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Abstract: Shallow landslides damage buildings and other infrastructure, disrupt agriculture practices,
and can cause social upheaval and loss of life. As a result, many scientists study the phenomenon,
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and some of them have focused on producing landslide susceptibility maps that can be used by
land-use managers to reduce injury and damage. This paper contributes to this effort by comparing
the power and effectiveness of five machine learning, benchmark algorithms—Logistic Model Tree,
Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine—in
creating a reliable shallow landslide susceptibility map for Bijar City in Kurdistan province, Iran.
Twenty conditioning factors were applied to 111 shallow landslides and tested using the One-R
attribute evaluation (ORAE) technique for modeling and validation processes. The performance
of the models was assessed by statistical-based indexes including sensitivity, specificity, accuracy,
mean absolute error (MAE), root mean square error (RMSE), and area under the receiver operatic
characteristic curve (AUC). Results indicate that all the five machine learning models performed well
for shallow landslide susceptibility assessment, but the Logistic Model Tree model (AUC = 0.932) had
the highest goodness-of-fit and prediction accuracy, followed by the Logistic Regression (AUC = 0.932),
Naïve Bayes Tree (AUC = 0.864), ANN (AUC = 0.860), and Support Vector Machine (AUC = 0.834)
models. Therefore, we recommend the use of the Logistic Model Tree model in shallow landslide
mapping programs in semi-arid regions to help decision makers, planners, land-use managers,
and government agencies mitigate the hazard and risk.

Keywords: shallow landslide; artificial intelligence; prediction accuracy; logistic model tree;
goodness-of-fit; Iran

1. Introduction

Landslides are a serious hazard in many parts of the world. According to a report by the World
Bank, approximately 300 million people around the world live in landslide-prone areas [1,2] and
economic losses from landslides amount to about USD 20 billion, with the largest losses incurred by
the United States, Italy, Japan, India, China, and Germany [3–5].

Although landslides commonly can be attributed to natural (topographic, geological, geophysical,
and hydrological) factors, Iran, like other countries, has experienced a large number of human-induced
landslides in recent years due to ground modification and construction that has been driven by
economic and population growth [5–7]. The country lies within a seismically active mountainous
region, and large earthquakes trigger landslides in mountainous parts of the country, notably the
Alborz and Zagros Mountains [8,9]. Nearly 2600 landslides were reported in Iran up to 2000 [10],
and those in the 20th century alone are responsible for 30,000 deaths and nearly 60,000 injuries [11].

One strategy for reducing loss of life and damage from landslides is to prepare maps that identify
areas vulnerable to landslides [12,13]. Landslide susceptibility may be defined as the likelihood that
a landslide will occur in a given area or at a specific site [14]. Maps that show the propensity of an area
to slope failure are termed “landslide susceptibility maps” [15,16]. These maps help land-use managers
and other government officials to proactively reduce future losses from landslides [17].

In recent years, a variety of qualitative knowledge-driven and quantitative data-driven statistical
and artificial intelligence (AI) techniques have been developed and used to predict landslides [18].
Although each method has its advantages and disadvantages, the Logistic Regression (LR) model
method has been the first choice of most researchers [19]. The advantage of Logistic Regression is that
variables can be discrete or any combination of types, and do not have to be normally distributed [20].
The LR uses a maximum likelihood estimation function to estimate the probability of an event
occurring [21]. Developing accurate and robust models from environmental data has been a challenge
for environmental scientists because of the “curse of multidimensionality,” i.e., environmental data
are diverse in nature and come from a variety of sources, such as field surveys, air photo and satellite
images, and historical records [17,18,22].
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This problem has been addressed through the development and application of machine learning
algorithms, which are able to handle large volumes of non-linear and complex data derived from
different sources and reported at a variety of scales. These algorithms have been extensively
used in natural hazard studies, for example: flooding [23–33], wildfire [34,35], dust storm [36],
sinkhole formation [37], drought [38,39], earthquakes [40,41], gully erosion [42–44], land/ground
subsidence [45,46], groundwater contamination [26,47–51], and landslides [17,52–78]. They can extract
informative patterns in historical data to predict future events [79].

A wide variety of machine learning algorithms have been developed to overcome data challenges
and develop accurate and robust landslide susceptibility prediction models. These algorithms
extract related information patterns in historical data to forecast future events. Techniques that
have been applied to develop landslide susceptibility maps include weight-of-evidence (WoE) [80],
Logistic Regression (LR) [81–83], Bayesian Logistic Regression (BLR) [30,72], Artificial Neural Networks
(ANN) [58,63,84–86], Evidential Belief Functions (EBF) [57,87], Fuzzy Logic Algorithm [88,89],
Support Vector Machines (SVM) [52,90,91], Naïve Bayes Tree (NBT) [17,74,92,93], Alternating Decision
Tree (ADTree) [45,54,69], Logistic Model Tree (LMT) [30,45,79], Kernel Logistic Regression (KLR) [94],
Adaptive Neuro Fuzzy Inference System (ANFIS) [95], Gaussian process regression (GPR) [96],
and Bagging Functional Tree (BFT) [97].

In particular, ensemble and hybrid machine learning techniques have provided promising results
and have been widely used around the world in recent years [17,18,22,52,56,98,99]. Their base
classifiers have good predictive ability and have been successful in predicting landslide-prone areas.
For example, Naïve Bayes Tree (NBT), Logistic Model Tree (LMT), LR, Support Vector Machine (SVM),
and Artificial Neural Network (ANN), the algorithms used in this study, have successfully identified
landslide-susceptible areas in up to 90% of all cases [100–102].

The prediction accuracy of landslide susceptibility models depends on the geographical region,
landslide conditioning factors (LCF), sample size, and on hyper parameter tuning [18,99]. As yet,
there is no consensus as to which models are most appropriate for specific regions, hence it is necessary
to use a variety of methods in each study area to determine the method with the highest predictive
power. The main objective of this study is to spatially predict shallow landslides around Bijar city in
eastern Kurdistan Province, Iran, using soft computing benchmark models, specifically LMT, LR, NBT,
ANN, and SVM. The LR, ANN, and SVM algorithms are considered among some landslide researchers
to be superior to other machine learning and conventional methods [22,103,104]. LMT is a decision tree
algorithm that combines a decision tree and a Logistic Regression function in leaves. It has been used
in many fields of environmental and natural hazard research, such as landslides, floods, gully erosion,
sinkhole formation, land subsidence, and groundwater potential mapping [22,45,87,105,106]. In this
study, we identify and rank the most important factors responsible for shallow landslides in the Bijar
study area. We evaluate the reliability and predictive power of the five machine learning models
based on sensitivity, specificity, accuracy, kappa, root mean square error (RMSE), area under the ROC
curve (AUC), and Wilcoxon and Friedman statistical tests. Data processing was done using ArcGIS
10.3 (ESRI, Redlands, CA, USA), and the machine learning algorithms were modeled with WEKA 3.9
software (University of Waikato, Waikato, New Zealand).

2. Description of the Study Area

The study area (598 km2; 35◦48′25” N to 35◦09′50” N and 47◦28′50” E to 47◦46′44” E) is located
around Bijar City in the eastern part of the Kurdistan Province in Iran (Figure 1). The regional climate
is cool, with annual average temperatures ranging from 4.4 ◦C to 13.4 ◦C. Mean annual rainfall
recorded between 1987 and 2010 at Bijar City was about 338 mm. Although annual precipitation is
low, short-duration storms can produce large amounts of rain. Intensities of about 34 mm/h have
a return period of about 20 years. The area is hilly, with elevations ranging from 250 to 1573 m asl
(above sea level) and slopes up to 60◦. There are four types of land cover in the Bijar region: (1) barren
lands (0.07%), (2) cultivated lands (53.62%), (3) residential areas (1.26%), and (4) grasslands (45.05%).
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Geologically, 94% of the area is underlain by conglomerate, siltstone, shale, and marl, and 6% is
underlain by volcanic rocks [17,65,69].Int. J. Environ. Res. Public Health 2020, 17, x 4 of 30 
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photographs (1:40,000 scale) and satellite images, and by inspection in the field. Field surveys showed 
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Figure 1. Location of shallow landslides in the study area. The blue circles denote landslides for
training the algorithms, and the red circles denote landslides for validating the algorithms.

3. Data Preparation

3.1. Landslide Inventory Map

An accurate landslide inventory map is one of the prerequisite tools for achieving a successful
landslide modeling prediction and must be prepared with care [107]. Some more important information
can be derived from this inventory map, such as locations of occurred landslides, landslides type,
frequencies of landslides, causes and triggers of landslides (i.e., earthquakes, intense rainfall, and rapid
snowmelt) [65]. In this study, we obtained 111 landslide polygons from the Forests, Rangeland and
Watershed Management Organization of Iran and checked them by examining aerial photographs
(1:40,000 scale) and satellite images, and by inspection in the field. Field surveys showed that most
of the landslides have resulted from human modification of slopes [84]. Most are shallow landslides
(depths less than 3 m) and include slumps (70.60%), complex landslides (22.4%), and falls (6.3%) [86].
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Minimum and maximum lengths of landslide are, respectively, 70 m and 280 m; the mean and median
values are 37 m and 26 m. Landslide widths range from 7 to 293 m; mean and median values are 37 m
and 63 m [65,69].

3.2. Landslide Conditioning Factors

In this study, we selected 20 landslide conditioning factors (LCF) based on the literature and data
availability and partitioned them into five categories: topography (slope angle, slope aspect, elevation,
curvature, profile curvature, plan curvature, and sediment transport index); hydrology (rainfall,
solar radiation, sediment transport power (SPI), topographic wetness index (TWI), distance to rivers,
and river density); geology (lithology, distance to fault, and fault density); land cover (land use and
normalized difference vegetation index (NDVI)); and human-related factors (distance to road and road
density). A digital elevation model (DEM) with a raster resolution of 28.5 m × 28.5 m was constructed
from ASTER GDEM-1 satellite images taken in August 2005. The DEM was resampled to a raster
resolution of 10 m to prepare data layers using the “Resample tool” in Arc GIS 10.3. The 20 LCM are
briefly described below.

3.2.1. Slope Angle

Slope is an expression of changes in elevations over distance and is expressed in this study in
degrees. All other things being equal, steeper slopes are more susceptible to landslides, thus slope
is an important conditioning factor in landslide susceptibility prediction modeling [5,17,18,108,109].
This conditioning factor was divided into eight classes using the manual classification method: (1) 0◦–5◦,
(2) 5◦–10◦, (3)10◦–15◦, (4) 15◦–20◦, (5) 20◦–25◦, (6) 25◦–30◦, (7) 30◦–45◦, and (8) >45◦ (Figure 2a).

3.2.2. Slope Aspect

Slope aspect is a measure of the cardinal direction of a slope, expressed relative to north (00) [110].
It has been shown to be related to the evapotranspiration in hilly areas and thus to be an important
LCF [111,112]. In the present study, slope aspect was divided into nine classes: (1) flat, (2) north,
(3) northeast, (4) east, (5) southeast, (6) south, (7) southwest, (8) west, and (9) northwest (Figure 2b).

3.2.3. Elevation

The incidence and frequency of landslides may differ with elevation and thus can be an important
LCD. Both temperature and precipitation affect soil moisture and commonly change with elevation.
Lower elevations also may be preferentially used for roads, the construction of which might trigger
landslides in hilly or mountainous areas [113]. Elevation may not have a fixed pattern, and it likely has
different impacts on landslides depending on geology and the geographical region being studied [114].
Elevation was divided into nine classes using the manual classification method: (1) 1573–1700,
(2) 1700–1800, (3) 1800–1900, (4) 1900–2000, (5) 2000–2100, (6) 2100–2200, (7) 2200–2300, (8) 2300–2400,
and (9) >2400 m (Figure 2c).

3.2.4. Curvature

The curvature of a slope can be concave, convex, or zero [109]. This LCM was divided into
six classes using the natural break classification method: (1) [(−12.5)–(−1.4)]; (2) [(−1.4)–(−0.4)];
(3) [(−0.4)–(−0.2)]; (4) [(−0.2)–0.9]; (5) [0.9–2.5]; and (6) [2.5–15.6] (Figure 2d).
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Figure 2. Landslide conditioning factors used in this study: (a) slope, (b) aspect, (c) elevation,
(d) curvature, (e) plan curvature, (f) profile curvature, (g) slope length (SL), (h) rainfall, (i) annual solar
radiation (j) stream power index (SPI), (k) topographic wetness index (TWI), (l) distance to rivers,
(m) river density, (n) lithology, (o) distance to fault, (p) fault density, (q) land use, (r) normalized
difference vegetation index (NDVI), (s) distance to road, (t) road density.
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3.2.5. Plan Curvature

Plan curvature is a measure of the concavity or convexity of a slope. It is used to analyze
gradients between ridges and valleys. In this study, cells with concave curvature have positive values
and cells with convex curvature have negative values. Slope erosion and water infiltration may
relate to plan curvature; consequently, it is commonly used in developing landslide susceptibility
prediction models [115,116]. We divided plan curvature into six classes using the natural break
classification method: (1) [(−6.7)–(−0.8)]; (2) [(−0.8)–(−0.2)]; (3) [(−0.2)–0]; (4) [0–0.4]; (5) [0.4–1.1];
and (6) [1.1–10.4] (Figure 2e).

3.2.6. Profile Curvature

Profile curvature is a measure of the concavity or convexity of the maximum slope, typically along
stream channels. It can be positive, zero, or negative, depending on whether the surface is,
respectively, upwardly concave, linear, or convex. As profile curvature influences water flow over
the slope, it is considered to be one of the most important LCF in landslide susceptibility prediction
models. We divided profile curvature into six classes using the natural break classification method:
(1) [(−10.7)–(−1.7)], (2) [(−1.7)–(−0.7)], (3) [(−0.7)–(−0.2)], (4) [(−0.2)–0.2], (5) [0.2–0.9], and (6) [0.9–7.5]
(Figure 2f).

3.2.7. Slope Length

Slope length (SL) is the distance between the origin of overland flow and the point where runoff

enters a defined channel [117]. It provides a measure of the erosive capability of overland flow [118].
We divided slope length into six classes using the natural break classification method: (1) 0–7; (2) 7–14;
(3) 14–21; (4) 21–28; (5) 28–35; and (6) 35–42 (Figure 2g).

3.2.8. Rainfall

The amount and intensity of rainfall is commonly positively correlated with landslide frequency,
but the relationship depends strongly on topography. Rainfall on well drained, relatively flat terrain
may have less impact on slope stability than it does in hilly areas [114]. We constructed a rainfall
map based on mean annual rainfall over the period 1980–2016 based on records from nine rain gauge
stations inside and outside the study area. Rainfall was divided into seven classes using the natural
break classification method: (1) 263–270; (2) 270–300; (3) 300–330; (4) 330–360; (5) 360–390; (6) 390–420;
and (7) 420–450 mm (Figure 2h).

3.2.9. Annual Solar Radiation

Solar radiation directly affects evapotranspiration and is also influenced by topography. It may
have an indirect impact on landslide susceptibility [113]. A layer for this conditioning factor was
prepared using the “annual solar radiation” tool in ArcGIS 10.2, and then divided into seven classes using
the natural break classification method: (1) 3.015–6.563, (2) 5.563–6.747, (3) 6.747–6.849, (4) 6.849–6.930,
(5) 6.930–7.073, (6) 7.073–7.236, and (7) 7.236–8.215 h (Figure 2i).

3.2.10. Stream Power Index

Stream power index (SPI) is a measure of the erosive capacity of flowing water and is a product
of the slope gradient and catchment area [119], and is a good candidate for landslide susceptibility
prediction model development. We derived SPI from the DEM in the SAGA software environment
and then divided it into six groups: (1) 0–998; (2) 998–6986; (3) 6986–19,961; (4) 19,961–45,911;
(5) 45,911–101,803; and (6) 101,803–255,505 (Figure 2j).
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3.2.11. Topographic Wetness Index

Topographic wetness index (TWI) is a measure of water accumulation degree at a site [118].
As TWI increases, landslide susceptibility may also increase. We calculated TWI from the DEM using
SAGA software and then divided it into six groups using the natural break classification method:
(1) 1–3; (2) 3–4; (3) 4–6; (4) 6–8; (5) 8–9; and (6) 9–11 (Figure 2k).

3.2.12. Distance to Rivers

A river might undercut a side slope, increasing the likelihood of a landslide. We infer, however, that
this is only likely to happen if the river borders a slope steeper than 15◦. Thus, when constructing
the distance-to-river map, we did not consider instances where rivers border slopes of less than 15◦.
We constructed the distance-to-river map with buffers around rivers using the Euclidean distance
tool in ArcGIS 10.5, and then divided distances into five groups using the natural break classification
method: (1) 0–50, (2) 50–100, (3) 100–150, (4) 150–200, and (5) >200 m (Figure 2l).

3.2.13. River Density

Rivers density is positively related to the frequency of landslides in mountainous regions [120],
in part through its effects on groundwater recharge. The river density layer was prepared
using the line density tool in ArcGIS 10.2 and then divided into seven groups using the natural
break classification methods: (1) 0–1.9, (2) 1.9–3.2, (3) 3.2–4.2, (4) 4.2–5.2, (5) 5.2–6.3, (6) 6.3–7.8,
and (7) 7.8–13.2 km/km2 (Figure 2m).

3.2.14. Lithology

Lithology affects soil porosity and permeability [121] and also rock strength. The lithology map
of the study area was generated from a 1:100,000-scale geological map produced by the Geological
Survey of Iran and verified through field work and air photo interpretation. We grouped geological
units into three groups: Quaternary, Tertiary, and Cretaceous (Figure 2n).

3.2.15. Distance to Faults

Many landslides are associated with faults due to the lower strength of rocks along these
structures. We prepared the distance-to-fault layer from the geological map using Euclidean distance
tool in ArcGIS 10.2; values range from 0 to 2000 m. We divided the LCF into five groups using the
natural break classification method: (1) 0–200, (2) 200–400, (3) 400–600, (4) 600–800, (5) 800–1000 and
(6) >1000 m (Figure 2o).

3.2.16. Fault Density

Fault density provides an aerial measure of highly fractured, and thus weak, rocks [122]. The fault
density layer was produced from the geological map using the line density tool in ArcGIS 10.2 and
then divided into seven groups using the natural break classification method: (1) 0–0.3, (2) 0.3–0.8,
(3) 0.8–1.2, (4) 1.2–1.7, (5) 1.7–2.1, (6) 2.1–2.5, and (7) 2.5–3.2 km/km2 (Figure 2p).

3.2.17. Land Use

Land use is a significant factor for slope stability because development and utilization of the
land affects infiltration, surface runoff, and vegetation [123]. The land-use layer in the present study
was generated from Landsat 7 OLI sensor images. Six land-use types were identified: (1) very dense
grassland, (2) barren land, (3) cultivated land, (4) dense grassland, (5) open grassland, and (6) residential
area (Figure 2q).
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3.2.18. NDVI

The normalized difference vegetation index (NDVI) provides a measure of vegetation greenness
and thus biomass. A change in vegetated areas might lead to slope failures [124]. We prepared
the NDVI map using Landsat 8 OLI sensor images from Landsat 8 in ENVI5.1. NDVI values were
divided into six categories: (1) [(−0.23)–(−0.061)], (2) [(−0.061)–(−0.0081)], (3) [(−0.0081)–(0.060)],
(4) [(0.060)–0.14], (5) [0.14–0.24], (6) [0.24–0.41], and (7) [0.41–0.73] (Figure 2r).

3.2.19. Distance to Roads

Road construction can increase the likelihood of landslides in hilly and mountainous areas by
reducing the rock and sediment strength, steepening slopes, and creating roadside fills [125]. Only roads
that undercut slopes steeper than 15◦ were included in the distance-to-road map. We added buffer
zones to calculate distances from roads at five intervals: (1) 0–50, (2) 50–100, (3) 100–150, (4) 150–200,
and (5) >200 m (Figure 2s).

3.2.20. Road Density

Road density is the cumulative length of roads per unit area [126]. Most landslides in the
study area are near roads, therefore road density provides a measure of the cumulative impacts of
road construction on the occurrence of landslides [17]. The road density layer has seven categories:
(1) 0–0.0013, (2) 0.0013–0.0027, (3) 0.0027–0.0041, (4) 0.0041–0.0055, (5) 0.0055–0.0069, (6) 0.0069–0.0083,
and (7) 0.0083–0.0097 km/km2 (Figure 2t).

4. Methods

4.1. Naïve Bayes Tree

The Naïve Bayes Tree (NBT) model, which was first proposed by Kohavi [127], combines two
classifiers: the ID3 decision tree, which is responsible for the classification process and splitting the
tree, and Naïve Bayes. It offers several advantages over other machine learning models, specifically the
ability to (1) represent knowledge, (2) manage complexity, (3) select candidate concepts, (4) process
small datasets, and (5) minimize noise in training datasets [128]. The modeling and classification
processes can be performed on even a small amount of data [111].

The first step in NBT modeling is to grow a tree based on the entropy (degree of disorder) feature
selection method. If S is a set of the training dataset and |S| is the total number of conditioning factors,
the factors can be grouped into n classes Si(i = 1, 2, . . . , n). |S|i is the number of conditioning factors
belonging to the class Si. The classification of S can be calculated based on the expected entropy
as follows:

Entropy(S) = −
n∑

i=1

(
|Si|

|S|
)log2[(

|Si|

|S|
)] (1)

Consider attribute A, for example aspect, in set S. The expected entropy can be expressed as:

EntropyA(S) = −
n∑

i=1

|Si|

|S|
× Info(Si) (2)

The difference between Entropy(S) and EntropyA(S) is represented as the information
gain (InfoGain):

InfoGain(A) = Entropy(S) − EntropyA(S) (3)
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The information gain ratio (IGR) is calculated according to the following equation:

GainRatio(A) =
InfoGain(A)

SplitIn f o(A)
=

Entropy(S) − EntropyA(S)

−

n∑
i=1

(

∣∣∣S j
∣∣∣
|S| ) log2[(

∣∣∣S j
∣∣∣
|S| )]

(4)

Naïve Bayes is performed on the leaves of the tree after the tree is grown and split. It assumes
the conditional independence among attributes x1, x2, . . . , xn. Let ki(landslide and non − landslide) be
an attribute of class set K. The a posteriori probability can be computed as follows:

kNB = arg maxZiPP(ki)
n∏

i=1

1
√

2πσ
e
−(di−σ)

2

2σ2 (5)

where PP(ki) denotes the a posteriori probability of the output class label ki(landslide and non− landslide),
and σ and ε are, respectively, the mean and standard deviation of di.

4.2. Logistic Regression

Logistic Regression determines the relation of landslide occurrence and possible causative factors,
and has been widely used in landslide susceptibility mapping [129,130]. It can be used when the
dependent variable is binary or dichotomous. The dependent variable (Y) is the absence (0) or presence
(1) of a landslide. The conditional probability that a landslide occurs is denoted by P(y = 1|x ). The logit
of the LR model is transformed by the following equation:

logit(y) = b0 + b1x1 + b2x2 + . . .+ bnxn (6)

where b0 is the intercept of the equation, and b1, b2, . . . , bn are the coefficients of independent variables
x1, x2, . . . , xn. The probability P(y = 1 |x ) is computed in the LR model as follows:

P(y = 1 |x ) =
1

1 + e−(b0+b1x1+b2x2+...+bnxn)
(7)

where e is the constant 2.718.

4.3. Logistic Model Tree

Logistic Model Tree combines the C4.5 algorithm [131] and Logistic Regression (LR) functions.
The IGR technique is applied to split the tree into nodes and leaves, and the LogitBoost algorithm [132] is
used to fit the logistics regression functions at a tree node. The C4.5 algorithm uses the entropy technique
for feature selection because it is the fastest method for providing reliable classification accuracy [133].
The over-fitting problem, which is an important challenge in LMT modeling, is overcome using the
CART algorithm, which prunes the tree for modeling the training dataset [129].

The IGR can be formulated as follows:

Gain ratio (A) =
gain(A)

split info(A)
(8)

where gain(A) is the information after attribute A is selected as a test for classification of the training
samples and split in f o(A) is the information generated when x training samples are categorized into n
subsets [131].
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In the next step, the LogitBoost algorithm performs additive Logistic Regression with least-squares
fit for each class Ci (landslide or non-landslide) according to the following equation [134]:

Lc(x) =
CF∑
i=1

αixi + α0 (9)

where Lc(x) is the least-squares fit, and CF αi are, respectively, the number of landslide conditioning
factors and the coefficient of the ith element of vector x. The a posteriori probabilities in the leaves of
the LMT are calculated using the linear Logistic Regression model [132]:

p(c|x) =
exp(Lc(x))

c∑
c′=1

exp(Lc′(x))
(10)

where c is the number of landslide classes and Lc(x), the least-squares fit, is transformed in such a way

that
c∑

c′=1
Lc(x) = 0.

4.4. Support Vector Machine

Support Vector Machine is a set of machine learning techniques based on the concept of an optimal
separating hyperplane [135]. SVM finds the widest margin between two classes in feature space.
A typical SVM model can be a two-class or multi-class model (combination of a chain of two-class
SVMs), as shown in Figure 3. The two-class SVM is the most frequently used machine learning
model [94,136,137]. During model performance, the separating hyperplane is one of the probable
planes separating the two classes. SVM finds an optimal hyperplane by distinguishing the two classes,
using the following equation [135]:

Min
w,b,ξ

:
1
2

wTw + c
∑1

i=1
ξi (11)

subject to the following constraints:

yi(wTφ(xi) + b) ≥ 1− ξi
ξi ≥ 0

(12)

where w is a coefficient vector, b is the offset of the hyperplane from the beginning, ξi is the positive
slack variable, and c (> 0) signifies the penalty parameters of the errors.

4.5. Artificial Neutral Network

ANNs are networks of processing neurons that operate the data and communicate with other
components [138]. An advantage of ANNs is that they can use some a priori unknown information
hidden in the data. In principle, they can be employed in linear or nonlinear models and single- or
multi-layer networks. ANN is a very popular artificial intelligence method and has been extensively
used in landslide susceptibility mapping and detection [85,139–141].
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Most ANNs comprise three sets of layers: input layer, hidden layers, and output layers (Figure 4).
At computation nodes, each entering value is multiplied by the assembly weight. The yields are next
summed with a neuron-specific constraint, called bias, that is used to scale the sum of the yields
into a suitable range. Lastly, the computational node relates an activation function to the above sum,
producing the node output. Weights and biases are computed by means of a non-linear optimization
training procedure, which minimizes a learning function that conveys proximity between observations
and ANN output.

Let it be known that u = u1, u2, . . . , un denote n input neurons, and v = v1, v2 denote output
neurons. For the classification, the activation function used in hidden neurons is computed as:

v = f

 n∑
i=1

ωiui + β

 (13)

where w ji are connected weights between input neurons ui and output neurons v, and β is the bias.
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4.6. Model Comparison and Validation

4.6.1. Statistical Metrics

We used five statistical measures to evaluate the new proposed benchmark model and other
soft computing models, namely sensitivity (SE), specificity (SP), accuracy (AC), mean absolute error
(MAE), and root mean square error (RMSE). Sensitivity, specificity, and accuracy were calculated
based on four possible consequences: true positive (TP), false positive (FP), true negative (TN),
and false negative (FN). TP and FP are the numbers of landslide cells that are correctly categorized
as, respectively, landslides and non-landslides. TN and FN are the numbers of landslide cells that
are correctly categorized and incorrectly categorized as non-landslides. SE is the ratio of the number
of correctly categorized landslide cells to the total number of predicted landslide cells. SP is the
ratio of the number of incorrectly categorized landslide cells to the total predicted non-landslide cells.
Accuracy is the ratio of the number of correctly categorized landslide cells to correctly categorized
non-landslide cells. The RMSE index was used to evaluate the difference between observed and
estimated data. The performance of landslide models is better when the values of sensitivity, specificity,
and accuracy are high and the RMSE value is low. The formulas for these statistical measures are the
following [142–146]:

SE =
TP

TP + FN
(14)

SP =
TN

TN + FP
(15)

AC =
TP + TN

TP + TN + FP + FN
(16)

MAE =
1
N

N∑
i=1

∣∣∣Xpredicted −Xactual
∣∣∣ (17)

RMSE =

√
1
n

∑n

i=1
(Xpredicted −Xactual)

2 (18)

where Xpredicted and Xactual are the predicted and real values of X in the training or testing dataset of the
landslide susceptibility model, and n is the total number of samples in the training or testing dataset.

4.6.2. ROC Curve and AUC Metric

The Receiver Operating Characteristic (ROC) is a standard tool for evaluating model
performance [18,62,93]. ROC is displayed on a plot of sensitivity on the x-axis and 100-specificity on
the y-axis. We used AUC (Area under the ROC curve) to show model performance [147]. We calculated
the success rate, the prediction rate, and their AUCs. The mathematical basis and formula for this
method are described in previous studies [64]. Sensitivity (i.e., detection probability) addresses the
correct classification of observed landslides; if all observed landslides are correctly classified, the value
is 1 [148]. In contrast, specificity (i.e., negative predictive value) addresses the correct classification
of non-landslides; again, its value is 1 if all non-landslides are correctly classified. The ROC of the
training dataset indicates the success rate and suitability of the model [49,149]. The ROC of the testing
dataset gives the predictive success of the model and thus how good or poor it is as a predictor [94,150].
AUC values of <0.6, 0.6–0.7, 0.7–0.8, 0.8–0.9, and >0.9 indicate, respectively, poor, moderate, good, very
good, and excellent model performance.

4.6.3. Friedman and Wilcoxon Sign Rank Statistical Tests

We used the Freidman and Wilcoxon ranking tests to further evaluate the performance of the new
proposed landslide model relative to the other models considered in this paper [93,151]. The probability
of a hypothesis (p-value) is assessed to reject or accept a null hypothesis [152,153]. The null hypothesis
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is rejected if there is a significant difference between the models [69]. The Freidman test was used
to evaluate the model performance without pairwise comparison. If the p-value is less than 0.05,
the comparison results are not reliable [45]. The Wilcoxon sign-ranked test was used to check the
statistical significance of systematic pairwise comparisons of models. The test results were evaluated
based on p-values and z-values [58]. The null hypothesis is rejected if the p-value is less than 0.05 and
the z-value exceeds the critical values of −1.96 and +1.96. In such a case, the performance of the models
is deemed to be significantly different.

4.7. Factor Selection Using One-R Attribute Evaluation Technique

The selection of appropriate conditioning factors is perhaps the most important step in landslide
prediction studies. Once chosen, the factors are used to create input data (training and testing datasets)
for the machine learning models. A feature selection technique is employed to choose appropriate
conditioning factors. It assesses the importance of each factor in predicting the final results and
removes unimportant factors from the input space, thus preventing redundancy and reducing noise
and over-fitting problems. In this way, the quality of input data is increased and the predictability of
the landslide model is enhanced [154].

Many different feature selection methods have been proposed to select suitable factors for predictive
models, including Information Gain [155], Forward Elimination [156], Backward Elimination [156],
and One Rule Attribute Evaluation (ORAE) [157]. We employed ORAE, an effective filter selection
method, [157] for this study. ORAE determines statistical correlations between an output variable and
a set of selected input factors. One rule is separately created for each element in the training dataset,
and the rule with the smallest error of detests is selected for modeling. In so doing, ORAE independently
classifies all factors according to their importance to solve landslide prediction problems.

4.8. Summary of the Methodology Used in This Study

Figure 5 provides a summary of the methodology used in our study. In this study, we prepared
and used of the following steps for the modeling process and for preparing shallow landslide
susceptibility maps:

Step 1: Data collection
We first created the landslide inventory map and selected possible landslide conditioning factors

(Section 3.2, respectively, of this paper).
Step 2: Factor selection
We next used the ORAE feature selection technique to select the most important factors for

landslide occurrence in the study area (Section 4.7).
Step 3: Modelling process
We next applied the LMT, NBT, LR, ANN, and SVM machine learning models using the most

important factors determined in step 2 (Sections 4.1–4.5).
Step 4: Preparation of shallow landslide susceptibility maps
We applied each model to the training dataset and calculated a weight (shallow landslide

susceptibility index) for each pixel of the study area. Based on these weights, we created shallow
landslide susceptibility maps.

Step 5: Model comparison and validation
We used statistical indexes, namely sensitivity, specificity, accuracy, MAE, RMSE, and AUC,

to check goodness-of-fit and prediction power using, respectively, the training and validation datasets
(Sections 4.6.1 and 4.6.2). Additionally, we tested the results using the Freidman and Wilcoxon statistical
tests (Section 4.6.3).
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5. Results and Analysis

5.1. Most Important Landslide Conditioning Factors

Using the ORAE method, we found that 12 of the 20 candidate conditioning factors had adequate
predictive ability (AM > 0) to be used in modeling landslide susceptibility. The average merit,
based on a 10-fold cross validation technique, is illustrated in Figure 6. Slope angle and TWI had the
highest average merits (respectively, 87.08 and 85.96), followed by plan curvature (73.03), slope length
(69.10), curvature (64.61), land use (63.48), SPI (61.80), profile curvature (61.24), solar radiation (55.62),
elevation (53.93), aspect (52.25), and rainfall (51.12).

5.2. Model Performance and Analysis

The performances of the applied predictive models (LMT, NBT, LR, ANN, and SVM) were
determined based on both the training and validation datasets (Table 1). In the case of the training
dataset, the LMT model achieved the best goodness-of-fit, as quantified by MAE (0.207), RMSE (0.304),
and AUC (0.944). The NBT and SVM models have the highest sensitivity (0.928), and the LR model
has the best specificity (0.900) and accuracy (0.904). The NBT and SVM models have the best quality,
with 92.8% of the landslide pixels properly assigned to the landslide class, followed by LR (90.9%),
LMT (90.7%), and ANN (82.6%). The LR model has the highest specificity, with 90.0% of the no-landslide
pixels properly classified in the no-landslide class. This model also has the best accuracy, with a 90.4%
probability of properly categorized pixels, followed by the NBT and SVM (89.9%), LMT (89.3%),
and ANN (83.7%) models.
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For the validation dataset, both the LMT and LR models have the highest goodness-of-fit based
on the MAE (0.216), RMSE (0.313 and 0.314), and AUC (0.936) measures, followed by the NBT model.
The NBT model also has the best sensitivity, with 90.0% of the landslide pixels in the correct class.
The LMT and LR models have the highest specificity (0.864), with 86.4% of non-landslide pixels in the
right class. The next highest specificity (0.833) was obtained by the NBT and SVM models. In terms of
accuracy, all of the predictive models except ANN have the same accuracy (0.864), indicating that the
probability of pixels being correctly categorized is 86.4%. It is worth noting that ANN has the lowest
values for sensitivity (0.762), specificity (0.739), and accuracy (0.750), and that SVM has the lowest
goodness-of-fit based on the MAE (0.246), RMSE (0.369), and AUC (0.864) measures.

Table 1. Model performances of the applied data-mining approaches for the training and
validation datasets.

Parameters
LMT NBT LR ANN SVM

T * V * T V T V T V T V

True positive 78 19 77 18 80 19 76 16 77 18
True negative 81 19 83 20 81 19 73 17 83 20
False positive 11 3 12 4 9 3 13 6 12 4
False negative 8 3 6 2 8 3 16 5 6 2
Sensitivity (%) 0.907 0.864 0.928 0.900 0.909 0.864 0.826 0.762 0.928 0.900
Specificity (%) 0.880 0.864 0.874 0.833 0.900 0.864 0.849 0.739 0.874 0.833
Accuracy (%) 0.893 0.864 0.899 0.864 0.904 0.864 0.837 0.750 0.899 0.864

MAE 0.207 0.216 0.225 0.225 0.213 0.216 0.241 0.235 0.223 0.246
RMSE 0.304 0.313 0.319 0.341 0.311 0.314 0.349 0.358 0.318 0.369
AUC 0.944 0.936 0.918 0.874 0.939 0.936 0.911 0.871 0.899 0.864

T *: Training, V *: Validation.

5.3. Development of Landslide Susceptibility Maps

After developing the LMT, LR, NBT, ANN, and SVM models, we estimated landslide susceptibility
indices (LSI) for each pixel in each model. LSIs were computed according to the probability distribution
function of each model. In order to facilitate the visualization of the susceptibility models, we divided
the indices into five susceptibility classes by the natural break method: very low (VLS), low (LS),
moderate (MS), high (HS), and very high (VHS). Finally, we developed a susceptibility map for each of
the five models (Figure 7). These maps consistently indicate that the south-central and northwestern
parts of the study area, which are hilly and mountainous, are most susceptible to landslides.
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5.4. Model Comparison and Validation

5.4.1. ROC Curve

We evaluated the validity of the shallow landslide susceptibility maps based on the ROC curves
and AUC values (Figure 8). The area under the curve for the training dataset is largest for the
LMT model (0.938), followed by the LR (0.923), NBT (0.887), ANN (0.882), and SVM (0.860) models
(Figure 8a). The area under the curve for the validation dataset is also highest for the LMT model
(0.932), followed by the LR (0.911), NBT (0.864), ANN (0.860), and SVM (0.834) models (Figure 8b).
These values suggest that the LMT model has the highest goodness-of-fit and prediction accuracy for
the study area. Overall, the results indicate that the LMT classifier provides a higher quality landslide
susceptibility model for the study area than the other machine learning methods.Int. J. Environ. Res. Public Health 2020, 17, x 19 of 30 

 

  

Figure 8. Receiver operating characteristic (ROC) curves and area under the receiver operatic 
characteristic curve (AUC) for the (a) training dataset and (b) validation dataset. 

5.4.2. Wilcoxon Sign Rank Test 

In addition to ROC, the statistical treatments of the five machine learning models were also 
analyzed by two well-known non-parametric statistical tests including the Friedman and Wilcoxon 
tests. As abovementioned, the null hypothesis is rejected if the significant level of a model is less than 
0.05 (α = 0.05). The null hypothesis that there is no difference among the performances of the shallow 
landslide models at a significance level of α = 0.05 (5%) was rejected. In this case, it was concluded 
that two or more model are statistically different in terms of performance. The result of the Friedman 
test concluded that the significant value was less than 0.05 and hence the null hypothesis was rejected 
(true). The Friedman method, however, provides no information on pairwise comparison. The 
Wilcoxon test assessed systematic pairwise differences among the shallow landslide models and 
indicated significant differences among some of them (Table 2). There was no significant difference 
between the LMT and LR models, indicating that these two algorithms have similar predictive power. 
In contrast, the performances of the other models were significantly different from each other, and 
from the LMT and LR (Table 3). 

Table 2. Performance of the five landslide machine learning models using Wilcoxon signed-rank test 
(two-tailed). 

No. Landslide Model Mean Rank χ2 p-Value 
1 LMT 2.80 

557.9
12 0.000 

2 LR 2.93 
3 NBT 2.88 
4 ANN 3.07 
5 SVM 2.32 

Table 3. Performance of the five landslide machine learning models using the Wilcoxon signed-rank 
test (two-tailed). 

N
o. 

Pairwise 
Comparison 

Number of 
Positive 

Differences 

Number of 
Negative 

Differences 

z-
Value 

p-
Value Significance 

1 LMT vs. LR 60 50 −1.536 0.125 No 
2 LMT vs. NBT 83 27 −5.590 0.000 Yes 
3 LMT vs. ANN 62 46 −0.878 0.080 Yes 

Figure 8. Receiver operating characteristic (ROC) curves and area under the receiver operatic
characteristic curve (AUC) for the (a) training dataset and (b) validation dataset.

5.4.2. Wilcoxon Sign Rank Test

In addition to ROC, the statistical treatments of the five machine learning models were also
analyzed by two well-known non-parametric statistical tests including the Friedman and Wilcoxon
tests. As abovementioned, the null hypothesis is rejected if the significant level of a model is less
than 0.05 (α = 0.05). The null hypothesis that there is no difference among the performances of the
shallow landslide models at a significance level of α = 0.05 (5%) was rejected. In this case, it was
concluded that two or more model are statistically different in terms of performance. The result of the
Friedman test concluded that the significant value was less than 0.05 and hence the null hypothesis
was rejected (true). The Friedman method, however, provides no information on pairwise comparison.
The Wilcoxon test assessed systematic pairwise differences among the shallow landslide models and
indicated significant differences among some of them (Table 2). There was no significant difference
between the LMT and LR models, indicating that these two algorithms have similar predictive power.
In contrast, the performances of the other models were significantly different from each other, and from
the LMT and LR (Table 3).
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Table 2. Performance of the five landslide machine learning models using Wilcoxon signed-rank test
(two-tailed).

No. Landslide Model Mean Rank χ2 p-Value

1 LMT 2.80

557.912 0.000
2 LR 2.93
3 NBT 2.88
4 ANN 3.07
5 SVM 2.32

Table 3. Performance of the five landslide machine learning models using the Wilcoxon signed-rank
test (two-tailed).

No. Pairwise
Comparison

Number of
Positive

Differences

Number of
Negative

Differences
z-Value p-Value Significance

1 LMT vs. LR 60 50 −1.536 0.125 No
2 LMT vs. NBT 83 27 −5.590 0.000 Yes
3 LMT vs. ANN 62 46 −0.878 0.080 Yes
4 LMT vs. SVM 36 74 −3.677 0.000 Yes
5 LR vs. NBT 82 29 −5.589 0.000 Yes
6 LR vs. ANN 61 49 −0.605 0.015 Yes
7 LR vs. SVM 35 75 −4.081 0.000 Yes
8 NBT vs. ANN 36 73 −3.958 0.000 Yes
9 NBT vs. SVM 30 80 −5.711 0.000 Yes

10 ANN vs. SVM 43 67 −3.140 0.002 Yes

Note: The standard p-value is 0.05.

6. Discussion

The ability to accurately estimate the sensitivity of terrain to landslides is an essential step in
land-use planning [158]. Integration of advanced machine learning algorithms now allows researchers
to develop landslide susceptibility models with high predictive capabilities. Land-use planners can use
maps produced from these models to reduce landslide risk [159]. However, many different methods
for modeling landslide sensitivity have been proposed, and the predictive accuracy of these methods
continues to be debated [160]. The growth in computer processing power offers researchers new
opportunities to compare models and evaluate their advantages and disadvantages.

Among the issues faced by researchers is the selection of appropriate landslide conditioning
factors. Appropriate conditioning factors may differ from region to region, depending on geology,
soils, topography, climate, and land use [161]. Thus, protocols must be developed to test the predictive
ability of the entire suite of factors that are under consideration [162,163]. In this study, we prepared
a landslide inventory map comprising 111 landslides and considered 20 conditioning factors. We used
the ORAE method and the AM index to remove 12 of the 20 factors from the landslide modeling
process. Slope has the highest average merits and is deemed to be the most critical factor in determining
landslide susceptibility in the Bijar study area. Landslides in this area are most common on the steep,
relatively wet slopes with sparse vegetation [54,164].

In this study, we compared the performance of five machine learning models: Logistic Model
Tree, Logistic Regression, Naive Bayes Tree, Artificial Neural Network, and Support Vector Machine.
All five models performed well, with classification accuracies >0.837 for the training dataset and
0.75 for the validation dataset. Model validation was performed using several statistical indices,
for example accuracy and ROC. The LMT model provided the best balance of classification capability and
performance. The LMT model uses leaf nodes and does not use constant values [161]. And according
to Landwehr et al. [132], LMT is efficient in constructing logistic models at lower levels of the tree,
rather than extending to lower levels models already established at higher levels. Moreover, the LMT
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algorithm applies cross-validation of LogitBoost iterations because training samples may be incorrectly
modified. The LMT model was validated with statistical measures and ROC.

The LR, ANN, and SVM models require much more computer power and lengthy execution
times. Typically, data are converted to ASCII format for statistical analysis and are later reformatted
for integration into a GIS. In addition, processing of large amounts of data in the statistical package
is more complicated for these three models [139,165,166]. A disadvantage of the NBT model is the
assumption that it does not depend on the attribution. Research by Tien Bui et al. [22] suggests that
this assumption may be incorrect, at least in the case of landslides.

We argue that the LMT model is an effective and simple tool for landslide susceptibility mapping.
We acknowledge, however, that there is no consensus about the best method for modeling landslide
susceptibility. In this paper, we compared five techniques: Logistic Model Tree, Logistic Regression,
Naive Bayes Tree, Artificial Neural Network, and Support Vector Machine to evaluate landslide
susceptibility in a semi-arid area in northwestern Iran. It is noted that all five methods perform well,
but the LMT model is superior.

The proposed approach has advantages as well as limitations. The advantages are: (1) it
has established and applied rules that are extractable and understandable; (2) it makes pair-wise
comparisons; (3) it is structured to work quickly with large and complex datasets; (4) it can detect
relationships and differences in subgroups and adjust for missing data; and (5) it does not rely on
expert knowledge and experience to make decisions. However, it is limited by the available database
and the choice of landslide conditioning factors. Small samples pose major obstacles. Future research
should aim to find ways to reduce the small dataset problem, for example by replacing landslide points
with landslide polygons which would significantly increase the number of pixels and improve the
quality of models.

7. Conclusions

Accurate landslide susceptibility maps assist land-use planners and government officials to reduce
loss of life and damage from slope failures. In this study, we prepared landslide susceptibility maps for
the area around Bijar City, Iran, using five soft-computing benchmark algorithms: LMT, LR, NBT, ANN,
and SVM. Our database comprised 111 shallow landslides. We divided the landslides into training and
prediction groups and selected 20 landslide conditioning factors for modeling based on the Information
Gain Ratio technique. All data were elaborated in a GIS environment. We determined that slope angle
and the topographic wetness index are the most important factors for shallow landslide occurrence in
the study area. The hilly and mountainous parts of the study area have a higher likelihood of shallow
landslides, especially if their soils are saturated.

Although all five machine learning models performed well, the LMT model outperformed the
others. It thus has considerable promise as a tool for mapping shallow landslide susceptibility in
other semi-arid regions with similar topography, geology, and climate. We recommend it as a tool
to help planners, managers, and government agencies mitigate landslide hazards. The LR model
outperformed the NBT, ANN, and SVM models, thus we consider it to be a trustworthy model for
identifying shallow landslide-prone areas in semi-arid environments.

A long-term goal of landslide researchers is the development of protocols for producing accurate
landslide susceptibility maps. Many hurdles remain before this is possible, including limitations in
available data, unknown factors, and known factors that are dynamic in nature (e.g., temporal changes
in climate and land use). Thus, much more research is needed, and we advise caution in generalizing
results in one area to others.
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