to the cluster centers (the structures representative of the cluster, SRC) were
acquired and visually inspected. Molecular mechanics-generalized born surface area (MM-
GBSA) calculations were performed on 100 frames belonging to the most populated cluster
of PCSK9/peptide conformations, and the MMPBSA.py module [33] of AMBER20 was
used to this aim, keeping parameters in the default values. In these calculations, the single
trajectory approach was applied and the entropy contributions to the binding free energy
was neglected [25,34]. For this reason, the estimated binding free energy values are termed
by us ∆G*.

2.3. Alanine Scanning

The nine P5 alanine mutants were built systematically altering the peptide sequence
on the PCSK9/P5 complex, by the tleap module of AMBER20 [28]. The resulting complexes
were energy minimized and equilibrated by accomplishing 250 ns of MD simulations,
adopting the procedure and the parameters previously described for the PCSK9/P5 com-
plex. A hundred of snapshots were regularly extracted from the trajectory frames in which
the peptide under investigation displayed the smallest root mean square deviation (RMSD)
value fluctuation, to ensure the lowest standard error in the binding free energy calculation.
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MM-GBSA calculations by MMPBSA.py module [33] were finally performed to estimate
the binding free energy values of the mutant peptides.

2.4. Computational Design of New P5 Analogs

The “protein preparation wizard” module implemented in the Maestro release 2019-4
(Schrödinger, LLC, New York, NY, USA, 2017) for molecular modeling ensured the accuracy
of the PCSK9/P5 complex conformation previously equilibrated by MD simulations. In
particular, this module permitted: (1) to check the residue protonation state at pH 7.4, (2) to
check the residue completeness, (3) to eliminate atomic clashes, and (4) to assign the OPLS3e
force field [35]. Then, the 400 possible peptides were generated by the replacement of the P5
positions 2 and 9 with the twenty natural amino acids. The resulting PCSK9/peptide com-
plexes were minimized by Prime MM-GBSA module of Maestro, which uses OPLS3e [35]
as force field and a continuum solvent models to include the solvent effect into the cal-
culations. Then, affinity maturation functionality implemented in Bioluminate module
(Schrödinger, LLC, New York, NY, USA, 2017) estimated the change in affinity (∆Affinity)
between PCSK9 and the mutant peptides, with respect to P5. Finally, the mutant peptides
acquiring the highest gain in ∆Affinity were additionally refined by MD simulations and
MM-GBSA calculations by AMBER20 package [28], as it was conducted previously for the
alanine-mutant peptides (see the previous section for details).

2.5. HMG-CoA Reductase Model Setup and Simulations Protocol

The HMG-CoAR structure solved by X-ray crystallography (PDB accession code
3CCZ) [36] used in this study was deposited as a homotetramer in which the (3R,5R)-7-[2-(4-
fluorophenyl)-4-{[(1S)-2-hydroxy-1-phenylethyl]carbamoyl}-5-(1-methylethyl)-1H-imidazol-
1-yl]-3,5-dihydroxyheptanoic acids are bound in the catalytic sites. For simplicity, we have
performed simulations on the functionally active homodimer, choosing as peptide binding
site the one identified by the presence of a statin in the X-ray complex. Since the homodimer
contained two statin molecules, one of them was removed to allow the docking calculations,
while the statin present in the second site was kept in its original position, to avoid any
protein conformational distortion inducted by the absence of the ligand. The system was
prepared and minimized through the “protein preparation wizard” tool available in the
Maestro software (release 2019-4). Peptide docking calculations of [S7A]P5 were performed
by using the Glide docking tool [37] of Maestro software, setting as center of the grid the cen-
troid of the statin (residue code 5HI), co-crystallized in the catalytic site of the HMG-CoAR.
The “standard precision” mode was applied in these calculations, and the Glide gscore
was applied as scoring algorithm. Ten peptides’ docking poses were generated, while the
number of post-docking minimization poses was set to 50. The formation of cis amide
bonds was not allowed. The [S7A]P5 pose with the best-predicted gscore (−9.881 kcal/mol)
was selected for the following MD simulations and cluster analysis calculations (Table S1,
Supporting Material), adopting the AMBER20 protocol [28] previously described for the
studies of the peptides in complex with PCSK9.

2.6. Peptide Synthesis

The Genscript (Piscataway, NJ, USA) synthesized for us the P5 analogs selected for
biological assays. All compounds are >95% pure by HPLC analysis (see Supporting
Information for details).

2.7. HepG2 Cell Culture Conditions and Treatment

The HepG2 cell line was bought from ATCC (HB-8065, ATCC from LGC Standards,
Milan, Italy) and was cultured in DMEM high glucose with stable L-glutamine, supple-
mented with 10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin (complete
growth medium) with incubation at 37 ◦C under 5% CO2 atmosphere.
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2.8. HMG-CoAR Activity Assay

The experiments were carried out following the manufacturer instructions and opti-
mized protocol [38]. See Supplementary Materials for further details.

2.9. In Vitro PCSK9-LDLR Binding Assay

Peptides P5 and P5 analogs (0.1–100 µM) were tested using the in vitro PCSK9-LDLR
binding assay (CycLex Co., Nagano, Japan) following the manufacture instructions and
conditions already optimized [21]. Further details are provided in Supplementary Materials.

2.10. In-Cell Western (ICW) Assay

For the experiments, a total of 3 × 104 HepG2 cells/well were seeded in 96-well plates
and treated with 4.0 µg/mL PCSK9-WT and 4.0 µg/mL PCSK9 + peptides P5 and/or P5
analogs (50 µM) and vehicle (H2O) for 2 h at 37 ◦C under 5% CO2 atmosphere. Thus, cells
underwent to ICW assay following conditions already optimized [26]. See Supplementary
Materials for detailed information.

2.11. Fluorescent LDL Uptake

HepG2 cells (3 × 104/well) were seeded in 96-well plates and kept in complete growth
medium for 2 days before treatment. The third day, cells were washed with PBS and then
starved overnight (O/N) in DMEM without FBS and antibiotics. After starvation, they
were treated with 4.0 µg/mL PCSK9 and 4.0 µg/mL PCSK9 + P5 and P5 analogs peptides
(50 µM), and vehicle (H2O) for 2 h with at 37 ◦C under 5% CO2 atmosphere. Fluorescent
LDL-uptake was finally assessed following optimized protocol [22]. See Supplementary
Materials for further details.

2.12. Western Blot Analysis

A total of 1.5 × 105 HepG2 cells/well (24-well plate) were treated with 50 µM of P5
and P5 analogs for 24 h. Immunoblotting experiments were performed using optimized
protocol [39]. See Supplementary Materials for further details.

2.13. Quantification of PCSK9 Secreted by HepG2 Cells through ELISA

The supernatants collected from treated HepG2 cells (50 µM of P5 and/or P5 analogs)
were centrifuged at 600× g for 10 min at 4 ◦C and ELISA assay performed using protocol
already optimized [40]. Detailed data are provided in Supplementary Materials.

2.14. Statistical Analysis

All the data set were checked for normal distribution by D’Agostino and Pearson test.
Since they are all normally disturbed with p-values < 0.05, we proceeded with statistical
analyses by one-way ANOVA followed by Tukey’s post-hoc tests and using Graphpad
Prism 9. Values were reported as means ± S.D.; p-values < 0.05 were considered significant.

3. Results and Discussion
3.1. Identification of Hotspots and Designs of New P5 Analogs

To obtain a robust hypothesis on the peptide P5 binding mode, the PCSK9/P5 complex
model we had previously developed [21] was optimized once more by extending the
molecular dynamics (MD) simulations to 1 µs (see Figure S1 in the Supporting Information
for the RMSD plots). At the end of these simulations, the MD trajectory frames were
grouped using a cluster analysis algorithm (see the Materials and Methods Section) to
determine which was the most favored P5 conformation in complex with PCSK9. The
PCSK9/P5 complex conformation representative of the most populated cluster (78%)
suggested that peptide P5 could bind to PCSK9, as illustrated in Figure 1. In particular, P5
could bind to PCSK9 through (1) a salt bridge between the charged NH term of P5-Leu1
and the side chain of Asp238, (2) an H-bond between the imidazole ring of the P5-His6 and
the NH group of Ser381, (3) an H-bond network between the side chain of P5-Ser7, the NH
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of P5-Asp8, and the side chain of Asp367, and (4) an H-bond shaped by the side chain of
P5-Asp8 and the side chain of Ser383. The side chain of P5-Leu3 was deeply inserted into a
hydrophobic basin sized by the PCSK9 residues Phe379, Pro155, and Ile369, creating van
der Waals interactions.
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Figure 1. (A) The expected P5 binding mode on the PCSK9 surface after additional MD simulations.
Yellow dotted lines highlight the H-bond network. The enzyme solvent-accessible surface is depicted
accordingly by the partial charge of the residues: blue for positive areas and red for negative areas.
Peptide P5 is represented as cyan sticks. (B) 2D representation of the predicted P5 binding mode
in complex with PCSK9. H-bonds and salt bridges are highlighted in purple and blue/red lines,
respectively. Hydrophobic residues interacting with P5 are colored in green.

Then, to identify new P5 analogs endowed with improved PCSK9 affinity, we designed
new peptides by substituting the P5 residues not considerably involved in the PCSK9 con-
tact (non-hotspot) with new amino acids showing an improved complementarity with the
PCSK9 surface [25]. In the first step, the hotspots and non-hotspots of P5 were discov-
ered by performing a computational alanine-scanning mutagenesis analysis, in which all
the peptide residues in the PCSK9/P5 complex were systematically mutated into alanine.
Specifically, nine 3D models, in which PCSK9 was in complex with each alanine-mutated
peptide P5, were simulated by 200 ns-long MD simulations, and the subsequent molecular
mechanics-generalized born surface area (MM-GBSA) calculations estimated the mutant
peptides’ binding free energy values (∆G*, Table 1). Then, by comparing the ∆G* values
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calculated for the mutant peptides with those calculated for P5, identifying the hotspots
and non-hotspots of P5 was possible [40,41].

Table 1. Estimated binding free energy values of the peptides under investigation, as calculated using
the MM-GBSA approach (∆G*, column 3).

Peptide/Mutation Sequence ∆G* Value 1 ∆∆G* Value 2

P5 LILPKHSDAD −18.9 ± 0.5 0
L1A AILPKHSDAD −13.5 ± 0.5 +5.4
I2A LALPKHSDAD −20.9 ± 0.5 −1.0
L3A LIAPKHSDAD −6.6 ± 0.7 +12.3
P4A LILAKHSDAD −23.0 ± 0.7 −4.1
K5A LILPAHSDAD −14.1 ± 0.6 +4.8

H6A (P5-H6A) LILPKASDAD −1.2 ± 0.5 +17.7
S7A (P5-S7A) LILPKHADAD −19.3 ± 0.3 −0.4

D8A LILPKHSAAD −21.9 ± 0.3 −3.0
D10A LILPKHSDAA −19.6 ± 0.5 −0.7

1 (kcal/mol ± (Std. Err. of Mean)); 2 (kcal/mol).

The attained results suggest that positions 3 and 6 can be considered hotspots, as their
mutation into alanine led to P5 analogs endowed with a considerable reduction of the
predicted binding affinity (∆∆G* higher than 10 kcal/mol). Specifically, P5-His6 seemed
crucial for peptide binding because its substitution led to a dramatic drop in the peptide
binding interaction energy. MD simulations suggest that the substitution of the basic side
chain of His6 with a methyl group led to a change in the peptide binding mode due to
a lack of an H-bond between the PCSK9-Ser282 amide group and the imidazole ring of
P5-His6. For this reason, the [H6A] peptide P5 was unbound from the PCSK9 surface after
the initial steps of the MD simulations (see Figure S2 in the Supporting Information for the
RMSD plots). Similarly, the removal of the side chain of P5-Leu3 led to a peptide incapable
of maintaining the P5 initial binding mode, as the hydrophobic contacts engaged by the
Leu3 isobutyl group with the hydrophobic crevice sized by the PCSK9 residues Leu159,
Pro156, Ala240, and Ile370 were missing.

The alanine mutation of Leu1 and Lys5 led to peptides with a calculated binding
affinity that was slightly lower than that of P5 (∆∆G* close +5 kcal/mol). However, given
the inaccuracy of the MM-GBSA calculations and the observation that the side chains of
Leu1 and Lys5 fluctuating in a solvent environment do not stably bind to PCSK9 during
the MD simulations, positions 1 and 5 cannot be considered strong hotspots similar to
positions 3 and 6. Conversely, the substitution with alanine of Ile2, Ser7, and Asp10 of P5
led to peptides with a predicted binding affinity close to that predicted for the template
peptide. Therefore, they can be considered non-hotspots and can potentially be substituted
with different amino acids. However, the predicted data on Leu1 and Ile2 are in accordance
with our recent experimental data, which show that a metabolite of peptide P5 that does
not contain the first two residues (P5-met, LPKHSDAD) displays an IC50 value close to the
parent peptide P5 [24].

Conversely, the P4A and D8A mutant peptides showed a higher affinity to PCSK9
than P5. However, as the gain in the ∆G* value was not extremely high, the synthesis and
biological evaluation of these peptides was not considered suitable.

3.2. Design of P5 Analogs with Improved PCSK9 Predicted Affinity

The alanine-scanning study showed that the positions 1, 2, 7, and 10 on the P5 sequence
could be considered non-hotspots. Moreover, the alanine in position 9 should be considered
a non-hotspot, as alanine is already present in the natural P5 sequence. Nevertheless, the
P5-Ser7 OH group could create an H-bond with PCSK9-Asp367, and the P5-Asp10 side
chain could be involved in the fold of the peptide, as an internal H-bond could be shaped
with the side chain of P5-Ser7. Thus, we decided to mutate the residues in positions 2 and
9 to develop novel P5 analogs with improved PCSK9 binding affinity.
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Accordingly, with this assumption, 202 peptide P5 analogs were computationally de-
signed through the systematic substitution of positions 2 and 9 with all natural amino acids.
Their theoretical affinity for PCSK9 was preliminary evaluated by the Prime algorithm
(Maestro, release 2019-4), which can estimate the peptide binding free energy using the
MM-GBSA approach. PCSK9 in complex with the 10 top-ranking P5 analogs (i.e., those
with the lowest ∆Affinity values, Table 2) again underwent MD simulations by applying
the previously described AMBER20 MD protocol. The ∆G* values were estimated using the
MM-GBSA protocol (Table 2), which allowed for the acquisition of ∆G* values comparable
with those previously attained for P5 and other P5 alanine mutants.

Table 2. Estimated binding affinity values of newly designed P5 analogs (columns 1–2), calculated by
Prime software (∆Affinity, column 3) and standard MD/MM-GBSA calculations (∆G* values, column 4).

Peptide Sequence ∆Affinity 1 ∆G* Value 2

P5 LILPKHSDAD −18.9 ± 0.5
[I2P-A9R] P5 LPLPKHSDRD −23.9 −26.3 ± 0.6
[I2M-A9R] P5 LMLPKHSDRD −23.5 −26.3 ± 0.6
[I2R-A9R] P5 LRLPKHSDRD −21.5 −30.3 ± 0.7
[I2Q-A9R] P5 LQLPKHSDRD −21.0 −24.8 ± 0.8
[I2L-A9R] P5 LLLPKHSDRD −20.7 −25.4 ± 0.6
[I2Y-A9R] P5

(P5-Best) LYLPKHSDRD −20.4 −41.7 ± 0.7

[I2H-A9R] P5 LHLPKHSDRD −20.4 −24.6 ± 0.8
[I2T-A9R] P5 LTLPKHSDRD −19.5 −28.0 ± 0.5
[I2F-A9R] P5 LFLPKHSDRD −19.4 −19.2 ± 0.3
[I2E-A9R] P5 LELPKHSDRD −19.1 −24.5 ± 0.6

1 (kcal/mol); 2 (kcal/mol ± (Std. Err. of Mean)).

The Prime calculations (third column of Table 2) suggested that the peptides acquiring
an improved predicted binding energy were the ones containing arginine in position 9.
At variance, the substitutions in position 2 did not considerably affect the affinity of the
resulting peptides (differences in the ∆Affinity values followed in the range of 5 kcal/mol).
Subsequently, using the AMBER20/MM-GBSA calculations, the resulting ∆G* values
spanned from −19 to −42 kcal/mol. This allowed us to assess that the peptide [I2Y-A9R]P5
(i.e., P5-Best) was endowed with the highest predicted PCSK9 binding affinity (see Figure
S3 in the Supporting Information for the RMSD plots). In fact, the ∆G* value of P5-Best
was two times the value predicted for the template peptide P5, suggesting that P5-Best
could show an affinity to PCSK9 appreciably lower than P5. Our simulations showed that,
as indicated in the conformation representative of the most populated cluster (Figure 2),
P5-Best could acquire an ameliorated PCSK9 complementarity because of the possibility
of creating two salt bridges: the first between the new arginine in position 9 and the side
chains of Glu366 and Asp367, and the second between the side chain of P5-Best-Asp10
and the side chain of Lys222. These interactions were also enforced by the presence of an
H-bond between the P5-Best-Asp10 and the OH group of Ser225. Moreover, the P5-Best-Ile3
side chain was in contact with the hydrophobic pocket sized by Phe379, while the phenol
ring of the new residue P5-Best-Tyr2 was located close to Arg194. The NH groups of
P5-Best-Tyr2 and -Ile3 created two H-bonds with the side chain of Asp238.
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Figure 2. (A) Expected binding mode of [I2Y-A9R]P5 (i.e., P5-Best) on the PCSK9 surface resulting
from the MD simulations and cluster analysis. Yellow dotted lines depict the H-bond network. The
enzyme solvent-accessible surface is colored according to the partial charge of the residues: blue for
positive areas and red for negative areas. P5-Best is represented as yellow sticks. (B) Superimposition
of P5-Best and Rim13, both bound on the PCSK9 surface.

These results were also compared to the computational data attained designing the
poly-imidazole derivatives capable of inhibiting PCSK9 [17]. In fact, in our previous paper,
by applying a computational approach such as the one here applied, we designed and
biologically evaluated two poly-imidazole derivatives endowed with PCSK9 inhibiting
activity. The biological evaluation of the most interesting poly-imidazoles, named Rim13
and Rim14, allowed us to report on their ability to modulate the LDLR expression on the
human hepatic HepG2 cell surface, and their capacity to increase the extracellular uptake of
LDL by the same cells. Here, structurally aligning the P5-Best and the Rim13 hypothetical
binding modes, we noted that the backbone atoms of the peptide residues Pro4 and Lys5
were mimicked by the first two imidazole rings of Rim13 (Figure 2B). Moreover, the benzyl
chain of the second imidazole ring of Rim13 was projected in the same hydrophobic
cleft shaped by Phe379 and occupied by the side chain of P5-Best-Leu3, creating van
der Waals interactions. Furthermore, the negatively charged area created by the PCSK9
residues Asp367 and Glu366 were in contact with the side chain of the P5-Best-Arg9 and
the amino-methyl chain of Rim13. Since they bind similarly, creating contacts with the
same PCSK9 residues, this alignment could help in the design of new poly-imidazole
derivatives. In fact, aiming at designing more potent poly-imidazoles derivatives, the
benzyl moiety of Rim13 could be substituted by alkyl chains (linear or not), to reproduce
the interactions played by the P5-Best-Leu3 residue. Conversely, regarding the design of
new P5 analogs, the Pro4 of P5-Best could be replaced by aromatic residues such as Phe, Tyr
or Trp, in order to reproduce the interactions played by the p-methoxyphenyl ring of Rim13.
However, the oral PK properties of peptides remains strongly limited by the presence
of degrading enzymes in the gastrointestinal tract. Nevertheless, the research efforts are
still devoted to solve this limitation. In fact, active peptides could be orally administered
together with penetration enhancers, within hydrogels or in combination with digestive
enzyme inhibitors. As alternative, they can be suitably coated by acid-stable polymers
or administered through intestinal patches [42]. By means of one of these innovative
delivery strategies, even peptides active in the high micromolar range could be successfully
employed for the treatment of several pathologies. Actually, numerous peptides are in
phase III of clinical trials but, until now, only desmopressin is available in the market, and
used in the clinic [42].

3.3. Experimental Validation of the Computational Predictions

In light of these theoretical studies, empirical assays were performed on the [H6A]
peptide P5 (i.e., P5-H6A) because position 6 was recognized as a hotspot (Table 1), on P5-
Best because of its lowest predicted binding free energy value, and on [S7A]P5 (i.e., P5-S7A)
because it represents one of the peptides for which the alanine mutation did not remarkably
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alter the predicted binding free energy value. Conversely, the mutation of P5-Asp10 into
alanine affected peptide folding (as shown by MD simulations) and the water solubility of
the peptide, as the negatively charged side chain of Asp10 should be substituted with the
aliphatic methyl group of alanine. Thus, the peptides P5-H6A, P5-S7A, and P5-Best were
purchased by GenScript and biochemically evaluated by in vitro experiments.

3.4. P5 Analogs Impair the PPI between PCSK9 and LDLR

To verify whether the P5 derivatives could impair the PPI between PCSK9 and LDLR,
dedicated biochemical experiments were assessed. The results showed that P5-Best, P5-
H6A and P5-S7A reduced the PCSK9-LDLR binding with a dose-response trend and IC50
values of 0.7, 9.0, and 1.45 µM, respectively (Figure 3A). The results confirmed that two
of the new P5 derivatives were more active than P5 (1.6 µM). These data are in line with
the computational predictions. In fact, the peptides ∆G* value calculations indicated that
the most active peptide could be the double mutant peptide P5-Best (∆G= −41.7 kcal/mol)
while, among other ones, P5-S7A should display binding affinity in the range of P5 (∆G*
values of −19.3 and −18.9 kcal/mol, respectively), and P5-H6A should be do not active,
since by our predictions, the side chain of H6 plays a crucial role in the stabilization of
the peptide on the PCSK9 surface. Nevertheless, it has to be stated that a higher affinity
should be expected for P5-Best, since the calculated ∆G* value calculated for this peptide
was double than that of P5. In our opinion, the lack of linearly between the binding
affinity experimental data (IC50 values) and the computational predictions, could be due to
the omitted calculation of the entropic contribution to binding free energy value. In fact,
the calculation of this contribution is highly computationally demanding, and the error
associated with the estimation is very often greater than the value itself. Moreover, the
data attained by the further biological investigations on these peptides cannot be compared
with the computational predictions, since it is very difficult to discuss the in silico results in
comparison with the biological data obtained from the HepG2 cells. In fact, the molecular
modeling studies have been performed on a PCSK9 model immersed in a box of water
molecules and the biological experiment capable of reproducing these conditions is only
the one in which the recombinant PCSK9 is in contact with the LDLR, i.e., the binding
assays displayed in Figure 3. Conversely, when the biological properties of peptides are
assessed in complex experimental conditions, such as the one in which cells are involved,
the molecular modeling results cannot be linearly compared with the experimental data. In
fact, the effects of membranes, extracellular or intracellular enzymes cannot be considered
by our calculations.

Furthermore, the ability of these P5 analogs to modulate the levels of LDLR localized
on HepG2 surfaces was investigated in the presence of PCSK9 (4 µg/mL) using an in-cell
western (ICW) assay. The results showed that the LDLR levels decreased in the presence of
PCSK9 alone by 25.4 ± 1.6% (p < 0.001) compared with the untreated control cells, and that
P5-Best, P5-H6A, and P5-S7A could significantly restore the LDLR levels to 96.9 ± 10.4%,
93.4 ± 5.2%, and 104.4 ± 0.4% (p < 0.001), respectively, when co-incubated with PCSK9
(Figure 3B). Finally, functional cell-based assays were performed to investigate the ability of
HepG2 cells to uptake extracellular LDL in the presence of PCSK9. HepG2 cells incubated
with PCSK9 alone showed a 43.6 ± 9.6% (p < 0.05) reduction in the uptake of fluorescent
LDL compared with the untreated control cells. This result is in agreement with the
reduction of active LDLR population on the cell surface, which was observed by ICW. After
co-incubation with PCSK9, P5-Best, P5-H6A, and P5-S7A completely restored the LDLR
function, increasing the LDL uptake to 129.2 ± 21.9% (p < 0.001), 107.4 ± 23.0% (p < 0.05),
and 125.4 ± 19.0% (p < 0.01) (Figure 3C), respectively.

P5 analogs demonstrated to be more active than peptide Pep2-8 (TVFTSWEEYLDWV) [43]
and its analogs [Y9A]Pep2-8 and [T4R,W12Y]Pep2-8 [44] as PPI inhibitors of PCSK9. More
in details, at the fixed concentration of 100 µM, Pep2-8 impaired the PCSK9-LDLR bind-
ing by −36.5% vs. the control, whereas [Y9A]Pep2-8 and [T4R,W12Y]Pep2-8 by −69.8%
and −93.0%, respectively [44]. Indeed, the IC50 value of [Y9A]Pep2-8 was equal to
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27.12 ± 1.2 µM and that of [T4R,W12Y]Pep2-8 equal to 14.50 ± 1.3 µM [44], clearly in-
dicating that P5-Best is about 30- and 20-fold more potent than the Pep2-8 mutant peptides.
In addition, at cellular levels, Pep2-8 and both Pep2-8 analogs were less efficient than P5
analogs to restore the LDLR protein levels and the functional ability of hepatocytes to
absorb LDL from the extracellular environment [44]. On the contrary, P9-38, a cyclized
Pep2-8 analogue, demonstrated to be 35-fold more potent than P5-Best in impairing the
PPI between PCSK9/LDLR displaying and IC50 equals to 20 nM and it was 1000-fold more
potent to restore the LDLR level and functionality in HepG2 cells [45].

Finally, P5-Best is slightly more potent than the poly-imidazole Rim13 which inhibit
the interaction between PCSK9 and LDLR by an IC50 equals to 1.4 µM, a value similar to
the reference peptide P5. In the same range of concentration of Rim13, P5 analogs successes
in the restoring the functional activity of LDLRs on the surface of hepatocytes preventing
their degradation [45].

Although all P5 analogs successfully restored the level of LDLR protein similar to
peptide P5, statistical analysis revealed that from a functional point of view, both P5-Best
and P5-S7A not only restored the ability of hepatic cells to uptake LDL from the extracellular
environment but also improved this capability against untreated cells. These results suggest
that the hypocholesterolemic effect occurs with a dual mechanism of action involving the
modulation of HMG-CoAR activity and protein levels. To assess this aspect and deepen this
behavior, further HMG-CoAR activity assay and western blot experiments were performed.
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Figure 3. Inhibition of the PPI between PCSK9 and LDLR. (A) Impairment of the protein-protein
interaction between PCSK9 and LDLR. (B) The treatment of HepG2 cells with PCSK9 (K9 in the
graphs, 4 µg/mL) reduced the active LDLR protein levels localized on the surface of the cells, which
were restored by P5 and P5 analogs (50 µM). (C) The decreased functional ability of HepG2 cells to
absorb LDL from the extracellular space observed after incubation with PCSK9 (4 µg/mL) improved
after treatment with P5 and P5 analogs (50 µM). The data points represent the average ± SD of four
independent experiments performed in duplicate. Data were analyzed using one-way ANOVA,
followed by Tukey’s post-hoc test; (*) p < 0.05, (**) p < 0.01, and (***) p < 0.001. C: control sample.
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3.5. P5 Analogs Modulate the Hepatic LDLR Pathway by Inhibiting HMG-CoAR Activity

To better characterize the dual inhibitory activity of all P5 analogs, a biochemical
investigation was conducted to assess their effect on the modulation of HMG-CoAR activity.
The results suggested that P5-Best, P5-H6A, and P5-S7A inhibited enzyme activity with
an IC50 of 88.9, 74.4, and 73.8 µM, respectively, showing more effective inhibitory activity
than P5 (147.2 µM) (Figure 4A), but they are still less active than statins. In facts, the IC50
values for the inhibition of HMG-CoAR activity for pravastatin simvastatin, atorvastatin,
and rosuvastatin are equals to 44.1, 11.2, 8.2, and 5.4 nM, respectively [46,47].
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Figure 4. Modulation of the LDLR pathway in HepG2 cells treated with P5 and P5 analogs.
(A) In vitro inhibition of HMG-CoAR activity. (B) The effect on SREBP-2 protein levels, (C) LDLR
protein levels, and (D) HMG-CoAR protein levels after the treatment of HepG2 cells with P5 and
P5 analogs, respectively. Data points represent the average ± SD of four independent experiments
performed in duplicate. C vs. P5 and P5 analog samples were analyzed using a one-way ANOVA,
followed by by Tukey’s test; (*) p < 0.05, (**) p < 0.01, and (***) p < 0.001. C: control sample.

Even though, P5 and P5 analogs are less active than statins as HMG-CoAR inhbitors
and their clinical implication is still too far, they display the unique feature to inhibit
both HMG-CoAR and PCSK9 targets, making them lead compounds for developing new
peptidomimetic and/or small molecules endorsed by improved activity on both targets
involved in the control of the circulating cholesterol level.

Further experiments were performed to verify the ability of these P5 analogs to modu-
late the LDLR pathway in HepG2 cells. Similar to P5, P5-Best and P5-H6A induced an up-
regulation of the SREBP-2 transcription factor level up to 118.6 ± 17.7% and 115.6 ± 10.1%
(p < 0.05) (Figure 4B), respectively, resulting in an augmentation of the LDLR protein levels
up to 148.4 ± 23.4% and 143.5 ± 24.0% (p < 0.001), respectively (Figure 4C). Interestingly,
although P5-S7A caused a slight reduction of the SREBP-2 protein level to 96.9 ± 16.1%
(Figure 4B), it led to an increase in the LDLR protein level up to 126.5 ± 13.6% (p < 0.05)
(Figure 4C). Thus, in contrast to P5, P5-Best, and P5-H6A, the upregulation of the LDLR
protein level and activity induced by P5-S7A was not through SREBP-2 pathway activation.
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Notably, P3 (YDFYPSSTKDQQS), a peptide from lupin protein that inhibits HMG-CoAR
activity, leads to an increase in the LDLR protein levels without SREBP-2 activation but
through the compensatory upregulation of the SREBP-1 [48]. Therefore, it was hypothesized
that P5-S7A could possess the same effect as P3 on LDLR protein production through the
regulation of the SREBP-1 pathway. However, unlike P5, P5-Best, P5-H6A, and P5-S7A de-
creased the HMG-CoAR levels up to 86.5 ± 22.8% (p < 0.05), 94.1 ± 12.2%, and 71.6 ± 15.5%
(p < 0.01), respectively (Figure 4D), indicating that the P5 analogs were more active as
HMG-CoAR inhibitors than P5. Interestingly, P5-Best, P5-H6A, and P5-S7A which are
about two-fold more potent than P5 as both HMG-CoAR and PCSK9/LDLR PPI inhibitors,
respectively, are also more efficient in the reduction of the HMG-CoAR protein levels with a
direct effect in the intracellular cholesterol homeostasis. Indeed, overall P5-Best and P5-S7A
can improve the functional ability of hepatic cells to absorb extracellular LDL (Figure 4D).

3.6. P5 Analogs Modulate the Hepatic PCSK9 Pathway

Figure 5 shows that P5-Best, P5-H6A, and P5-S7A decreased the PCSK9 protein levels
by 21.8 ± 11.8%, 28.2 ± 17.5%, and 25.8 ± 17.9%, respectively (p < 0.05) (Figure 5A).
Moreover, also the HNF1-α protein levels were decreased by 1.2 ± 15.4%, 10.3 ± 2.4%
(p < 0.05), and 18.7 ± 7.6% (p < 0.01) (Figure 5B), respectively.
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Figure 5. Modulation of the PCSK9 pathway in HepG2 cells. (A) Effects on the PCSK9 protein levels,
(B) effects on the HNF1-α protein level, and (C) effects on mature PCSK9 secretion. Data points
represent the average ± SD of six independent experiments performed in duplicate. C vs. P5 and P5
analog samples were analyzed using a one-way ANOVA, followed by by Tukey’s test; (*) p < 0.05
and (**) p < 0.001. C: control sample.

Although the ability to reduce the secretion of mature PCSK9 was weaker than that
of P5, P5-Best, P5-H6A, and P5-S7A could also induce a slight reduction by 2.7 ± 1.9%,
7.4 ± 2.6%, and 5.1 ± 1.7%, respectively (Figure 5C). These results agree with the behavior
of another naturally peptide from soybean β-Conglycinin [49]. In particular, YVVN-
PDNNEN peptide (at 250 µM) reduces the PCSK9 protein level and its secretion via the
modulation of HNF1-α [49]. Our results suggest that lupin P5 and its new analogs, being
active at 50 µM in the hepatic cells, are 5-fold more potent than YVVNPDNNEN. In addi-
tion, it was also demonstrated that YVVNPDNNEN it is not a dual inhibitor peptide since
being able to inhibit the HMG-CoAR activity [50] but not the PPI between PCSK9 and the
LDLR [49].
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3.7. P5 Analogs Increase the Expression of LDLR Localized in the Cellular Membranes and
Modulate LDL Uptake in HepG2 Cells

In accordance with the above results, P5-Best, P5-H6A, and P5-S7A increased the LDLR
levels localized in the cellular membranes of HepG2 cells by 156.3 ± 12.1%, 158.9 ± 12.0%
(p < 0.001), and 140.2 ± 15.1% (p < 0.01) at 50 µM, respectively (Figure 6A). Experiments
were also performed in parallel, with P5 as the reference compound, which increased the
membrane LDLR protein levels by 153.6 ± 16.4% (p < 0.001) at the same concentration
of 50 µM. Consequently, the functional capability of HepG2 cells to uptake extracellular
LDL after treatments with P5, P5-Best, P5-H6A, and P5-S7A was observed, leading to an
increased ability of 203.8 ± 40.67% (p < 0.01), 254.3 ± 16.4% (p < 0.0001), 229.8 ± 27.9%
(p < 0.001), and 211.1 ± 40.1% (p < 0.01), respectively (Figure 6B).
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Figure 6. Modulation of the LDLR pathway in HepG2 cells. (A) The effect on the LDLR localized on
the surface of HepG2 cells after the treatment of HepG2 cells with P5 and P5 analogs, respectively.
(B) Enhancement of the functional ability of HepG2 cells to uptake LDL from the extracellular
environment. Data points represent the average ± SD of four independent experiments performed in
duplicate. C vs. P5, and P5 analog samples were analyzed using one-way ANOVA, followed by by
Tukey’s test; (**) p < 0.01, (***) p < 0.001, and (****) p < 0.0001. C: control sample.

3.8. Docking of P5-S7A and MD Simulations on HMG-CoAR

The experimental assays on the purchased peptides highlighted the improvement in
the dual inhibitory activity of the P5 mutant peptides. Specifically, P5-S7A showed the
lowest IC50 value for HMG-CoAR. Thus, docking and MD simulations were conducted to
acquire atomistic details on the putative binding mode of P5-S7A in complex with HMG-
CoAR. This study can pave the way for the design of more dual-active peptides. P5-S7A
was docked to the statin binding site of HMG-CoAR using Glide (see the Experimental
Section for details), and the best docking pose (gscore = −9.881 kcal/mol) was selected
for further 500 ns-long MD simulations in explicit water solvent (see Figure S4 in the
Supporting Information for the RMSD plots). As the enzyme was in the dimeric state, the
statin present in the other binding sites was not deleted (see the Experimental Section for
details) to preserve the overall folding of the simulating system. At the end of the MD
simulations, the root mean square deviation (RMSD) of the peptide was analyzed, and
the peptide conformations sampled during the MD production run were clustered using
the average-linkage method, which was previously prescribed for the PCSK9/peptide
complexes. The results showed that only one cluster was mainly populated, representing
73.1% of the peptide conformations. The structure representative of this cluster is depicted
in Figure 7.
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This HMGCoAR/P5-S7A complex showed the presence of a H-bond network between
the P5-S7A-Ala7 and -Ala9 backbone atoms, with a side chain of HMG-CoAR-Asn658.
P5-S7A-Leu3 projected its side chain in a small hydrophobic pocket sized by HMGCoAR-
Leu853, -Ala856, and -Leu857. Interestingly, the presence of an intramolecular H-bond
between the side chains of P5-S7A-Lys5 and -Asp10 improved the overall peptide confor-
mational stability. Moreover, the supposed binding mode of P5-S7A was consistent with
the binding affinity data, indicating that the IC50 of P5-H6A on HMG-CoAR was close to
that of P5-S7A. Both residues could point their side chains to an effectively empty pocket
sized by HMG-CoAR-Leu853, -Ala856, and -Leu857, which did not create any interactions
with the HMG-CoAR counterpart. Thus, the substitution of positions 6 and 7 with alanine
did not elicit any strong variation in the experimental binding affinity. This hypothesis
paves the way for the design of new P5 analogs in which positions 6 and 7 can be mutated
by unnatural amino acids capable of creating stronger interactions with HMG-CoAR.

The binding mode supposed for P5-S7A was then compared to the one of P5 in complex
with HMG-CoAR, to understand the possible reasons on the base of the improved binding
affinity displayed by the mutant peptide. In our previous article [21] we have reported on
the results of docking calculations of P5. Here, performing MD simulations starting from
the P5 docking pose (see Figure S5 in the Supporting Information for the RMSD plots), we
noted that, in the complex conformation representative of the most populated cluster (70%),
P5 adopted a binding mode in which the side chain of P5-S7 created two intramolecular
H-bonds with the NH groups of P5-A9 and P5-D10 (Figure 8). In the mutant peptide P5-
S7A, these internal bonds cannot be created for the absence of the OH group in position 7.
This, in our opinion, led to a peptide endowed with an increased conformational freedom,
leaving the C-terminal residues to adopt a cyclic conformation in which an internal salt
bridge can be shaped between the side chains of P5-K5 and P5-D10. This conformation
could be more prone to create remodeled and ameliorated interactions with the enzyme.
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Figure 8. The representative structure of the most populated cluster of P5 (cyan sticks) bound to
HMG-CoAR (electrostatic surface). H-bonds are represented by yellow dashed lines. Only polar
hydrogens are shown in the figure.

Finally, the binding mode supposed for P5-S7A was also compared to that of atorvas-
tatin in complex with HMG-CoAR (as reported in the PDB, accession code 1HWK [51]).
The structural alignment of both complexes (Figure 9) permitted to us suppose that the
first four residues of P5-S7A essentially reproduce the contact played by the three aromatic
substituents of the atorvastatin pyrrole ring. In particular, the aniline is mimicked by the
P5-S7A-Ile2 side chain, the P5-S7A-Leu3 was overlapped to the phenyl ring of the statin,
and the p-F-phenyl ring of atorvastatin was spatially close to the P5-S7A-Pro4 (Figure 9).
Unfortunately, the remaining moiety of the peptide pointed to an enzyme area different
from the one in which the 3,5-dihydroxyl-heptanoic acid moiety was bound in the HMG-
CoAR/atorvastatin complex. This portion is considered essential for the biological activity
of the statins and could explain the reason on the base of the low affinity displayed by the
mutant peptide. More efforts should be made to design peptides capable of mimicking
such interactions and occupying the HMG-CoAR pocket sized by Lys735, Ser684, Arg590,
Lys 691, Asn755, and Glu559 residues (Figure 9B).
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Figure 9. (A) Crystallographic pose of atorvastatin (yellow sticks), as was found in the X-ray structure
available in the PDB (accession code 1HWK [51]), superimposed on the representative structure of the
most populated cluster of P5-S7A (green sticks) in complex with HMG-CoAR. (B) 2D representation
of the protein-ligand contacts displayed by atorvastatin (cutoff = 3.00 Å) in complex with HMG-CoA,
as in the X-ray structure. H-bonds are highlighted by purple arrows and the hydrophobic residues
involved in the protein-ligand interactions are colored in green.
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4. Conclusions

In this study, using promising data on the dual hypocholesterolemic activity of the
lupin peptide P5, we computationally designed new analogs endowed with improved
PCSK9 and HMG-CoAR inhibitory activities. After the computational alanine-scanning
mutational analysis, the non-hotspot residue of P5 was suitably substituted with other
amino acids capable of improving the complementarity between PCSK9 and the peptide.
Therefore, using our “affinity maturation protocol”, we selected P5-Best, P5-H6A, and
P5-S7A peptides for the experimental assays. The attained experimental data confirmed the
theoretical studies, revealing that the affinity of the mutant P5-H6A peptide on PCSK9 was
reduced almost seven times (IC50 = 9.0 µM), whereas the affinity of P5-S7A was slightly
higher than that of P5 (IC50 = 1.45 µM). Remarkably, the mutant peptide P5-Best showed the
lowest PCSK9 IC50 value of 0.7 µM. Further biological assays demonstrated that all mutant
peptides that maintained the dual PCSK9/HMG-CoAR inhibitory activity improved the
ability of HepG2 cells to absorb extracellular LDL by up to 254% (P5-Best data). Doubtless,
peptide P5 and its analogs display activity in the micromolar range suggesting that still
their exploitation in the clinical application is challenging. Therefore, more efforts have to
be pursued in order to improve their dual-inhibitory activity. However, evidences support
the fact that P5 and its analogs can be considered as promising lead compounds for the
development of a new class of hypocholesterolemic drugs endowed with dual-inhibitory
activity of both PCSK9 and HMG-CoAR targets. Indeed, the dual and synergistic activity
may be useful for better achieving the biological effect than compound actives on one of
those targets.

Further experiments will be performed to evaluate the intestinal stability and propen-
sity of P5 analogs to be trans-epithelial transported by mature Caco-2 cells. Experiments
will be performed using the parent peptide P5 and the natural intestinal metabolite P5-met
as positive controls. This study confirms that a multidisciplinary approach in the design
of new peptides is successful in identifying peptides endowed with hypocholesterolemic
effects, offering a promising starting point for the design of peptidomimetics that lack the
bioavailability problems of peptides.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14030665/s1, Figure S1. RMSD plot of PCSK9/P5
complex, Figure S2. RMSD plot of PCSK9/P5-H6A complex, Figure S3. RMSD plot of PCSK9/P5-best
complex, Figure S4. RMSD plot of HMG-CoAR/P5-S7A complex, Figure S5. RMSD plot of HMG-
CoAR/P5 complex, Table S1. additional experimental details on the biological assays, peptide purity
data (HPLC and MS traces).
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