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Background: Breast cancer (BC) is a highly heterogeneous cancer. The interaction

between immune system and BC is complex, widespread yet unclear. In this study,

we aimed to reveal the heterogeneity of host systemic immune response to BC

and understand the possible mechanisms that may drive the heterogeneity using

transcriptomic data from peripheral blood mononuclear cells (PBMCs).

Methods: Transcriptome-wide gene expressions of PBMCs in 33 BC patients were

generated by RNA sequencing. An unsupervised clustering algorithm was employed

to discover PBMC transcriptome subtypes among BC patients. Association analysis

between PBMC subtypes and age, clinical stage, abundance of immune cells, and

other clinical factors was performed to understand the underlying biological processes

that may drive this heterogeneity. Immune gene signature identification and in silico

survival analysis were performed to investigate the potential clinical implications of these

PBMC subtypes. The findings were validated using the whole blood transcriptomes of

an independent cohort.

Results: We observed that established BC subtypes were not associated with PBMC

gene expression profiles. Instead, we discovered and validated two new BC subtypes

using PBMC transcriptome, which have distinct immune cell proportions, especially for

lymphocytes (P= 5.22× 10−12) and neutrophils (P= 1.13× 10−14). Enrichment analysis

of differentially expressed genes revealed that these two subtypes had distinct patterns

of immune responses, including osteoclast differentiation and interleukin-10 signaling

pathway. We developed two immune gene signatures that can differentiate these two

BC PBMC subtypes. Further analysis suggested they had the ability to predict the clinical

outcome of BC patients.

Conclusions: PBMC transcriptome profiles can classify BC patients into two distinct

subtypes. These two subtypes are mainly shaped by different immune cell abundance,

which may have implications on clinical outcomes.

Keywords: peripheral blood mononuclear cells, immune gene signature, unsupervised analysis, breast cancer

subtype, breast cancer survival
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INTRODUCTION

Breast cancer (BC) is now the most frequently diagnosed cancer
and the sixth leading cause of cancer-related death among
Chinese women (1). To gain better outcomes, the early diagnosis,
prognosis and treatment monitoring are critically important (1).
However, BC is well-known as a highly heterogeneous malignant
tumor, both molecularly and histologically. At present, BC has
been classified into five intrinsic molecular subtypes, including
luminal-A, luminal-B, HER2-enriched, basal-like, and normal-
like (2–5). Each subtype has distinct gene expression profiles,
which is associated with cancer prognosis, disease progression,
cancer metastasis, and therapeutic resistance (2–5). Based on
several clinical and pathological factors, such as estrogen receptor
(ER), progesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2) status, BC is routinely divided into
several subtypes in clinical implementation (6, 7). These clinical
classifications are frequently used to guide the treatment of BC
patients (6, 7).

Although genetic and epigenetic changes are the key causes
of BC, both the innate and adaptive immune system may play
substantial roles in BC progression and metastasis as well (8).
The presence of cancer cells can activate different immune
cells to undergo various phenotypic and functional changes,
and eventually kill cancer cells or promote the proliferation
of cancer cells (9, 10). Several studies have attempted to
detect the presence of cancers by profiling the gene expression
in peripheral blood mononuclear cells (PBMCs) from BC
patients (11–14) and some other malignant tumors (15, 16).
They have proposed several PBMC gene expression signatures
that can significantly differentiate cancer patients from healthy
controls (12, 13, 15, 16). Furthermore, expression profiles of
several immune-related genes in PMBCs from BC patients
can predict the relapse of triple negative BC (11, 14). These
findings indicated that transcriptomic analysis of peripheral
blood immune cells (PBMCs) might be a practical way to
evaluate the host systemic immune responses against cancer
cells. Notably, this is especially valuable, since the collection of
blood samples is non-invasive and convenient as compared to
the sampling of tumor tissues (11). However, the human immune
system is substantially variable (17). A wide range of factors,
such as age, sex, genetic background, and some environmental
influences, can perturb and shape the blood transcriptome (17).
The relationship between immune system and BC is intricate,
and many unanswered questions remain (8, 18). Among them,
one of the most important issues is to explore the heterogeneity
of blood transcriptome of BC patients and the clinical relevance
of this heterogeneity.

In this study, we aimed to reveal the heterogeneity of host
systemic immune response to BC and understand the possible
mechanisms that drive the heterogeneity. First, we measured the
transcriptome-wide gene expressions in PBMC samples from 33
BC patients using RNA sequencing (RNA-seq), and correlated
the gene expression profiles with known clinical classifications.
Next, we performed an unsupervised cluster analysis on PBMC
expressions to reveal the heterogeneity among BC patients and de
novo classified BC patients with distinct host response patterns.

Then, we validated the PBMC subtypes in an independent BC
dataset. Furthermore, we investigated possible clinical factors
that may be related to the PBMC subtypes of BC patients,
including age, clinical stages and the abundance of immune cells.
Finally, we explored the potential of using PBMC gene signatures
to predict the clinical outcome of BC patients.

MATERIALS AND METHODS

Overview of Patient Cohorts
In this study, we recruited 33 BC patients from the First Affiliated
Hospital of Nanjing Medical University, between July and
September 2017, as a discovery cohort. All patients participated
anonymously in consideration of privacy and security concerns.
The detailed baseline demographic information of the discovery
cohort is listed in Table 1. In IHC subtyping, ER positive,
HER2 negative, high PR expression (more than 20%) and low
Ki-67 expression (<14%) patients were defined as luminal-
A subtype. ER positive, HER2 negative, low PR expression
(<20%) or high Ki-67 expression (more than 14%) patients
were defined as luminal-B subtype. Additionally, ER positive and
HER2 positive patients were defined as luminal-B subtype as
well (19). Upon recruitment, fresh peripheral blood samples were
collected before clinical treatment. To validate the unsupervised
classification of PBMC transcriptome in BC patients, we also
downloaded the whole blood gene expression data and the
clinical features of another BC cohort from European Genome-
phenome Archive (accession number: EGAD00010001063) (20).
This validation cohort includes 173 BC patients in the
Norwegian Women and Cancer Study (21). The whole blood
transcriptome was quantified by Illumina Human AWG-6
and HT12, including microarray expression data for 16,782
genes (21). The baseline characteristics of BC patients in the
validation cohort are shown in Additional File 1. To estimate
the proportion of tumor infiltrated lymphocytes (TILs) in BC, we
also downloaded the transcriptome level gene expression data of
173 tumor tissue samples for all patients in the validation cohort
from European Genome-phenome Archive (accession number:
EGAD00010001064) (21).

Isolation of Total RNA From PBMC and
RNA-Seq
PBMC samples of 33 BC patients in the discovery cohort
were isolated from whole blood applying Ficoll-Paque Premium
(GE Healthcare, IL, USA) according to the manufacturer’s
instructions. Total RNA was extracted from PBMC using TRIzol
reagent (Invitrogen, CA, USA) and purified with the mirVana
RNA Isolation Kit (Ambion, Massachusetts, USA) in accordance
with the manufacturer’s protocol. The purity and concentration
of RNA were determined from OD260/280 readings using
NanoDrop ND-1000. RNA integrity was determined by 1%
formaldehyde denaturing gel electrophoresis. Only RNA extracts
with RNA integrity number values >6 were used for further
experiments. The isolated RNAs were immediately frozen in
liquid nitrogen, and stored at −80◦C. RNA-seq libraries were
constructed by Ovation human FFPE RNA-seq library systems
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TABLE 1 | Demographics of BC patients in the discovery cohort.

Characteristic All patients (n = 33)

Age (y)* 51.3 (24–77)

Menopausal status

Premenopausal 0

Postmenopausal 0

Not available 33

Histological type

Invasive ductal carcinoma 30

Invasive lobular carcinoma 1

Intraductal carcinoma 2

ER status

Positive 22

Negative 11

PR status

Positive 19

Negative 14

HER2 status

Positive 19

Negative 14

Ki-67 status

Less than 20% 9

More than 20% 24

IHC-based subtypes

Luminal-A 16

Luminal-B 6

HER2-positive 3

Triple negative 8

Pathological stage

Stage I 16

Stage II 11

Stage III 3

Not available 3

Unless otherwise indicated, data are number of patients. *Data for continuous variables

are means, with ranges in parentheses.

(NuGEN Technologies, CA, USA) and sequenced on Illumina
HiSeq X Ten platform (Illumina, CA, USA) using paired-end 150
bp runs.

RNA-Seq Data Analysis
RNA-seq reads were aligned to human genome 19 by HISAT2
(22), quantified by featureCounts (23) and assembled by StringTie
(24). The expression level of genes was quantified in forms of
both counts data and normalized FPKM (fragments per kilobase
of exon per million reads mapped). In total, expression values
of 57,773 unique genes in PBMC samples of BC patients in
the discovery cohort were measured. Considering the different
types of gene expression profiles in the discovery and validation
cohorts,GLM inDESeq2 (25) was used to perform the differential
gene expression analysis for RNA-seq data, while linear models
in limma (26) was used for microarray data. Genes with a fold
change in expression level of <0.25 or >4.0 and FDR-corrected

P < 0.01 were identified as significant differentially expressed
genes (DEGs). The annotation and enrichment visualization of
DEGs were accomplished using Metascape (http://metascape.
org) (27) and Reactome pathway database (https://reactome.org/)
(28). The Gene Ontology (GO) terms, Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways and Reactome pathways
with a P < 1× 10−5 in the enrichment analysis were retained.

Discovery and Validation of the PBMC
Subtypes
We used unsupervised consensus clustering (29) to discover
intrinsic PBMC subtypes in the discovery and validation cohorts,
respectively. The consensus clustering is a resampling-based
method to represent the consensus across multiple runs of a
clustering algorithm and to assess the stability of the discovered
clusters (29). The method, which is robust and insensitive to the
initial conditions, has been widely used to identify biologically
meaningful clusters (29). In detail, we first selected the top 5,000
variable genes measured by median absolute deviation as the
most informative genes for class detection. Then, we performed
a bootstrap procedure with 80% item resampling and 80% gene
resampling on the PBMC gene expression profiles 10,000 times
using the agglomerative hierarchical clustering algorithm with
the Spearman distance metric. We selected the optimal number
of clusters that corresponds to themost stable consensus matrices
and the most unambiguous cluster assignments across permuted
clustering runs by varying the number of clusters from 2 to 10
(29). This process determined the optimal number of intrinsic
unsupervised clusters defined by PBMC transcriptome in the
discovery cohort. To validate the result, we implemented the
same procedure on the validation cohort. In addition, we used in-
group proportion (IGP) statistical analysis (30) to demonstrate
the existence of the clusters in the validation cohort and evaluate
the reproducibility of the clusters derived from consensus
clustering in the two independent cohorts. IGP provides a
quantitative approach to measure the similarity between the
clusters. IGP will be 100% if the clusters are identical between
two datasets and will be 0% conversely. Due to the different
types of expression values in the two datasets, we normalized the
expression data by Z-score prior to the IGP statistical analysis.
The consensus clustering and IGP analysis were performed in R
(https://www.r-project.org/) (31).

Estimation of the Abundance of Major
Immune Cells Using Gene Expression
Profiles
We used CIBERSORT (https://cibersort.stanford.edu/) (32) with
the LM22 signature gene matrix (32) to characterize the
proportion of immune cells in the PBMC sample of each BC
patient in both discovery and validation cohorts. CIBERSORT is
able to accurately estimate cell composition of complex tissues
from their gene expression profiles, including the immune cells in
human PBMC samples (32).We obtained the proportion of seven
major immune cell types, including lymphocytes (consisting of all
types of B cells, T cells, and NK cells), monocytes, macrophages
(consisting of M0, M1, M2 macrophages), dendritic cells
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(consisting of resting and activated dendritic cells), mast cells
(consisting of resting and activated mast cells), eosinophils and
neutrophils. All subsequent analysis of immune cell proportions
in this study was based on the estimation of these seven major
cell types.

Survival Analysis
We identified the immune-related gene signatures using their
expression in PBMC samples. To explore the implication of
the immune-related gene signatures on the patient’s survival,
we used Kaplan-Meier-plotter (http://www.kmplot.com/) (33) to
perform in silico survival analysis. Kaplan-Meier-plotter is able to
assess the effect of 54,000 genes on cancer survival in 21 cancer
types, including BC, using their expression profiles in the tumor
tissue (33).

Statistical Analysis
To compare the clinical characteristics, cell proportions and
established subtypes between clusters in both cohorts, we
performed the Fisher’s exact test or Pearson’s chi-squared test
for categorical variables and the Student’s t-test for continuous

variables. All statistical analysis were performed in R (https://
www.r-project.org/) (31).

RESULTS

Established Clinical Classifications Cannot
Explain PBMC Expression Heterogeneity
Among BC Patients
First, we explored the heterogeneity of PBMC transcriptome
among the BC patients. We observed that a substantial number
of genes varied significantly in expression in PBMC samples of
the BC patients in both cohorts (Additional File 2). To explain
this variation, we projected the PBMC transcriptome differences
among BC patient groups onto known clinical classification. In
the discovery cohort, the status of three immunohistochemistry
(IHC) markers was available for each patient. We classified BC
patients using all three IHC markers’ status and compared the
gene expression of BC patients with different ER, PR, and HER2
status. No significant difference was found between BC patients
with different IHC markers’ status (Additional File 3).

FIGURE 1 | Unsupervised consensus clustering of PBMC transcriptome subtypes. Consensus matrix heatmaps for the chosen optimal cluster number (k = 2) for the

discovery (A) and validation cohorts (C), respectively. Rows and columns are patient samples and consensus matrix values range from 0 (never clustered together) to

1 (always clustered together). The dendrogram above the heatmap illustrates the ordering of patient samples in 2 clusters. The relative change in area under the

cumulative distribution function (CDF) curves when cluster number varying from k to k+1 for discovery (B) and validation data (D). The range of k changed from 2 to

10, and the optimal k = 2.
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In the validation cohort, only the status of ER and HER2 was
available. We tested the expression differences in patients with
ER and HER2 status. Again, we found no significant difference
(Additional File 4). In addition, gene expression profile of the
matched tumor tissue is available for each patient in the
validation cohort. With the expression data, we further classified
the patients in the validation cohort into PAM50 subtypes (2) and
investigated the PBMC transcriptome variations among these
patient groups. The result indicated that PBMC gene expression
in the BC patients with different PAM50 subtypes are statistically
similar (Additional File 4). All these results suggested that the
established known subtypes based on IHC marker and PAM50
were not associated with PBMC gene expression in BC patients.

Identification and Validation for PBMC
Transcriptome-Based Subtypes for BC
Patients
Next, we employed an unsupervised clustering algorithm to
classify the BC patients into de novo groups based on their
heterogeneity of systemic immune response to BC. We selected
the top 5,000 genes with the highest median absolute deviation
of expression values in the discovery cohort, and classified BC
patients into two clusters, subtype_1 and subtype_2 (Figure 1A),

using the consensus clustering algorithm (29). The 2-cluster
solution corresponded to the largest cluster number that induced
the least incremental change in the area under the cumulative
distribution function (CDF) curves while keeping the maximal
consensus within clusters and the minimal rate of ambiguity in
cluster assignments (Figure 1B). Finally, subtype_1 includes 19
patients (58%), while subtype_2 includes 14 patients (42%).

To confirm this de novo classification, we independently
applied the same analysis procedure (29) on the validation
dataset, which is whole blood transcriptome data. Interestingly,
we observed that the samples in the validation cohort were
also clustered into two optimal clusters, which is very similar
to that identified in the discovery dataset (Figures 1C,D). We
evaluated the reproducibility of the two PBMC subtypes across
the discovery and validation cohorts using in-group proportion
(IGP) statistic (30). The IGP values are 89.8 and 75.3% for
subtype_1 and subtype_2, respectively, indicating that both
subtypes had high consistency between the two cohorts. This
suggested that these two PBMC transcriptome subtypes are
robust across different BC cohorts.

To understand the underlying biological mechanisms that
differ in these two PBMC subtypes, we performed differential
gene expression analysis using DESeq2 (25). We observed 1,988
DEGs between these two subtypes in the discovery cohort.

FIGURE 2 | PBMC subtypes shared distinct molecular pathways and immune response patterns. GO terms, KEGG pathways, and Reactome pathways with a P < 1

× 10−5 in the enrichment analysis are displayed. We observed distinct immune patterns between the two PBMC subtypes. These distinct patterns cover the whole

process of host immune response to tumor, including the activation of immune cells, the regulation and response of innate and adaptive immune system, and the

production of some specific antibodies.
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TABLE 2 | Differences of established BC subtypes and clinical characteristics in

PBMC subtypes in the discovery cohort.

Clinical factors Subtype_1

(n = 19)

Subtype_2

(n = 14)

P-value

ER status 1a

ER+ subtype 13 9

ER– subtype 6 5

PR status 1a

PR+ subtype 11 8

PR- subtype 8 6

HER2 status 0.723a

HER2+ subtype 10 9

HER2– subtype 9 5

IHC-based subtype 0.309a

Luminal-A 10 6

Luminal-B 3 3

HER2-positive 3 0

Triple negative 3 5

Histological type 0.496a

Invasive ductal carcinoma 16 14

Invasive lobular carcinoma 1 0

Intraductal carcinoma 2 0

Pathological stage 0.169a

Stage I 10 6

Stage II 4 7

Stage III 3 0

Age*(y) 47.9 (24–73) 55.9 (41–77) 0.052b

Unless otherwise indicated, data are number of patients or the P-value of statistical test.
aP-value for the Fisher’s exact test.
bP-value for the Student’s t-test.
*Data for the continuous variables are means with ranges in parentheses.

In enrichment analysis for the DEGs, the top 20 significantly
enriched GO terms are related to immune regulation (Figure 2).
Among them, myeloid leukocyte activation was the most
significant GO term. Similarly, the enriched KEGG pathways and
Reactome pathways (Figure 2) include osteoclast differentiation
and interleukin-10 signaling, which associate to host immune
response. The results suggested that the major differences
between these two subtypes may be explained by their different
immune responses to BC.

PBMC Transcriptome Subtypes Are
Distinct in Terms of Immune Cell
Abundance
Then, we investigated possible clinical factors that relate to the
two subtypes in the BC patients, including age, clinical stage,
established BC subtype, blood immune cell abundance, and
TILs. In the discovery cohort, there was no statistical difference
between the two subtypes in terms of age, histological type or
clinical stage (Table 2), or age, menopausal status or weight in
the validation cohort (Table 3). Moreover, we found that the
known established BC subtypes, including IHC marker status,
IHC-based subtypes, and PAM50 intrinsic molecular subtypes,

TABLE 3 | Differences of established BC subtypes and clinical characteristics in

PBMC subtypes in the validation cohort.

Clinical factors Subtype_1

(n = 88)

Subtype_2

(n = 85)

P-value

ER status 0.301a

ER+ subtype 68 71

ER– subtype 20 14

HER2 status 0.6973a

HER2+ subtype 18 22

HER2– subtype 70 63

PAM50 molecular subtype 0.656a

Luminal-A 24 24

Luminal-B 21 22

HER2-enriched 11 15

Basal-like 15 14

Normal-like 17 10

Menopausal status 0.429a

Premenopausal 6 7

Postmenopausal 74 64

Weight*(kg) 72.9 (50–120) 70.2 (50–150) 0.219b

Age*(y) 56.7 (43–104) 55.9 (44–66) 0.445b

Unless otherwise indicated, data are number of patients or the P-value of statistical test.
aP-value for Pearson chi-square test.
bP-value for Student’s t-test.
*Data for continuous variables are means, with ranges in parentheses.

TABLE 4 | Differences of immune cell components in PBMC subtypes in the

discovery and validation cohorts.

Immune cell types Discovery cohort

(n = 33)

Validation cohort

(n = 173)

Lymphocytes 5.22 × 10−12* 5.80×10−18*

Monocytes 5.29 × 10−5* 0.509

Macrophages 0.579 0.00026*

Dendritic cells 0.001* 0.252

Mast cells 0.022 0.00076*

Eosinophils 0.399 0.166

Neutrophils 1.13 × 10−14* 1.86 × 10−24*

Unless otherwise indicated, data are the P-value of Student’s t-test. *P < 0.01.

cannot account for the differences between PBMC transcriptome
subtypes (Tables 2, 3), because both PBMC subtypes contained
the BC patients with IHC marker status and PAM50 subtypes.

Interestingly, we observed significant differences in
proportion of lymphocytes (in the discovery cohort: P = 5.22
× 10−12; in the validation cohort: P = 5.80 × 10−18) and
proportion of neutrophils (in the discovery cohort: P = 1.13
× 10−14; in the validation cohort: P = 1.86 × 10−24) between
the two PBMC transcriptome-based subtypes (Table 4).
Furthermore, we calculated the neutrophil-to-lymphocyte ratio
(NLR), a common and stable hematological indicator that can
reflect the inflammatory state of the body (34, 35). In comparing
the NLR values between the two subtypes, we also observed a
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FIGURE 3 | The heatmap of TIL differences between patients with two PBMC subtypes. Each row represents an immune cell type identified by LM22, and each

column represents an established subtype of BC patients. The value of matrix is the P-value of the TIL difference (Student’s t-test) between patients with PBMC

subtype_1 and subtype_2.

significant difference (in the discovery cohort: P = 6.60 × 10−6;
in the validation cohort: P = 9.08 × 10−21). Other immune

cells, such as the monocytes in the discovery cohort and the

macrophages in the validation cohort, do not show a significant

difference (Table 4).
Furthermore, we assessed the TIL differences in tumor

tissue samples of patients with different PBMC transcriptome
subtypes. We estimated the proportion of immune cells in

the tumor tissue sample of each BC patient in the validation

cohort, using CIBERSORT with the LM22 signature (32). We
found the tumor infiltration of memory B cells is statistically
different in BC patients with two PBMC transcriptome subtypes
(Figure 3), including all BC patients (P = 0.032), ER+ patients
(P= 0.027), Luminal-B patients (P= 0.036) and HER2– patients
(P = 0.0022). Additionally, memory resting CD4+ T cells is
differentially infiltrated in cancer tissues of patients with different
PBMC subtypes in HER2+ patients (P = 0.034) and HER2-
enriched patients (P = 0.037).

These results suggested that the composition of immune cells
in PBMCs and TILs in tumor tissues, rather than age, clinical
stage, and known BC subtypes, are related to the heterogeneity
of PBMC transcriptome in BC patients.

PBMC Transcriptome Subtypes May Be
Related to BC Survival
Finally, we tried to explore the implications of the PBMC
transcriptome heterogeneity on BCmanagement. In the previous
results, we found no difference in several available clinical
characteristics between the two subtypes (Table 3). However,
NLR, which is an indicator of the inflammation level, differed
between the two subtypes. The inflammation level has important
potential in predicting the clinical outcome of BC (36). We
investigated if patients with different PBMC subtypes have
different survival rate. Twenty-eight immune-related genes were
identified in the pathway of osteoclast differentiation, which is
the most enriched KEGG pathway (Table 5). Expression values
of all the 28 genes were significantly higher in subtype_2
than in subtype_1 (Figure 4). Using Kaplan-Meier-plotter (33),
we observed that the tissue expression values of the 28-gene
signature had the ability to predict the clinical outcomes of
all subtypes of BC patients (Figure 5A), as well as ER positive
patients (Figure 5B), basal-like patients (Figure 5C) and clinical
stage III patients (Figure 5D). The high expression of these
28 genes in tumor tissue, including IFNGR1, IFNGR2, IL1A,
IL1B, TLR2, TLR4, FOSL1, and CSF1, associates with a lower
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TABLE 5 | Gene symbols of the 28-gene signature.

Gene symbol

28-gene

signature

TYROBP, IFNGR1, GAB2, TNFRSF1A, PTGS2, NFKB2, NFKBIA,

SIRPB1, NFKBIB, RELB, IL1A, IL1R1, IL1B, TLR4, TLR2,

FCGR2A, IFNGR2, FCGR3B, JUNB, FOSL1, JUN, SOCS3,

SIRPA, CR1, LILRB3, LILRA2, LILRA6, CSF1

risk of cancer recurrence and better survival rate in BC
patients (Figure 5).

Furthermore, we repeated the analysis above and identified 16
immune-related genes in the most enriched Reactome pathway
(Additional File 5). Similarly, 16 genes including IL1R2, CXCL1,
CXCL8, PTGS2, IL1A, IL1RN, and CSF1 were highly expressed in
the subtype_2 BC patients (Additional File 6). High expression
of these genes in tumor tissue, were related to a low risk of
recurrence and better survival rate in all subtypes of BC patients,
ER positive patients, luminal-A patients, luminal-B patients and
clinical stage III patients (Additional File 7). However, both gene
signatures had no statistical power in differentiating the clinical
outcomes of PR positive patients, HER2 positive patients, HER2-
enriched patients, or other clinical stages BC patients (detailed in
Additional Files 7, 8).

DISCUSSION

In this study, we revealed substantial heterogeneity of PBMC
transcriptome in BC patients (Additional File 2) and identified
two subtypes based on the PBMC gene expression profiles
(Figure 1). Our results indicated that these two subtypes
had distinct molecular pathways in host immune response
and regulation (Figure 2). We observed that the PBMC-
transcriptome based subtyping was a novel and independent
classification for BC patients. The essential molecular basis of the
subtyping reflects the interaction between host immune system
and BC. We found that the proportion of immune cells in
peripheral blood, especially lymphocytes and neutrophils, shaped
the significant differences between the two subtypes (Table 4).
Furthermore, two gene signatures that discriminates these two
PBMC subtypes are able to predict the clinical outcomes of
BC patients (Figure 5 and Additional File 7). Importantly, such
subtyping is general and robust, since they were independently
observed in both the discovery dataset and validation dataset.
In the discovery dataset, we quantified PBMC transcriptome
using RNA-seq technology, while the transcriptome data in the
validation dataset was gene expression array (12). Although the
quantification platform and source samples are different in these
two datasets, the findings are consistent (Figure 1). However,
a future study using a large prospective cohort will be highly
helpful to validate these two PBMC subtypes in BC, since the
sample size in the discovery cohort is relatively small.

Current clinical classifications did not reflect the
heterogeneity of interactions between BC and host immune
system (Tables 2, 3). This is consistent with several previous
findings, suggesting that transcriptional fingerprint of BC

subtypes is not the predominant signal in the patient’s systemic
immune response (14, 21). Thus, it was difficult to classify BC
patients into classical BC subtypes using the PBMC expression
profiles. The classification of the established BC subtypes was
based on the expression of several important makers in tumor
tissue, including ER, PR, and HER2 (6, 7). In contrast, PBMCs
contains the major inflammatory or supportive cells, which
are composed of the main stromal components of tumor
microenvironment and govern the systemic inflammatory
responses in human malignancies, including BC (37). Therefore,
it was reasonable that PBMC transcriptome cannot mirror the
different expression profiles in tissue samples among BC patients
of different clinical subtypes. Instead, PBMC gene expression
profiles might be useful for early diagnosis of human cancers,
such as BC and colorectal cancer (11–13, 38).

In order to explore the heterogeneity of host systemic immune
response to BC, we employed an unsupervised clustering
algorithm to cluster BC patients using PBMC gene expression
data, and revealed two distinct subtypes (Figure 1). Functional
annotation and enrichment analysis displayed distinguishing
immune patterns between the two subtypes (Figure 2). These
distinct patterns covered the whole process of host immune
response to tumor, including the activation of immune cells, the
regulation and response of innate and adaptive immune system,
and the production of some specific antibodies. Considering
KEGG categorizes genes into meaningful biological pathways,
which makes the interpretation more straightforward (39), we
focused on the enriched KEGG pathways below. In our results,
osteoclast differentiation, cytokine-cytokine receptor interaction
and TNF signaling pathway were the top three KEGG pathways
that had distinct expression patterns between the two subtypes.
Osteoclasts are multinucleated cells of monocyte/macrophage
origin that degrade bonematrix. The differentiation of osteoclasts
is dependent on a tumor necrosis factor (TNF) family cytokine,
receptor activator of nuclear factor (NF)-κB ligand (RANKL),
as well as macrophage colony-stimulating factor (M-CSF) (40).
BC frequently metastasizes to the skeleton, interfering with the
normal bone remodeling process and inducing bone degradation
(41, 42). Cytokines are highly inducible, secretory proteins that
mediate intercellular communication in the immune system.
Cytokine and cytokine receptor interaction are regarded as
crucial aspects of inflammation and tumor immunology (43).
Although the exact initiation process of BC is unknown,
inflammation has been proposed as an important factor in tumor
initiation, promotion, angiogenesis, and metastasis, in which
cytokines are prominent players (44, 45). Moreover, many studies
suggested that cytokines play an important role in the regulation
of both induction and protection in BC (46, 47). TNF is a
proinflammatory cytokine that plays a critical role in diverse
cellular events, including cell proliferation, differentiation and
apoptosis (48). TNF-α is an important inflammatory factor that
acts as a master switch in establishing an intricate link between
inflammation and cancer (48). A wide variety of evidence has
pointed to a pivotal role of TNF-α in tumor proliferation,
migration, invasion and angiogenesis, including BC (49, 50).
These enriched pathways hinted that the different status of
inflammation may partly explain the differences between PBMC
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FIGURE 4 | The expression values of 28 immune-related signature genes are significantly different in two PBMC subtypes. The 28-gene signature are derived from

immune-related genes in osteoclast differentiation pathway. X-axis and Y-axis are the two PBMC subtypes and gene expression level normalized by FPKM,

respectively. P-value is the result of the Student’s t-test. All these genes are significantly low-expressed in subtype_1.

transcriptome subtypes of BC patients, which may be related to
BC metastasis.

The correlation of PBMC heterogeneity to BC metastasis
is also confirmed by the differential analysis of immune
cell proportions. Our results showed significant differences
of the proportions of lymphocytes and neutrophils in the
peripheral blood and the neutrophil-to-lymphocyte ratio (NLR)
in the two subtypes (Table 4). The proportion of lymphocytes
in subtype_1 was higher than that in subtype_2, whereas
neutrophils were merely the major component of PBMCs in
subtype 2. Several previous studies suggested that peripheral
blood lymphocytes expressed abundant information about the
interactions between the tumors and the host immune system,
which are useful biomarkers for predicting the risk of cancer
occurrence and recurrence (51, 52). Neutrophils, altering the
local microenvironment by releasing inflammatory signals and
promoting the formation of metastases, were considered as
the main driving force of pulmonary metastatic colonization

of BC cells (36, 53, 54). Neutrophils were also observed to
be useful biomarkers for clinical BC diagnosis and prognosis
assessment (36, 53, 54). Additionally, the pre-treatment NLR
was a prognostic factor for BC (34, 35, 55, 56). A higher
NLR was associated with poorer recurrence-free survival in
BC patients (34, 35, 55, 56). In addition to immune cells
that are circulating in the peripheral blood, BC patients with
different PBMC transcriptome subtypes showed distinct TILs in
tumor tissues (Figure 3). Although the precise role of tumor-
infiltrating lymphocytes in cancer development and metastasis
is not well-understood and remains controversial, accumulating
evidences suggest that the adaptive immunity mediated by T and
B lymphocytes provides a critical foundation for effective and
sustained antitumor responses (57).

Above evidences hinted that patients with different PBMC
transcriptome subtypes may have different clinical outcomes.
However, due to the limitation of small sample size and
insufficient clinical data, the direct association between the
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FIGURE 5 | Kaplan-Meier curves of RFS stratified by the 28-gene signature. Prediction result of all subtypes of BC patients (A), ER positive patients (B), basal-like

patients (C), and clinical stage III patients (D). The higher expression of signature genes in the tumor tissue corresponded to a lower risk of cancer recurrence and

better survival rate.

PBMC subtypes and disease recurrence or cancer survival
remains unexplored in our analysis. To partially overcome this,
we identified two immune-related gene signatures in PBMCs
and examined their power of predicting clinical outcomes using
in silico prognostic analysis on their expressions in BC tissue
samples. Both gene signatures showed the ability to predict
the survival of BC patients (Figure 5 and Additional File 7),
which is similar to the findings observed by Foulds et al.
(14). In their study, they measured PBMC expression values of
800 immune-related genes and investigated their implications
on clinical outcomes. They reported that the expression of
CD163, CXCR4, and THBS1 in PBMCs could predict the
relapse-free survival for triple negative BC patients (14). In

our results, the higher expression of signature genes in tumor
tissue corresponded to a lower risk of cancer recurrence
and better survival rate. Interestingly, the BC patients with
subtype_1 might had smaller metastasis probability and better
prognosis, because they had higher proportion of lymphocytes,
smaller proportion of neutrophils and lower NLR. However,
the expression values of the two sets of signature genes were
down-regulated in subtype_1. Therefore, we proposed that the
up-regulation expression of immune-related genes in peripheral
blood is probably related to a down-regulated expression in
tumor tissue. This is very similar to the findings in literatures that
the regulation of immune-related gene expression is opposite in
blood and tissue (58).
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CONCLUSIONS

In conclusion, we identified two new subtypes of BC based on
their PBMC expression profiles. The two PBMC transcriptome
subtypes had distinct immune patterns, which was associated
with different immune cell abundances. In silico prognostic
analysis suggested that BC patients of the two subtypes may
have different clinical outcomes. Although this classification
is probably useful for personalized BC management, further
investigation in a large prospective setting is required to ascertain
their clinical values.
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