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Abstract: Cool-season creeping bentgrass (Agrostis stolonifera) has the ability to form fine sports
turf, but high temperatures result in summer bentgrass decline (SBD), especially in transitional and
subtropical zones. Physiological responses in combination with the alteration in turf quality (TQ) will
contribute to a better understanding of SBD in a subtropical zone. Field experiments were conducted
from 2017 to 2019 to test the adaptability to summer stress among four cultivars (13M, Penncross,
Seaside II, and PA-1). A constant ambient high temperature above 30 ◦C significantly decreased the
TQ of the four cultivars during the summer months in 2017, 2018, and 2019. Significant declines in
the chlorophyll content, photochemical efficiency of photosystem II (Fv/Fm and PIABS), leaf relative
water content (RWC), and osmotic potential (OP) were induced by summer stress, whereas gradual
increases in water-soluble carbohydrates, proline, hydrogen peroxide (H2O2), malondialdehyde
(MDA), and electrolyte leakage (EL) were observed in the four cultivars during the summer months.
The 13M and Penncross cultivars exhibited better performance than Seaside II and PA-1 in response to
summer stress from 2017 to 2019, which is associated with better maintenance of photosynthesis, water
status, WSC and proline accumulation, and cell membrane stability. The 13M and Penncross cultivars
could be used as potential candidates for turf establishment in a subtropical zone. Physiological
responses together with alterations in TQ also provided critical information for the breeding and
development of germplasm with heat tolerance in creeping bentgrass species.

Keywords: high temperature; oxidative damage; photosynthesis; osmotic adjustment; photochemical
efficiency

1. Introduction

Cool-season turfgrasses such as creeping bentgrass (Agrostis stolonifera), perennial
ryegrass (Lolium perenne), and Kentucky bluegrass (Poa pratensis) have an optimal range of
growth temperature from 15 to 24 ◦C and are highly susceptible to sustained high tempera-
tures in the summer [1]. Creeping bentgrass, characterized by rapid thatch accumulation,
fine texture, and low mowing height, is widely used in sports turfs such as golf green
and tennis lawns. In transitional and subtropical zones, the high temperature during the
summer months is a critical stress factor resulting in summer bentgrass decline (SBD) [2,3].
Maintenance practices including water and fertilizer management, the alteration of mow-
ing height, and the application of plant growth regulators have been utilized to alleviate
SBD [3–6]. In addition to managerial actions, the identification and selection of creeping
bentgrass cultivars that adapt to one particular climate type are of primary importance
to reduce maintenance cost because environmental adaptability to heat stress varies with
creeping bentgrass cultivars or genotypes [7,8]. Previous studies have identified some
heat-tolerant creeping bentgrass cultivars such as ‘L-93’ in controlled growth chambers or
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under field conditions [2,9]. The field performance of different creeping bentgrass cultivars,
especially for those newly developed or promoted cultivars, should be further assessed
during the summer months in different climatic regions.

Various metabolic processes in plants are interrupted by heat stress. For example, high
temperatures limit carbohydrate production and supply for growth maintenance in cool-
season turfgrass, mainly due to accelerated respiration and reduced photosynthesis [10].
Carbohydrates and other osmolytes such as proline (Pro) exhibit a variety of roles in
osmotic adjustment, antioxidant, and metabolic homeostasis [11]. It has been suggested
that carbohydrate production is beneficial in alleviating SBD [2]. Proline accumulation
and metabolism are also associated with better adaptation to enhanced heat tolerance in
creeping bentgrass [12–14]. In addition, the heat-induced decline in the turf quality (TQ)
of creeping bentgrass is related to accelerated leaf senescence, as demonstrated by the
chlorosis of turf [15]. One of the core factors responsible for heat-induced leaf senescence in
bentgrass species is reactive oxygen species (ROS) overaccumulation leading to membrane
peroxidation [16–19]. However, most of the controlled studies in growth chambers limit a
deep understanding of SBD in relation to the multiple physiological responses of different
creeping bentgrass genotypes in a subtropical zone.

As one of the most commonly used cool-season turfgrasses in golf greens, the heat-
induced decline in the TQ of creeping bentgrass is the most intractable problem to turf
managers during hot summers. The objectives of this study were to evaluate the summer
performance of four different creeping bentgrass cultivars (‘Penncross’, ‘13M’, ‘Seaside II’,
and ‘PA-1’) and to further examine common or different physiological responses, including
leaf water relation, photosynthetic performance, osmolytes accumulation, and oxidative
damage associated with heat tolerance among these cultivars during the summer months
under field conditions. Physiological responses in combination with the alteration in TQ
will contribute to a better understanding of SBD in a subtropical zone.

2. Materials and Methods
2.1. Plant Materials and Treatments

The experiment was conducted in the Research Farm of Sichuan Agricultural Uni-
versity which is located in southwest China (Chongzhou, Sichuan, east longitude 103◦07′–
103◦49′ and north latitude 30◦30′–30◦53′). The area has a typical subtropical-monsoon
climate with an annual mean temperature between 16 ◦C and 17 ◦C. Reclaimed soils (loams:
sands, 2:1) were used as the plant layer with the supply of 2.0 g m−2 fertilizers (nitrogen:
phosphorus: potassium, 3:1:1). The seeds of four different creeping bentgrass cultivars
(Penncross, 13M, Seaside II, or PA-1) were sown evenly in each 2 m × 2 m plot in October
2016. The seeding rate was 10 g m−2 for each cultivar. After nearly 8 months of estab-
lishment from October 2016 to May 2017, the turfgrass coverage of all cultivars reached
nearly 100%, and mowing height was maintained at 2 cm. The summer tolerance of the
four cultivars was evaluated from May to August 2017, June to September 2018, and June
to September 2019. During summer stress, all turfs were irrigated daily with city water
to avoid drought stress. The irrigation time changed within the year of the experiment
in relation to seasonal temperatures and soil conditions. The maximum, minimum, and
average daily air temperatures are demonstrated in Figure 1A–C. The total number of
days where the maximum air temperatures were above 30 ◦C were 64, 59, and 45 days in
the summers of 2017, 2018, and 2019, respectively (Figure 1A–C), which indicated that all
materials suffered from a long period of high temperature stress in the summers of 2017,
2018, and 2019. Dead spots in each turf plot were replaced by new sods in the spring to
make all turfs uniform before the summer stress of the next year.
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Figure 1. Daily maximum, minimum, and average air temperature in (A) 2017, (B) 2018, and (C) 2019
in the Research Farm of Sichuan Agricultural University (Chongzhou, Sichuan, China, east longitude
103◦07′–103◦49′ and north latitude 30◦30′–30◦53′). Red arrows indicate sampling dates.

2.2. Measurements of Turf Quality and Photosynthetic Parameters

TQ was evaluated based on presentation quality, which included uniformity, color,
and density, and was rated a 1, 6, or 9 if the presentation quality of the turf was the worst
(brown and desiccated), minimally acceptable (pale green and a 10% decline in denseness),
or excellent (green and dense), respectively [20]. For the Chl content, fresh leaves (0.2 g)
were collected from each turf and soaked in a 20 mL of 80% acetone and 95% ethanol (1:1,
v:v) solution for 48 h in the dark. The absorbance of the extraction liquid was detected at 645
and 663 nm with a spectrophotometer (Spectronic Instruments, Rochester, NY, USA) [21].
A portable Chl fluorescence system (Pocket PEA, Hansatech, Norfolk, UK) was used to
determine the photochemical efficiency (Fv/Fm) and the performance index on absorption
basis (PIABS). In brief, a single layer of leaves was covered by leaf clips for 30 min for dark
adaptation, and then, the Fv/Fm and PIABS data were recorded. The net photosynthetic
rate (Pn), transpiration rate, and instantaneous water use efficiency (WUE) were detected
by using a portable photosynthetic system (CIRAS-3, PP Systems, Amesbury, MA, USA)
that provided stable and continuous light and carbon dioxide conditions (400 µL/L CO2
and 800 µmol photon m−2 red and blue lights).

2.3. Measurements of Water Status and Osmolyte Contents

The water status in leaves was evaluated with the leaf relative water content (RWC)
and the osmotic potential (OP). Fresh leaves were collected from the turf and were weighed
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immediately to obtain the fresh weight (FW), and then, these leaves were soaked in distilled
water for 12 h to weigh turgid weight (TW). Dry weight (DW) was obtained after leaves
were dried in an oven at 105 ◦C for 2 h and then at 80 ◦C for 72 h. The leaf RWC (%)
was calculated based on the formula (RWC (%) = [(FW − DW)/(TW − DW)] × 100) [22].
Osmotic potential (OP) was determined by using an osmometer 4420 (Wescor, Inc., Logan,
UT, USA), and the assay method has been recorded in detail in the studies of [23,24]. For the
analysis of the proline content, fresh leaves (0.2 g) were extracted in boiling water for 20 min
in a 10 mL mixture containing 3% sulfosalicylic acid, and then, 2 mL of glacial acetic acid
and 3 mL of 2.5% ninhydrine were added. The reaction mixture was boiled for 30 min. The
5 mL of toluene was added and shaken up. The absorbance of upper toluene was recorded
at 520 nm using a Genesys 2PC spectrophotometer (Spectronic Instruments, Rochester,
NY, USA) [25]. Water-soluble carbohydrate (WSC) levels were determined according to
the method of [26] with some modification, which has been clearly demonstrated in our
previous study [27].

2.4. Measurements of Oxidative Damage and Membrane Stability

The hydrogen peroxide (H2O2) content was detected by using 0.2 g of fresh leaves
which were homogenized in 10 mL of 0.1% TCA. After being centrifuged at 10,000× g for
15 min, 0.5 mL of the supernatant was mixed with 0.5 mL of 10 mM potassium phosphate
and 1 mL of 1 M potassium iodide and then placed in the dark for 5 min. The absorbance
of the reaction mixture was read at 390 nm [28]. For the analysis of malondialdehyde
(MDA) content, 3 mL of 50 mM cold phosphate buffer (pH 7.8) was used to extract 0.2 g
of fresh leaves. The supernatant was obtained after the homogenate was centrifuged at
10,000× g for 30 min at 4 ◦C, and then, 0.5 mL of the supernatant was mixed with 1 mL
of the reaction solution (20% w/v trichloroacetic acid and 0.5% w/v thiobarbituric acid).
After being heated in a boiling water bath for 15 min, the reaction mixture was centrifuged
at 8000× g for 10 min. The absorbance of 1.5 mL of supernatant was measured at 532
and 600 nm [29]. Leaf electrolyte leakage (EL) was calculated based on the formula (%) =
Cinitial/Cmax × 100, where Cinitial indicated the initial conductivity and Cmax presented the
max conductivity. Fresh leaves (0.2 g) were soaked instantly in 50 mL of distilled water for
24 h to detect the Cinitial. These samples were autoclaved at 120 ◦C for 20 min and cooled
down to room temperature to detect the Cmax using a conductivity meter (YSI Model 32,
Yellow Spring, OH, USA) [30].

2.5. Experimental Design and Statistical Analysis

The experimental design was a randomized blocks design, and each treatment (each
cultivar) was replicated four times (four test plots) in the field. All measurements were
sampled in each plot including five subsamples, and the average value of the five subsam-
ples was regarded as the effective value in each plot. Variations among the four cultivars
in response to summer stress were analyzed by the general linear model procedure of
Statistical Product and Service Solutions 24 (SPSS Institute, IBM, Armonk, NY, USA, 2018).
Differences among treatments (cultivars) were determined by using the least significant
difference (LSD) at p ≤ 0.05.

3. Results
3.1. Turf Quality and Photosynthetic Parameters Affected by Summer Stress

The TQ of the four cultivars declined gradually during the summer months in 2017,
2018, and 2019, but Penncross and 13M showed higher TQ than Seaside II and PA-1 in
response to summer stress (Figure 2A–C). On 7 August 2017, the highest TQ was observed
in the Penncross cultivar (Figure 2A); however, the 13M cultivar exhibited the highest TQ
out of the four cultivars on 8 September 2018 and 2019 (Figure 2B,C). The Chl content in all
cultivars decreased with the development of summer stress from June to September in 2017,
2018, and 2019 (Figure 3A–C). The Penncross, 13M, and PA-1 cultivars had a significantly
higher TQ than Seaside II on July 26th, whereas no significant difference in the Chl content
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among the four cultivars was detected on other sampling dates during the summer in 2017
(Figure 3A). On 8 September 2018 and 2019, significantly lower Chl content was observed
in PA-1 and Seaside II as compared to that in Penncross and 13M (Figure 3B,C).
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13M, Seaside II, and PA-1) during summer in (A) 2017, (B) 2018, and (C) 2019. Vertical bars below
curves indicate least significant difference (LSD) values (p < 0.05) at a given day.

Summer stress induced a gradual decline in the Fv/Fm of the four cultivars in 2017
(Figure 4A). The decline in the Fv/Fm was at its maximum in PA-1 on 11 July 2017
(Figure 4A). Penncross and 13M had significantly higher Fv/Fm than Seaside II and
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PA-1 on 6 August 2017 (Figure 4A). No cultivar differences in the Fv/Fm were detected on
the first two sampling dates in 2018 (9 June and 15 August) and 2019 (8 June and 8 August)
(Figure 4B,C). The effects of summer stress on the PIABS were more pronounced than the
Fv/Fm among the four cultivars in 2017, 2018, and 2019 (Figure 4D–F). Penncross and
13M maintained a significantly higher PIABS than Seaside II and PA-1 during the summer;
however, there was no significant difference in the PIABS between Penncross and 13M
or between Seaside II and PA-1 (Figure 4D–F). The Tr of the four cultivars did not show
significant differences in 2017 and 2018, but Penncross and 13M maintained significantly
higher Tr as compared to Seaside II and PA-1 in 2019 (Figure 5A). In 2017, Penncross and
13M exhibited a 28% increase in Pn over Seaside II and PA-1 in the summer (Figure 5B).
In the summer of 2018, 13M showed the highest Pn of the four cultivars (Figure 5B). The
13M cultivar also had a 17%, 69%, and 31% significantly higher Pn than Penncross, Seaside
II, or PA-1 in the summer of 2019, respectively (Figure 5B). A significantly higher WUE
was detected in Penncross and 13M than in Seaside II and PA-1 in the summer of 2017 and
2019 (Figure 5C). In 2018, 13M maintained 12%, 21%, and 20% higher WUE than Penncross,
Seaside II, and PA-1 in the summer, respectively (Figure 5C).
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Figure 5. Change in (A) transpiration rate (Tr), (B) net photosynthetic rate (Pn), and (C) water use
efficiency (WUE) of four different creeping bentgrass cultivars (Penncross, 13M, Seaside II, and PA-1)
during summer in (A) 2017, (B) 2018, and (C) 2019. Vertical bars indicate ±SE of mean (n = 4).
Different letters indicate significant differences (p < 0.05) at a given day.

3.2. Water Status and Osmolytes Affected by Summer Stress

The Pro and WSC contents in the four cultivars increased gradually from May to Au-
gust in 2017, 2018, and 2019 (Figure 6A–F). There were no significant differences in Pro and
WSC contents among the four cultivars in May 2017, 2018, or 2019 (Figure 6A–F). The 13M
and the PA-1 cultivars had the maximum and second-highest Pro content when compared
to Penncross and Seaside II in July 2017 (Figure 6A). The Pro content was significantly
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higher in 13M in August 2017 than in the other cultivars (Figure 6A). Significantly higher
Pro content was detected in the leaves of Penncross and 13M as compared to that in the
leaves of Seaside II and PA-1 in July and August of 2018 (Figure 6B). The lowest Pro content
was observed in PA-1 and Seaside II in July and August 2019, respectively (Figure 6C). The
13M cultivar showed the highest WSC accumulation out of the four cultivars in July 2017,
2018, and 2019 (Figure 6D,E). In August 2017, 2018, and 2019, Penncross and 13M accu-
mulated more WSC than Seaside II and PA-1 (Figure 6D–F). Changes in the RWC and OP
showed similar trends in the four cultivars, as demonstrated by the gradual declines during
summer stress in 2017, 2018, and 2019 (Figure 7A–F). The 13M cultivar maintained a higher
RWC than the other three cultivars during summer stress in 2017 and 2019 (Figure 7A,C).
On 8 September 2018, Penncross and 13M had a 13% increase in RWC compared to Seaside
II and PA-1 (Figure 7B). OP in 13M was maintained at the lowest levels when compared to
the other three cultivars in response to high temperatures during the summer in 2017, 2018,
and 2019 (Figure 7D–F).
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Figure 7. Change in (A–C) relative water content (RWC) and (D–F) osmotic potential (OP) of four
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(A) 2017, (B) 2018, and (C) 2019. Vertical bars below curves indicate least significant difference (LSD)
values (p < 0.05) at a given day.

3.3. Oxidative Damage and Membrane Stability Affected by Summer Stress

The H2O2 and the MDA contents in the four cultivars increased significantly from
May to September in 2017, 2018, and 2019 (Figure 8A–F). Seaside II and PA-1 accumulated
significantly higher H2O2 content than Penncross and 13M from July to August in 2017
and 2018 (Figure 8A,B). The 13M cultivar maintained the lowest H2O2 content out of the
cultivars during summer stress in 2018 (Figure 8B). An 18% increase in H2O2 content was
detected in Seaside II and PA-1 over Penncross and 13M on August 18 and September 8,
2019 (Figure 8C). In the year 2019, PA-1 exhibited the highest MDA content of the cultivars
from May to August (Figure 8D), and Seaside II and 13M had the highest and lowest MDA
content of the cultivars during summer stress in 2018 and 2019, respectively (Figure 8E,F).
The EL in the leaves of the four cultivars increased significantly from June to September in
2017, 2018, and 2019 (Figure 9A–C). The EL was the lowest in Penncross when compared
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to the other three cultivars on 7 August 2017 (Figure 9A). Seaside II and PA-1 exhibited
an 18% and 16% increase in EL over Penncross and 13M on 8 September 2018 and 2019,
respectively (Figure 9B,C). The 13M cultivar maintained the lowest EL level in its leaves
during summer stress in 2018 and 2019 (Figure 9B,C).
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13M, Seaside II, and PA-1) during summer in (A) 2017, (B) 2018, and (C) 2019. Vertical bars above
curves indicate least significant difference (LSD) values (p < 0.05) at a given day.



Plants 2022, 11, 665 13 of 15

4. Discussion

Creeping bentgrass is used as sports turfs and often needs high cultural inputs for
adequate performance and functionality. The maintenance of higher TQ on golf greens
during hot summer months provided better playability to golfers [6]. However, the TQ of
creeping bentgrass significantly declines during the summer months when the ambient
temperature exceeds its optimum growth temperature [1]. Our current study demonstrated
that heat waves in the summer significantly decreased the TQ of four creeping bentgrass
cultivars (Penncross, 13M, Seaside II, and PA-1) in 2017, 2018, and 2019, but 13M and
Penncross could maintain a higher TQ than Seaside II and PA-1 during the summer months.
A decline in TQ is characterized by a reduced grass density and yellowing leaf tissue due
to accelerated leaf senescence under high-temperature stress [31,32]. Gradual declines in
Chl content were observed in the four cultivars, which was consistent with the significant
decreases in Fv/Fm, PIABS, and Pn. Previous studies have found that higher Chl content
was a key indicator for selecting heat-tolerant genotypes in creeping bentgrass species [7,8].
Delayed Chl degradation and the higher photochemical efficiency of PSII and Pn were
beneficial for better adaptation to high temperatures in creeping bentgrass during the
summer months, because metabolites produced from photosynthesis provided an available
energy supply for growth maintenance [13,15]. The 13M and Penncross cultivars exhibited
significantly higher Chl content and photosynthesis than Seaside II and PA-1 in the summer,
which could indicate that those two cultivars had better adaptability to high temperatures
in the subtropical zone.

Reduced available carbohydrates limited energy supply for plant growth and develop-
ment associated with heat-induced photoinhibition in plants [33]. It has been found that car-
bohydrate accumulation benefits creeping bentgrass against drought or heat stress [12,16,34].
An earlier study on putting green also showed that the heat-tolerant creeping bentgrass
cultivar L-93 exhibited significantly higher carbohydrate contents than Penncross in re-
sponse to summer heat stress in Manhattan [2]. In addition, proline accumulation and
metabolism are important survival strategies against heat stress, owing to the protective
functions of osmotic adjustment and ROS scavenging ability in plants [11]. High tempera-
tures cause physiological drought mainly due to reduced water absorption in roots and
accelerated transpiration in leaves. The positive effects of the accumulation of proline and
carbohydrates on water homeostasis have been proved in creeping bentgrass and other
plant species under high-temperature stress [35–38]. Leaf RWC and OP gradually declined
with the development of summer stress, whereas proline and carbohydrates significantly
accumulated in the four cultivars during the summer months. Interestingly, 13M and
Penncross accumulated more proline and carbohydrates as well as a better leaf water status
and osmotic adjustment ability than Seaside II and PA-1 in the summers of 2017, 2018,
and 2019. These findings indicated that the cultivars’ variations in their adaptations to
high temperatures could be associated with the modification of water homeostasis during
the summer.

The two major indicators of membrane peroxidation were H2O2 and MDA accumula-
tion, and their accumulations with high levels of toxicity to cells accelerated senescence
under heat stress [39]. In addition, the EL level was inversely correlated to heat tolerance
in creeping bentgrass species [7]. Persistent high-temperature stress induced gradual in-
creases in H2O2 content, MDA accumulation, and EL levels in the four creeping bentgrass
cultivars from June to August in 2017, 2018, and 2019. These findings indicated that the
four cultivars suffered from serious oxidative damage to their cell membranes during the
summer months. However, 13M and Penncross could maintain lower EL, H2O2, and MDA
than Seaside II and PA-1 in the summer. Similar results were found in a previous study,
which demonstrated that a lower lipid membrane peroxidation level was beneficial to the al-
leviation of SBD [18]. The better maintenance of cell membrane stability was also propitious
to photosynthesis and metabolic activity in plants under high-temperature environmen-
tal conditions [40]. Proline accumulation and metabolism have been known to confer
heat tolerance in plants associated with ROS detoxifying and delayed senescence [38,41].
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An exogenous application of proline could also mitigate the detrimental effects of high
temperatures on creeping bentgrass in relation to delayed leaf senescence [15].

5. Conclusions

Summer stress significantly decreased the TQ of four creeping bentgrass cultivars
(13M, Penncross, Seaside II, and PA-1) in 2017, 2018, and 2019. A variety of physiological
processes were affected by heat stress in the summer, including significant declines in Chl
content, photosynthesis, leaf RWC, and OP as well as obvious increases in carbohydrates,
proline, H2O2, MDA, and EL in the four cultivars. The 13M and Penncross cultivars
exhibited better performance than Seaside II and PA-1 in response to summer stress from
2017 to 2019, which was associated with the maintenance of better photosynthesis, water
status, osmolytes accumulation, and cell membrane stability. The 13M and Penncross
cultivars could be used as potential candidates for turf establishment in a subtropical zone.
An in-depth understanding of physiological responses to summer stress also provided
critical information for the breeding and development of germplasm with heat tolerance in
creeping bentgrass species.
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