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Colorectal cancer has a high incidence rate in all countries around the world, and the survival rate of patients is improved by early
detection. With the development of object detection technology based on deep learning, computer-aided diagnosis of colonoscopy
medical images becomes a reality, which can effectively reduce the occurrence of missed diagnosis and misdiagnosis. In medical
image recognition, the assumption that training samples follow independent identical distribution (IID) is the key to the high
accuracy of deep learning. However, the classification of medical images is unbalanced in most cases. This paper proposes a
new loss function named the double-balanced loss function for the deep learning model, to improve the impact of datasets on
classification accuracy. It introduces the effects of sample size and sample difficulty to the loss calculation and deals with
both sample size imbalance and sample difficulty imbalance. And it combines with deep learning to build the medical
diagnosis model for colorectal cancer. Experimentally verified by three colorectal white-light endoscopic image datasets, the
double-balanced loss function proposed in this paper has better performance on the imbalance classification problem of
colorectal medical images.

1. Introduction

A survey shows that malignant tumors have become the first
killer of Chinese residents’ health by 2020. There is an
evidence that the incidence rate and mortality of colorectal
cancer are increasing at a particularly significant rate. In
2020, the number of new cases and deaths of colorectal can-
cer has increased to more than 500,000 and more than
300,000, respectively, which has seriously threatened the
health of Chinese residents [1]. Colorectal white-light endos-
copy is one of the most widely used of polyp detection and
have been extensively used for early colorectal cancer screen-
ing. Previous research has shown that missed and misdiag-
nosed colorectal polyps will increase the possibility of
colorectal cancer, and their survival rate is less than 10%
[2]. Therefore, the proper classification of colorectal polyps
by white-light endoscopic images can be used to assist
physicians in the early screening of colorectal cancer.

With the application of artificial intelligence in the field
of intelligent medicine, deep learning models are widely used

in the lesion detection and classification of medical images.
This paper reviews and compares the main research work
of large intestine white-light endoscope image recognition
from two aspects: deep learning models and lesion classifica-
tion methods; the results are shown in Table 1. The existing
body of research on colorectal polyps’ classification suggests
that classification standards are not uniform. Komeda et al.
[3, 4] used convolutional neural networks to classify lesions
into neoplastic and nonneoplastic and adenomatous and
nonadenomatous. Gao et al. [5] used ResNet50 [6] to distin-
guish whether colonoscopic images contain lesions, then
detected specific lesions and divided them into adenoma,
cancer and polyp, which detected AP50 up to 0.903. Taş
and Yilmaz [7] proposed to perform super-resolution recon-
struction of colonoscopic images to obtain high-resolution
images, then use Faster R-CNN [8] for detection, which
improved the accuracy of model detection by 8% through
super-resolution processing. Shin et al. [9] used image
enhancement such as rotation and scaling to increase the
number of training samples and then used Faster R-CNN
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for detection. Shin et al. [10] proposed a framework for gen-
erating synthetic polyp images to augment the training data
to detect polyps using Faster R-CNN with a 20% improve-
ment in accuracy. Among them, the literature [7, 9–11] did
not classify the lesions but only detected the presence of
polyps.

In early colorectal cancer screening, the classification of
colorectal polyps is important. Clinically, physicians need
to determine whether to perform resection surgery based
on the specific category of polyps. At present, there is little
research on the classification of colorectal polyps under deep
learning, mainly due to the lack of large public datasets for
polyp classification [11]. Based on the experience of doctors
in the Shanghai Sixth People’s Hospital (East Hospital) in
the clinical diagnosis of colon white-light endoscopy, this
paper adopts the classification criteria proposed in literature
[4]; that is, colon lesions are divided into polyps (polyp),
adenomatous polyps (adenoma), and cancerous structures
(cancer). Furthermore, the collected colorectal images with
lesions were labeled into three categories to carry out a clas-
sification study of colorectal white-light endoscopic images.

2. Problem Statement and Background

In recent years, deep learning has achieved good results in
the detection and classification of medical image lesions,
which can assist doctors in the diagnosis and treatment work
to a certain extent. This mainly depends on the powerful
learning ability of deep learning models in the image field
and the recognition accuracy that can match or even exceed
the human eyes. However, the deep learning model is based
on the assumption that the samples are independently and
equally distributed in the training set, but this premise does
not hold in most medical image datasets. A survey showed
that about 75% of colorectal polyps are adenomatous polyps
[12], which leads to the fact that most of the colorectal
white-light endoscopic images collected by doctors from
clinical diagnosis are adenoma images. Unbalanced data
makes it difficult for deep learning models to be applied in
the field of medical-assisted diagnosis. There are two types
of approaches designed to address imbalance classification.
The first category is the data-level approach, which adjusts
the adaptability of the model to the data by changing the
data distribution of the training set, such as random over-
sampling and random undersampling. The second category

is the algorithmic-level approach, which does not change
the training set but adjusts the training strategy or model
structure, such as reconfiguring the classifier, two-stage
training, and improving the loss function. Moreover,
methods that combine the two types are available.

2.1. Data-Level Approach. Random undersampling and ran-
dom oversampling are the classical methods to solve data
imbalance; both of them change the original distribution of
the dataset. In 2015, Bae and Yoon [13] proposed an upsam-
pling enhancement framework based on data sampling to
use rebalanced datasets to learn comprehensive classifiers
and use them to detect different types of polyps. The exper-
imental results show that the performance is improved
compared with other most advanced detectors. However,
random undersampling may cause the samples to lose
important feature information during undersampling, while
random oversampling increases the risk of overfitting.
SMOTE [14] is a more advanced sampling method to
overcome this problem, in which new samples are gener-
ated by adding data points from the nearest neighbors
by interpolation; the limitation of this method is that it
cannot overcome the problem of data distribution in
unbalanced datasets, which increases the difficulty of clas-
sification algorithms to classify them. Another sampling
method is class-aware sampling for stochastic gradient
descent optimization neural networks [15], whose main
idea is to ensure that the sample classes of each batch
are evenly distributed in training.

2.2. Algorithm-Level Approach. One algorithm-level approach
to address data imbalance is to reconfigure the classifier,
which can be implemented in various ways, such as one-
class classifier, which uses small classes as outliers and
transforms the classification problem into abnormal detec-
tion [16]. Two-stage training [17] is first performed on a
balanced dataset, and then, the final output layer is fine-
tuned on the unbalanced original dataset. Although these
methods can alleviate the data imbalance problem to some
extent, the improvement of loss function has more
attractive features, such as ease of implementation. Cross-
entropy loss is widely used in classification problems, but
it cannot handle data imbalance. A simple improvement is
to use weighted cross-entropy (WCE) according to the
number of categories, which is often ineffective in practice.

Table 1: Deep learning in the diagnosis of colorectal white-light endoscopy.

Study Date Model Classes

Komeda et al. [3] 2016 CNNs Neoplastic, nonneoplastic

Eduardo et al. [4] 2017 CNNs Adenoma, nonadenoma

Gao et al. [5] 2020 Mask R-CNN Cancer, adenoma, polyp

Taş and Yilmaz [7] 2021 Faster R-CNN Polyp, nonpolyp

Shin et al. [9] 2018 Faster R-CNN Polyp, nonpolyp

Shin et al. [10] 2019 Faster R-CNN Polyp, nonpolyp

Nogueira-Rodríguez et al. [11] 2020 YOLO Polyp, nonpolyp
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In 2019, Cui et al. [18] proposed the class-balanced loss
framework, using the effective number of samples per class
to inversely weight the loss, and this method can effectively
solve the class number imbalance problem. Kim et al. [19]
proposed complement cross-entropy (CCE) to solve the
problem of imbalanced classification and proved that sup-
pressing the probability of the error class helps the deep
learning model to learn discriminative information. By neu-
tralizing the confidence of the error sample, the minority
class samples get more learning opportunities. In addition,
the sample difficulty imbalance can be handled by improv-
ing the loss function. In 2016, Shrivastava et al. [20] pro-
posed the OHEM algorithm to screen out difficult samples
based on the loss value of the input samples, and then, the
screened samples are applied to training in stochastic gradi-
ent descent. This method achieves online hard example
mining, but it completely discards simple samples, which
leads to the model’s inability to improve their detection
accuracy. In 2017, Lin et al. [21] proposed focal loss to
increase the model’s focus on difficult samples by dynami-
cally adjusting the loss contribution of difficult samples by
introducing a ð1 − pÞγ modulation factor in the cross-
entropy, but this approach assigns high weights to outliers
as difficult samples. The GHM [22] loss function can
improve this problem, and its basic idea is to start from
the gradient parity of the samples and to dynamically weight
the samples according to the proportion of samples
accounted for by the gradient parity so that easy samples
with small gradients are downweighted, difficult samples
with medium gradients are upweighted, and outlier samples
with large gradients are downweighted.

3. Materials and Methods

3.1. The Proposed Methods. The most common loss function
used in deep learning multiclassification tasks is cross-
entropy (CE) loss. The cross-entropy loss gives equal impor-
tance to each data instance, which will lead to the network
monitoring the classes with fewer number of observations.
Therefore, CE loss is inappropriate in classification tasks
under class imbalance. This paper proposes a new loss func-
tion named double-balanced (DB) loss. We derive it from
the perspective of sample size and sample difficulty.

3.1.1. Imbalance of Sample Size. Usually, the method to deal
with the unbalanced sample size is to assign a weight to the
sample that is inversely proportionate to the class frequency.
Since the weights are chosen with a fixed value to the num-
ber of samples of each class in the total sample, it does not
work well for deep learning when using the batch gradient
descent optimization method SGD. This is due to the over-
lap of features between different samples, as shown in
Figure 1. As the number of samples increases, the features
carried by new samples already exist in the original samples,
and the model does not learn new features from the new
samples, so this increase of sample size is ineffective for
model training.

To address the problem of sample size imbalance, this
paper rebalances the loss by effective samples size [18]. First,

the effective sample size of each category is calculated using
the following equation.

Eni
=
 1 − βni

1 − β
, ð1Þ

where ni denotes the true number of samples in each cate-
gory, β is the hyperparameter that controls the growth rate
of Eni

with ni, β ∈ ð0, 1Þ, and here, it is set at ½0:9, 1Þ. It can
be seen from the above that a larger Eni

indicates a larger
effective sample size of category i in the training sample,
and its loss proportion should be as small as possible. There-
fore, the loss value is inversely related to the effective sample
size as follows.

ei =
1
Eni

=
1 − β

1 − βni
: ð2Þ

Secondly, considering the large difference in the number
of each category, the effective sample size is normalized to
get the sample size balance factor αi for each category:

αi =
ei

∑k
j=1ej

=
1 − βð Þ/ 1 − βnið Þ

∑k
j=1 1 − βð Þ/ 1 − βnjð Þð Þ

: ð3Þ

where k denotes the number of categories. The weight αi
based on the effective sample size of each category is
obtained from (3), and in turn, this weight is added to the
loss calculation.

Loss = L pð Þ + αiL pð Þ = 1 + αið ÞL pð Þ, ð4Þ

Features of new samples

Features of original samples

Partial overlap

Full overlap

Figure 1: The features contained in the new samples may already
be partially or fully contained in the original samples.
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where LðpÞ denotes the original loss and p denotes the pre-
dicted probability. Here, αiLðpÞ is called the loss based on
the effective sample size, and the total loss is the original loss
plus the loss based on the effective sample size.

3.1.2. Imbalance of Sample Difficulty. The difficult samples
refer to less clearly classified borders on the transition region
between the foreground and background, while the easy
samples refer to background samples that do not overlap
with the real target or positive samples that have a high
degree of overlap with the real target. We proposed a
method to determine and calculate the difficulty of samples.
The basic idea is to calculate the distance between the prior
probability distribution and the predicted probability distri-
bution of a category and then measure the difficulty of the
sample based on the magnitude of the distance.

First, the empirical class frequencies of each category
[17] were calculated as their prior probabilities:

pp cið Þ = 1/nið Þρ
∑k

j=1 1/nj

� �ρ , ð5Þ

where ni denotes the number of categories ci and ρ, as a
hyperparameter, denotes the degree of flexibility. After cal-
culating the prior probability of each category, the prior dis-
tribution of the training samples is obtained. The cross-
entropy function is then used to calculate the distance
between the two distributions.

H pp, ps
� �

= 〠
k

i=1
− pp cið Þ log ps cið Þ, ð6Þ

where pp denotes the prior given matrix of the prior distribu-
tion and ps denotes the matrix of each category of distribu-
tion obtained by the softmax function.

Considering the mutual exclusivity between categories in
the classification problem, we only calculate the prior prob-
abilities and predicted probabilities corresponding to the
true categories in the two probability distribution matrices,
where the true vector corresponding to a single category ci is

trueci = 0, 0,⋯1,⋯0½ �T : ð7Þ

trueci is a k ∗ 1 matrix. In this matrix, the value of the
category ci is 1 at the corresponding position, and the rest
are 0. Next, we do the following calculation.

pTp ∗ trueci = pp c1ð Þ, pp c2ð Þ,⋯, pp ckð Þ
h i

∗

0

0
⋯
1

⋯

0

2
6666666664

3
7777777775
= pp cið Þ,

pTs ∗ trueci = ps c1ð Þ, ps c2ð Þ,⋯, ps ckð Þ½ � ∗

0

0
⋯
1

⋯

0

2
6666666664

3
7777777775
= ps cið Þ:

ð8Þ

In this way, we extract the individual category prior
probability and the predicted probability, and this category
must correspond to the true category, suppressing the
interference of misinformation. In the following, a purer dif-
ficulty weight is obtained by calculating the distance between
these two following the method in (6).

H pTp ∗ trueci , p
T
s ∗ trueci

� �
= −pp cið Þ log ps cið Þ, ð9Þ

where pp denotes the prior probability for the category ci and
ps denotes the predicted probability of the softmax output
for the category ci.

3.1.3. Double-Balanced Loss Function. The working principle
of the double-balanced loss function is shown in Figure 2.
In the classifier, the model obtains the prediction vector
Output through the full connection layer, with the size of
½3 ∗ 1�, representing three kinds of lesions. Then, the
model uses the softmax function to normalize this group
of values, so that the probability vector Prediction of each
model can be obtained. Before calculating the loss, the
model calculates the quantity weight and the difficulty
weight according to equations (4) and (9), respectively.
Based on these two weights, the double-balanced loss
calculates the distance between the predicted value
(Prediction½3 ∗ 1�) and the true value as the final loss
value, and this loss value is used as a feedback signal
passed to the optimizer, and then, the optimizer imple-
ments the neural network weight update through the back
propagation algorithm.

In this paper, we use cross-entropy as the original
loss, which is responsible for calculating the difference
between the true value and the predicted value, and use
the one-hot coding in the calculation to obtain a concise
expression:

CEloss = − log ps: ð10Þ

Bringing (10) into (4) yields the loss based on the
effective sample.

loss′ = − 1 + αið Þ log ps: ð11Þ
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Then, the formula for calculating the difficulty weights
in (9) is added to (11), and the double-balanced loss
function can be obtained as follows.

DBloss = 1 +
1 − βð Þ/ 1 − βnið Þ

∑k
j=1 1 − βð Þ/ 1 − βnjð Þð Þ

 !
1/nið Þρ

∑k
j=1 1/nj

� �ρ
 !

log psð Þ2,

ð12Þ

where β and ρ are hyperparameters, k is the number of
categories, and ni is the number of training samples cor-
responding to category i.

3.2. Materials. The dataset used in this paper was obtained
from white-light endoscopy images of patients’ colonoscopy,
provided by the Gastrointestinal Endoscopy Center of the
East Hospital of Shanghai Sixth People’s Hospital. We
named this dataset SSPH_WL. The SSPH_WL was collected
by doctors under ethical approval. The colorectal lesions
were classified into three categories (polyp, adenoma, and
cancer) in combination with clinical diagnosis. Sample
images of the three categories are shown in Figure 3.

The dataset was collected from June 2015 to September
2019, and a total of 1709 white-light endoscopic images
containing lesions were collected and labeled by physicians
with more than 5 years’ clinical diagnostic experience in

Backpropagation

Output
[3⁎1]

Prediction Ps
[3⁎1]

Softmax

exi

Σi e
xi

Doubled-balanced loss

Difficulty
weight

Cross Entropy

Quantity
weight

Loss
value

Fully
Connected

CNN

Figure 2: Double-balanced loss working principle, balancing loss in terms of both sample size and sample difficulty.

(a)

(b)

(c)

Figure 3: White-light endoscopy images of patients’ colonoscopy: (a) adenoma, (b) polyp, and (c) cancer.
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gastroenterology endoscopy. Among them, there were 1048
adenomatous cases, 381 polypoid cases, and 280 cancerous
cases. The SSPH_WL was divided into the training set
(SSPH_WL-I) and test set (SSPH_WL-II) according to 8 : 2.

We also use colorectal white-light endoscopic images
from the public datasets CVC_ClinicDB [23], CVC_
ColonDB [24], and Kvasir [25] as the test sets to further
evaluate the generalization ability of the classification model.
428 colonoscopic images are selected from the Kvasir data,
including 180 images of adenoma, 73 images of cancer,
and 175 images of polyp. 95 images are selected from
CVC_ClinicDB, CVC_ColonDB and our collection of
videos, including 36 images of polyp and 40 images of ade-
noma, and 19 images of cancer from colorectal cancer
videos, named CVC. All of the above datasets were anno-
tated by experienced gastroenterology endoscopy clinicians.
The detailed descriptions of these three datasets are shown
in Table 2.

4. Experimental Results and Discussion

4.1. Training Strategy and Evaluation Metrics. Deep
learning-based object detection models can be divided into
two categories: two stage and one stage. Due to the complex

background of the gut, the two-stage algorithm performs
background filtering first to overcome this problem, so we
choose the two-stage object detection model Faster R-CNN
[8] as the representative and focus on the classification effect

0.4

rpn_loss
Classifier_loss

Faster R-CNN with double-balanced loss

0.3
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0 20 40 60
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Figure 4: Loss variation curves for training: yellow curve represents RPN loss and blue curve represents classifier loss.
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Figure 5: The effective sample size changes with the
hyperparameter β.

Table 2: The datasets used in this experiment: SSPH_WL-I is used for training, SSPH_WL-II, Kvasir, and CVC is used for test.

Dataset Used for Description
Resolution
(w × h)

Public

SSPH_WL-I Train 1367 images 375 × 347 No

SSPH_WL-II Test 342 images 375 × 347 No

Kvasir Test 428 images Various resolutions Yes

CVC Test 95 images
388 × 284
574 × 500 Yes
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Table 3: AP and AR of Faster R-CNN with different parameter values.

β ρ AP AP50 AP75 AR AR10 AR100

0.9 0.25 0.578 0.854 0.678 0.669 0.718 0.718

0.99 0.25 0.598 0.858 0.712 0.675 0.731 0.733

0.999 0.25 0.585 0.858 0.696 0.672 0.710 0.711

0.9999 0.25 0.57 0.833 0.694 0.656 0.707 0.707

0.9 0.5 0.587 0.853 0.695 0.662 0.717 0.717

0.99 0.5 0.582 0.838 0.7 0.671 0.726 0.726

0.999 0.5 0.582 0.843 0.675 0.653 0.715 0.716

0.9999 0.5 0.571 0.826 0.679 0.661 0.709 0.709

0.9 0.75 0.579 0.852 0.663 0.669 0.718 0.718

0.99 0.75 0.562 0.836 0.627 0.654 0.704 0.704

0.999 0.75 0.584 0.85 0.667 0.675 0.713 0.714

0.9999 0.75 0.597 0.848 0.717 0.674 0.719 0.719
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Figure 6: Analysis of β and ρ. Variation curve of weight.
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of the double-balanced loss in this model. The momentum is
set to 0.9; the initial learning rate (lr) is 0.005 and automati-
cally decreases by two-thirds every three epochs. For other
parameters, we use the default values in the model. For the
backbone feature extraction network, we choose ResNet50
based on natural image pretraining, which canmake the initial
performance of themodel higher and converge faster by assist-
ing us to train the model through transfer learning. As shown
in Figure 4, Since the loss value no longer decreases, the model
reaches the optimum at this time and stops training.

This study is a multilabel classification, and the accuracy
is not suitable for evaluating the performance of a model for
a single category due to the data imbalance. This paper uses
AP and AR as model evaluation indicators. AP (Average
Precision) is the area under the P-R curve and can be used
to measure the performance of the model for a single cate-
gory, and AR represents the average recall rate of the classi-
fication. These two indicators can be expanded as follows.

AP :AP at IoU = 0:50 : 0:05 : 0:95.
AP50 : AP at IoU = 0:50.
AP75 : AP at IoU = 0:75.
AR :AR given 1 detection per image.
AR10 : AR given 10 detections per image.
AR100 : AR given 100 detections per image.
IoU (Intersection-over-Union) represents the ratio of

the intersection and the union of the predicted border and
the ground truth bound. In addition, we add the missed
detection rate (False Negative Rate, FNR) and the wrong
detection rate (False Positive Rate, FPR), which are common
evaluation indicators for computer-aided diagnosis. These
two indicators are calculated as follows.

FNR =
FN

TP + FN
, ð13Þ

FPR =
FP

FP + TN
: ð14Þ

In equations (13) and (14), TP is true positive, TN is true
negative, FP is false positive, and FN is false negative.

4.2. Experiment on Hyperparameter. The double-balanced
loss function has two parameters, where β is responsible
for regulating the effective sample size and ρ is responsible
for regulating the prior probability of the category. Usually,
β ∈ ½0, 1Þ; in this paper, the number of training samples of

0.85
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0.80
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P 
(I

oU
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 0
.5

)

0.70

0.65

0 1 2 3 4 5 6 7 8 9
Epoch

Faster R-CNN

10 11 12 13 14 15 16 17 18 19

Figure 7: The AP50 (IoU = 0:5) changes with epoch on SSPH_WL-II by using CE and DB.

Table 4: Comparison of the improvement effects of Faster R-CNN
and SSD on SSPH_WL-II.

Model Loss AP50 AR100

Faster R-CNN DB 0.858 0.733

Faster R-CNN CE 0.824 0.711

SSD DB 0.835 0.701

SSD CE 0.821 0.689

Table 5: Comparison of the improvement effects of Faster R-CNN
on three test sets.

Dataset Loss AP AP50 AP75 AR AR10 AR100

SSPH_WL-II
DB 0.598 0.858 0.712 0.675 0.731 0.733

CE 0.564 0.824 0.638 0.660 0.711 0.711

Kvasir
DB 0.528 0.833 0.552 0.601 0.661 0.661

CE 0.475 0.750 0.505 0.594 0.652 0.652

CVC
DB 0.639 0.948 0.745 0.677 0.770 0.770

CE 0.583 0.874 0.649 0.656 0.698 0.698
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each category is fadenoma = 838, cancer = 224, polyp = 305g,
and when β ∈ ½0, 0:9Þ, the three effective sample sizes calcu-
lated from the training samples are almost equal, and the
difference of sample sizes cannot be reflected at this time,
so β ∈ ½0:9, 1Þ is set. As shown in Figure 5, starting from
β = 0:99, the difference of the effective sample size corre-
sponding to the three categories starts to appear, and as β
increases, the effective sample size is closer to the true
number. For the parameter ρ, since the number of each
category in the training data is fixed, when ρ = 0, it means

that each category has the same prior distribution, and
when ρ = 1, it is equivalent to each category having a prior
distribution based on the inverse class frequency.

1.0
CE loss

Adenoma
Cancer
Polyp

0.8

0.6

A
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0
0.4
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SSPH_WL-II Kvasir
dataset

CVC
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(a)
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0.2
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Polyp

A
P5

0

SSPH_WL-II Kvasir
dataset

CVC

(b)

Figure 8: Comparison of classification effect by using CE and DB: (a) cross-entropy loss; (b) double-balanced loss.

Table 6: Wrong detection rates and missed detection rates.

Loss FPR FNR

DB 3.24 3.01

CE 4.97 3.47
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As shown in Figures 6(a)–6(c), the change curve of the
weighted value of the loss function with the prediction prob-
ability, looking at each line alone, there is a trend: the higher
the predicted probability, the smaller the weighted value,
which means that the loss of simple samples is suppressed;
looking at the three category curves, the weighted value of

adenoma with the largest number of samples is always the
smallest, which means that the loss of the multisample cate-
gory is suppressed. In Figures 6(a) and 6(b), when β is con-
stant, the larger ρ is and the larger the weighted gap between
the three categories. In Figures 6(a) and 6(c), when ρ is con-
stant, the larger β is, the larger the weighted gap between the
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Figure 9: Confusion matrix: (a) cross-entropy loss function; (b)double-balanced loss function.
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three categories will also be. By adjusting hyperparameter β
and ρ, the model forms a dynamic weighting mechanism of
loss function during training, which can make the model
update parameters in a more reasonable way.

In this paper, the comprehensive experiments are con-
ducted for the parameter values, and the corresponding
results of different parameter values are shown in Table 3.
From the overall performance, the average precision and
average recall of detection are almost optimal for β = 0:99
and ρ = 0:25, so we mainly conduct experiments under this
parameter value.

4.3. Improved Results on Faster R-CNN. The original loss
function used for classification in Faster R-CNN is cross-
entropy (CE) loss. Thus, comparing the CE loss, it is clear
to see the improvement brought by the DB loss. The training
set SSPH_WL-I and test set SSPH_WL-II are from the data-
set SSPH_WL, so their data distribution are the same.
Figure 7 shows the AP50 (IoU = 0:5) changes with epoch
on SSPH_WL-II; DB loss can help the model steadily
improve the AP50 value, where the AP50 using the DB loss
in Faster R-CNN is stable at around 0.850 and up to 0.858,
and the AP50 using the CE loss is stable at around 0.820
and up to 0.824. Table 4 compares the detection results of
the one-stage model SSD [26]; for the colorectal polyp lesion
detection, Faster R-CNN performs better than SSD, and the
use of double-balanced loss function can significantly
improve the detection performance of Faster R-CNN and
SSD.

Table 5 shows a comparison of the results on SSPH_WL-
II, Kvasir, and CVC. In these three test sets, DB loss achieves
a great lead in all metrics. Kvasir and CVC are used as addi-
tional test sets to verify the generalization of DB loss, and the
results show that Faster R-CNN trained based on DB loss
has a good generalization ability.

In our study, we focus not only on the overall classifica-
tion level of the model but also on the model’s ability to dis-
tinguish the three categories. Figure 8 shows the comparison
of the classification effect (AP50) of the model on the three
test sets. On SSPH_WL-II, the model has the worst classifi-
cation effect on polyp, and after improvement, the classifica-
tion precision of polyp is improved the most. On Kvasir and
CVC, the model has the worst classification effect on cancer,
and after improvement, the classification precision of cancer
is improved the most. This indicates that the model can
focus on the samples that are not good at classification after
improvement, and the classification precision of the three
categories is balanced in this way.

We use three test sets to further evaluate the classifica-
tion ability of the model in terms of the wrong detection rate
(FPR) and the missed detection rate (FNR). The wrong
detection refers to the model that can locate the lesions but
cannot classify them correctly. This is caused by the insuffi-
cient classification ability of the model. The missed detection
refers to lesions that are not detected by the model, which
are filtered out mainly because the model does not locate
the lesion or the classification confidence is lower than the
set threshold. As shown in Table 6, the FPR and FNR have
decreased by using DB loss, indicating that the classification
ability of the model has been improved.

The confusion matrices are shown in Figure 9. For the
wrong detection, in the original model, 18 adenomas are
wrongly classified as cancer, 7 cancers are wrongly classified
as adenoma, 11 adenomas are wrongly classified as polyp,
and 7 polyps are wrongly classified as adenoma; after using
the double-balanced loss, 10 adenomas are wrongly classi-
fied as cancer, 6 cancers are wrongly classified as adenoma,
6 adenomas are wrongly classified as polyp, and 6 polyps
are wrongly classified as adenoma. It is not difficult to find
that the wrong detection never occurs between cancer and

polyp: 79%
adenoma: 95%

polyp: 78%
polyp: 80%

(a)

polyp: 77%

polyp: 64%

adenoma: 62%

adenoma:

(b)

polyp: 81%

polyp: 80%polyp: 60%

adenoma: 68%

(c)

Figure 10: Three main categories of disturbances: (a) light spot, (b) foreign matter, and (c) bubble.
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polyp; this is due to the huge difference in characteristics
between polyp and cancer.

In addition, some disturbances in the intestine may also
lead to wrong detection of the model, as shown in Figure 10
There are three main categories of these disturbances: the
first is the identification of the reflected light spots in the
intestine as lesions, the second is the identification of foreign
matter in the intestine as lesions, and the third is the identi-
fication of air bubbles in the intestine as lesions.

As for missed images, DB loss reduces the occurrence of
missed detection, but there are still missed detections, as
shown in Figure 11. Most of these images are characterized

by small target areas, dim light, and occlusion, which may
be the main reason for missing model detection.

4.4. Comparison Experiments of Different Loss Functions.We
compare the classification effects of weight cross-entropy
loss (WCE), multiclassification focal loss (FL), and class-
balanced cross-entropy (CB) loss in Faster R-CNN, all of
which can be used to solve the imbalance problem.

As shown in Table 7, the classification effects of different
loss functions on different test sets are compared. On SSPH_
WL-II, the double-balanced loss achieves the advantage in
all metrics, and on Kvasir, the double-balanced loss and

Figure 11: Missed detection images of three test datasets.

Table 7: Performance of different loss functions on the three test sets.

Dataset Loss AP AP50 AP75 AR AR10 AR100

SSPH_WL-II

DB 0.598 0.858 0.712 0.675 0.731 0.733

WCE 0.577 0.842 0.669 0.658 0.724 0.724

FL 0.571 0.813 0.662 0.667 0.719 0.719

CB 0.574 0.834 0.681 0.661 0.728 0.726

Kvasir

DB 0.528 0.833 0.552 0.601 0.661 0.661

WCE 0.458 0.764 0.459 0.581 0.637 0.637

FL 0.453 0.739 0.459 0.581 0.639 0.639

CB 0.500 0.788 0.570 0.605 0.661 0.661

CVC

DB 0.639 0.948 0.745 0.677 0.770 0.770

WCE 0.593 0.885 0.668 0.662 0.705 0.705

FL 0.597 0.864 0.668 0.663 0.711 0.712

CB 0.619 0.905 0.676 0.672 0.735 0.735
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the class-balanced cross-entropy loss perform the best. On
CVC, these four loss functions achieve better results, and
the double-balanced loss function comes out ahead in all
metrics. Experiments show that the double-balanced loss
has good generalization ability on different test sets and is
able to solve the data imbalance problem better than other
loss functions.

Comparing the classification effects of weight cross-
entropy (WCE), multiclassification focal loss (FL), and
class-balanced cross-entropy (CB) loss functions in Faster
R-CNN, as shown in Figure 12, we can see that the
double-balanced loss function proposed in this paper has
the following advantages: in example (a), the classification
is more accurate; in example (b), the classification confi-
dence is higher; and in example (c), the classification perfor-
mance is better for small targets.

5. Conclusions

To address the imbalance problem in medical image classifi-
cation, this paper proposes a new loss function, namely, the
double-balanced loss. This loss function improves the classi-
fication ability of the model for this part of samples by

increasing the focus on fewer sample categories and difficult
samples during model training. In this paper, we mainly
achieve the double-balanced loss function in Faster R-
CNN, and after three test set validations, the model achieves
the best detection effect at IoU = 0:5, when the AP values are
improved by 3.4%, 8.3%, and 2.9%, indicating that the
double-balanced loss function achieves the expected effect
on the classification of colorectal white-light endoscopic
images. However, there are various types of medical images,
and we will verify the effectiveness of the double-balanced
loss function on other imbalanced datasets and further pro-
mote the double-balanced loss function in the next work.
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