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Abstract: Hit finding, scaffold hopping, and structure–activity relationship studies are important
tasks in rational drug discovery. Implementation of these tasks strongly depends on the availability
of compounds similar to a known bioactive molecule. SwissSimilarity is a web tool for low-to-
high-throughput virtual screening of multiple chemical libraries to find molecules similar to a
compound of interest. According to the similarity principle, the output list of molecules generated by
SwissSimilarity is expected to be enriched in compounds that are likely to share common protein
targets with the query molecule and that can, therefore, be acquired and tested experimentally
in priority. Compound libraries available for screening using SwissSimilarity include approved
drugs, clinical candidates, known bioactive molecules, commercially available and synthetically
accessible compounds. The first version of SwissSimilarity launched in 2015 made use of various
2D and 3D molecular descriptors, including path-based FP2 fingerprints and ElectroShape vectors.
However, during the last few years, new fingerprinting methods for molecular description have
been developed or have become popular. Here we would like to announce the launch of the new
version of the SwissSimilarity web tool, which features additional 2D and 3D methods for estimation
of molecular similarity: extended-connectivity, MinHash, 2D pharmacophore, extended reduced
graph, and extended 3D fingerprints. Moreover, it is now possible to screen for molecular structures
having the same scaffold as the query compound. Additionally, all compound libraries available
for screening in SwissSimilarity have been updated, and several new ones have been added to the
list. Finally, the interface of the website has been comprehensively rebuilt to provide a better user
experience. The new version of SwissSimilarity is freely available starting from December 2021.

Keywords: similarity search; ligand-based virtual screening; molecular fingerprints; drug discovery

1. Introduction

Drug discovery is unarguably a very complex, expensive, labor-intensive, and time-
consuming endeavor. Therefore, considerable effort has been undertaken to facilitate and
speed up the underlying processes. Notably, scientific progress in the field of protein struc-
ture elucidation as well as the development of computational methodologies stimulated the
advent of rational drug discovery and virtual screening. The latter is an in silico technique
to search within large chemical libraries for compounds that are likely to be active on a
particular target. Virtual screening can be performed using either structural information
about a target of interest (structure-based virtual screening) or about its known ligands
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(ligand-based virtual screening). Structure-based virtual screening employs experimental
or modeled protein 3D structures to search for compounds that have shape and other
properties complementary to protein binding sites. On the other hand, ligand-based vir-
tual screening searches for small molecules that are similar to the known active ligands,
exploiting the similarity principle, which claims that similar compounds are prone to have
similar bioactivities.

SwissSimilarity is an online tool (http://www.swisssimilarity.ch) that provides a
user-friendly interface for ligand-based virtual screening of chemical libraries, to find
compounds that are similar to a query molecule. SwissSimilarity offers several compound
libraries for screening, including approved drugs, known bioactive molecules, commer-
cially available and synthetically accessible compounds. To calculate molecular similarity,
SwissSimilarity proposes various 2D and 3D molecular fingerprints, which encode com-
pounds in different digital formats, useful to quantify chemical similarity [1]. In view of
the similarity principle [2], the list of the output compounds from SwissSimilarity is ex-
pected to be enriched in molecules that exhibit the same bioactivity as the query compound.
Thus, the tool can be primarily used to identify novel potentially bioactive compounds
(hit finding), similar compounds with yet chemically different core structures (scaffold
hopping) or to find easily accessible compounds for initial structure-activity relationship
studies. In addition, SwissSimilarity can be useful to search for similar compounds from
marketed drugs or clinical drug candidates (e.g., to support drug repurposing), or among
those whose experimental structures have been determined in complex with their protein
targets (e.g., to support molecular docking studies). Last but not least, SwissSimilarity can
be used to confirm the chemical novelty of de novo designed molecules.

SwissSimilarity was launched in 2015 [3], and since then, it has performed ~150,000
screenings for almost 50,000 unique users (as of 30 November 2021) from all over the world.
Interestingly, one-third of those searches occurred in 2021. SwissSimilarity has been used in
a number of different drug discovery campaigns [4–8]. As an example, two novel inhibitors
of RON receptor tyrosine kinase have been identified with the help of SwissSimilarity and
confirmed using in vitro assays [9]. In addition, our web tool was also used to find possible
drug repurposing options to treat Alzheimer’s disease [10] and SARS-CoV-2 infection [11].
As another useful application of SwissSimilarity, the website was employed to search for
compounds similar to a novel inhibitor of PKMYT1 kinase from the library of crystallized
molecules in order to compare the predicted binding mode of the discovered compound
with those available for similar molecules crystallized in complex with kinases [12].

The first version of SwissSimilarity relied on the use of path-based FP2 fingerprint [13]
as a 2D screening approach, as well as several 3D methods such as Electropshape-5D
(ES5D) [14], Spectrophores [15], Shape-IT [16], and Align-IT [16]. Since then, new finger-
printing methods for molecular structure description were developed or have become
popular. In particular, the extended-connectivity fingerprint (ECFP), introduced in 2010,
is currently one of the most popular 2D fingerprints used for similarity search [17]. The
ECFP method is based on “splitting” the chemical structure into separate substructures
defined by circular atom neighborhoods. Those substructures are assigned to numerical
identifiers, which are then projected onto a binary vector of the desired length with the
help of a hashing function. ECFP is able to encode a given chemical structure with a
high degree of detail, and it demonstrated excellent performance in benchmarking stud-
ies [18]. Additionally, the principle behind the ECFP fingerprint was further adapted for
3D similarity calculations via the creation of the extended 3D fingerprint (E3FP) that can
encode molecular conformations [19]. Another powerful method, the MinHash fingerprint
(MHFP), has been developed by combining the circular principle of ECFP for substructure
definition with the w-shingling technique and MinHash hashing scheme, which are used
in natural language processing and text mining [20]. Two other molecular descriptors that
deserve attention include 2D pharmacophore fingerprints [21,22] and extended reduced
graph fingerprints (ErGs) [23]. Both methods describe a molecular structure by defining its
pharmacophoric points and the topological distance between them. If a given combination
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of pharmacophores and distances is present in the molecule, a corresponding bit in a vector
is incremented. While ErG fingerprint defines combinations of two pharmacophoric points
and one distance, 2D pharmacophore defines combinations of up to three points and three
distances, thus describing the molecular structure in more detail. On the other hand, the
ErG fingerprint implements fuzzy incrementation, which favors retrieval of actives with
different core structures (scaffold hopping).

Here, we report the release of an updated version of SwissSimilarity, which makes
use of new 2D/3D methods for computing molecular similarity: ECFP, E3FP, MHFP, 2D
pharmacophore, and ErG fingerprints. In addition, it is now possible to screen for molecular
structures having the same Murcko or generic Murcko scaffold [24,25], in which all atoms
are converted to carbons and all bonds to single bonds. Moreover, taking into account the
continuous expansion of the chemical space, all chemical libraries available for screening
within SwissSimilarity have been updated and several new ones added to the list. Last but
not least, the interface of the website was comprehensively rebuilt in order to provide a
better user experience.

2. Materials and Methods
2.1. Chemical Libraries Available in SwissSimilarity

The following compound libraries are available in SwissSimilarity: (1) DrugBank
(version 5.1.8, open data) that contains FDA-approved, experimental, investigational and
withdrawn drugs, as well as illicit compounds and nutraceuticals [26]; (2) Ligand Expo
that collects small molecules appearing in experimental structures deposited within the
Protein DataBank [27]; (3) Chemical Entities of Biological Interest (ChEBI) [28]; (4) GPCR-
Ligand Association database (GLASS) that contains ligands whose interactions with GPCRs
have been experimentally validated [29]; (5) Human Metabolome Database (HMDB, ver-
sion 5.0) that comprises small molecule metabolites detected in the human body [30];
(6) ChEMBL (version 29) that records bioactivity data of compounds with drug-like prop-
erties [31]; (7) drug-like, lead-like compounds and fragment-like compounds (available in
stock and purchasable via agent) from the ZINC20 database that contains commercially
available molecules and other molecules of interest for drug discovery [32]; (8) in-stock, as
well as synthetically tangible, catalogs offered by commercial vendors—namely, Enamine,
ChemBridge, Maybridge, Asinex, AsisChem, Otava, SPECS, TimTec, Vitas, Life Chemi-
cals, ChemDiv, Innovapharm. In addition, several focused libraries were created from
ChEMBL29 data: approved drugs (maximum phase of development 4); clinical candidates
(maximum phase of development 1, 2, or 3); active compounds (activity lower than 10 µM,
measured in a binding assay with the highest confidence score of 9); GPCR-targeting
molecules; kinase-targeting and protease-targeting molecules (activity lower than 10 µM
for a target protein belonging to a given target class and measured in a binding assay with
a confidence score of at least 7). All the above-mentioned libraries were retrieved from the
corresponding official websites as of October–November 2021.

2.2. Preparation of Small Molecules for Fingerprints Generation

All compound libraries were prepared using OpenBabel (version 3.1.1) [13], Filter-it
(Silicos-IT [16], version 1.0.2, Wijnegem, Belgium) and JChem Microservices (ChemAxon,
version 21.3, Budapest, Hungary, www.chemaxon.com, accessed on 19 December 2021).
OpenBabel was used to convert molecules from SDF to SMILES format when needed and to
remove duplicates. Filter-it was employed to remove molecules that have less than six heavy
atoms or molecular weight more than 1500 g/mol and to keep compounds that contain only
H, C, N, O, S, P, B, F, Cl, Br, and I in their largest fragment. Afterwards, the molecules were
standardized (dearomatized, neutralized, and dehydrogenized), and their most frequent
tautomeric state was generated using JChem Microservices. For 3D fingerprinting, the
major protonation state at pH 7.4 was calculated by JChem Microservices and further
submitted for conformers generation, which was achieved by RDkit (version 2021.03.4,
www.rdkit.org, accessed on 19 December 2021) for E3FP fingerprints (top three low energy
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conformers, as recommended in the original article [19]) and by JChem Microservices for
ES5D vectors (20 conformations in total, for the sake of consistency with the previous
SwissSimilarity version [3]).

2.3. Fingerprints Generation and Similarity Calculations

FP2 and ECFP with diameter 4 (ECFP4) were generated using OpenBabel (version
3.1.1) in the form of 2048-bit vectors. To enable screening of molecular structures having
the same scaffold, Murcko [25] and generic Murcko [24] scaffolds were extracted for each
library compound in the form of SMILES using RDKit. More specifically, the generic
Murcko scaffold means a simplified scaffold, in which all heavy atoms are substituted
by carbon atoms, and bonds are converted to single ones [21,24]. SMILES of obtained
scaffold structures were further employed to generate ECFP4 fingerprints. Then, 2D phar-
macophore (feature definitions from Gobbi and Poppinger [22]) and ErG fingerprints
were obtained with RDKit. MHFP6 (up to 6 bonds), and E3FP fingerprints were calcu-
lated using the corresponding packages available through their respective open-source
repositories (https://github.com/reymond-group/mhfp for MHFP6, version 1.9.2 and
https://github.com/keiserlab/e3fp for E3FP, version 1.2.3, both repositories accessed on 19
July 2021). For E3FP generation, optimized parameters for fingerprinting were chosen [19].
ES5D vectors were generated with the help of OpenBabel by implementing a previously
published algorithm [14]. In order to estimate the similarity between a couple of molecules,
a Manhattan distance-based similarity score was used for ES5D vectors [33], while the Tani-
moto coefficient (i.e., the Jaccard index) was used for FP2, ECFP4, 2D-pharmacophore, ErG,
MHFP6, and E3FP fingerprints. In the case of ErG fingerprints, the Tanimoto coefficient in
its algebraic form was implemented [23].

To better understand and compare the meaning of the similarity values determined
by different methods, we calculated the probability that two bioactive small molecules
share a common protein target as a function of their similarity calculated using different
molecular fingerprints/vectors. The dataset for calculating these probability curves con-
sisted of 10 million pairs of compounds experimentally active on the same target (among
2261 proteins) and 100 million pairs of randomly selected compounds (presumably without
a common target). Compounds and their interactions were retrieved from the ChEMBL25
database using the protocol described elsewhere [34].

2.4. Design of the Website

The backend of the new SwissSimilarity website was written in Python 3.9, while its
frontend was built using HTML5, PHP 7.4.3, and JavaScript. A queuing system, based on
Slurm (version 19.05.5), was set up on the calculation server. This allows better control of
the system and it increases the user’s comfort with possibilities to monitor the progress
or to stop the computation. Users can provide a query molecule directly as SMILES or
through the MarvinJS chemical editor (ChemAxon, version 21.2.0, Budapest, Hungary,
www.chemaxon.com, accessed on 19 December 2021); the attached MarvinJS Webservices
further convert sketched molecular structures into SMILES. ChemAxon JChem Microser-
vices (version 21.3) was also used to generate images of queries and similar molecules from
their SMILES for the output page. The input query compound was prepared the same way
as the screening libraries with the only exception that the most frequent tautomeric state
was not generated for the query structure, to respect the choice of a user.

3. Results and Discussion
3.1. Compound Libraries Available for Screening

Four main classes of compounds are available within SwissSimilarity: (1) “Drugs”
including approved, experimental and withdrawn drugs, as well as drug candidates that
reached clinical trials; (2) “Bioactive” compounds including the LigandExpo collection
containing small molecules that appear in the structure entries of the Protein Data Bank,
the Chemical Entities of Biological Interest (ChEBI) collection, all compounds from the
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ChEMBL29 database, the GPCR–Ligand Association (GLASS) database, and the Human
Metabolome Database; (3) “Commercial” compounds from vendor catalogs and from
different ZINC subsets; (4) “Synthesizable” compounds that can be readily synthesized
and provided by a shortlist of vendors. In particular, on top of ZINC (drug-like, lead-like,
and fragments), it is possible to screen compounds in the following commercially available
chemical libraries: Enamine, ChemBridge, Maybridge, Asinex, AsisChem, Otava, SPECS,
TimTec, Vitas, Life Chemicals, ChemDiv, and Innovapharm. Additionally, it is possible to
perform searches in focused libraries containing biologically active compounds as well as
GPCRs-, kinases- and proteases-targeting molecules.

3.2. Methods Available for Screening

Several 2D and 3D methods are available to perform similarity searches using Swiss-
Similarity. Among 2D methods, users can opt for FP2 [13], ECFP4 [17], MHFP6 [20],
2D pharmacophore [21,22], and ErG [23] fingerprints. All these approaches have already
been assessed by their authors in the respective publications. In addition, it is possible
to search for compounds that have the same Murcko scaffold or generic Murcko scaffold
(in which all atoms are converted to carbons and all bonds to single bonds) as a query
molecule. At the same time, 3D-similar molecules can be searched by using ES5D and
E3FP. As recommended in the original article, E3FP fingerprints are calculated from the top
three low-energy molecular conformations [19], while ES5D vectors are calculated for up to
20 conformers generated for a given molecule, as described previously [3]. For 3D searches,
the similarities of all geometries of a query molecule are evaluated against all geometries of
each compound in the screened library. Due to the significant computational time required
for 3D screening, those methods are not available for very large libraries. Last but not least,
SwissSimilarity also features a “combined” 2D/3D screening method, which is based on
both FP2 and ES5D similarity metrics and which has been initially implemented in the
reverse screening algorithm of the SwissTargetPrediction web tool [35]. More precisely,
the returned combined score corresponds to the probability of sharing a common protein
target by two bioactive compounds. It is calculated using logistic regression based on two
features, i.e., FP2 and ES5D similarity values. This option is also not available for very large
chemical collections.

3.3. Estimation of the Similarity Thresholds

Although all similarity scores used in SwissSimilarity vary from 0, for totally dissimilar
molecules, to 1, for identical compounds, they cannot be straightforwardly compared.
Indeed, similarity values between a given couple of molecules can vary significantly
depending on the method chosen for the similarity estimation. For instance, losartan and
olmesartan, both Angiotensin receptor type I blockers, have Tanimoto coefficients of 0.72,
0.55, and 0.30 according to their FP2, ECFP4, and E3FP fingerprints, respectively. As a
consequence, different similarity thresholds must be applied to these different methods to
retrieve similar compounds. In order to define these thresholds, the probability that several
molecules share the same protein target as a function of a given similarity value has been
calculated for every method available in SwissSimilarity (Figure 1). The probability of ~50%
to share the same target was chosen as a lower limit, and thus, SwissSimilarity outputs
compounds whose similarities to the query molecule are not less than 0.18 for MHFP6;
0.2 for E3FP; 0.25 for ECFP4; 0.35 for 2D pharmacophore fingerprint; 0.48 for FP2; 0.75 for
ERG; 0.83 for ES5D (Figure 1). These curves are provided on the SwissSimilarity website
in the FAQ section to help users to estimate the relevance of the retrieved compounds
based on the calculated similarity scores. Notably, no similarity score is returned for any of
the scaffold-based methods since these screenings output only molecules with scaffolds
identical to the query’s one (i.e., all output molecules would have a score of 1.000).
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Figure 1. Probability curves. Probabilities to have a common protein target for a pair of com-
pounds with a given similarity calculated with seven different methods (MHFP6, E3FP, ECFP4,
2D-pharmacophore, FP2, ERG, and ES5D). The probability curves were generated using a dataset con-
taining 10 million pairs of compounds sharing the same protein target as confirmed experimentally
with binding or functional assays, and 100 million pairs of randomly selected compounds.

3.4. Computation Time

Depending on the number of compounds in a chemical library, on the chosen screening
method, and, to a lower extent, on the size and flexibility of the query molecule, the time
required to perform the similarity search can vary greatly, from a second to ~20 min. Out
of all available screening methods, FP2-, ECFP4-, and (generic) scaffold-based similarity
searches provide the best performance in terms of speed, and they can be used to screen
all available libraries in SwissSimilarity. In particular, screening of the largest library
of 30 million tangible compounds provided by Enamine takes around 200 s with those
methods. A queuing system was implemented in order to allow several submitted jobs to
run in parallel. An approximate estimation of the computation time is provided on the
website for each library/screening method combination to help users to choose the most
appropriate options.

3.5. Website Usage

SwissSimilarity is freely accessible and no registration/log-in is required to use the
website, which is optimized for recent versions of Google Chrome (www.google.com/
chrome/, accessed on 19 December 2021) and Mozilla Firefox browsers (www.mozilla.org/
firefox/, accessed on 19 December 2021). Outputs are provided under the CC-BY 4.0 li-
cense. To perform virtual screening using SwissSimilarity, users need to (1) provide a query
molecule, (2) select a preferred class of compound libraries (Drugs/clinical candidates,
Bioactives, Commercially available or Synthesizable compounds), and (3) choose a method
and a library, in which the similarity search will take place (Figure 2). By default, a query
molecule is submitted in SMILES format in the dedicated text box or, alternatively, it can be
drawn in the MarvinJS molecular sketcher, which is displayed on demand. The SMILES
box and the sketcher are synchronized, allowing users to visualize any modification of the
inputted chemical structure. An estimation of the time needed to run the screening (exclud-
ing waiting time in the queue) appears in the upper-left corner of the table when the user
moves the cursor from one method/library combination to another (Figure 2). After pro-
viding the query compound and clicking on the radio button corresponding to the selected
library/method combination, users can launch the calculations by pressing the “START
SCREENING” button (Figure 2). The position of the job in the queue and a progress bar

www.google.com/chrome/
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are displayed upon job submission and after the initiation of the calculations, respectively.
When the screening is completed, an output page opens with retrieved molecules and
corresponding similarity values (Figure 3). As already mentioned, the Tanimoto coefficient
is used to estimate the similarity between FP2, ECFP4, 2D-pharmacophore, ErG, MHFP6,
and E3FP fingerprints, while a Manhattan distance-based similarity score is used for ES5D
vectors. Thus, the similarity value should equal 1 for identical compounds and approach
zero for totally different molecular pairs. Important to note is that 3D-based screening
may in some cases retrieve identical compounds with a score lower than 1.0, due to the
slight difference in conformers generation for the query structure and library compounds.
Most of those cases are observed when positions of double bonds in aromatic rings are
not the same in the query structure and its twin from a compound library. Additionally,
molecules retrieved from the scaffold and generic-scaffold searches have, by definition,
a score of 1.0; this value is not displayed on the output page, for the sake of clarity. By
clicking on the so-called interoperability icons, the virtual hit compounds can be further
resubmitted for another similarity search (e.g., for screening another collection, or the same
collection with another method) or can be sent to other web tools of the SwissDrugDesign
project [36], for example, to SwissTargetPrediction [35] for prediction of their possible
protein targets, or to SwissADME [37] for estimation of their physicochemical properties,
pharmacokinetics, and drug-likeness. Whenever possible, links are provided to direct users
to the original web pages of chemical collections (databases or vendor catalogs). Output
from the SwissSimilarity website can be saved in the form of a CSV file or copied to the
clipboard of the user’s computer. In addition, users can choose to receive or send the URL
of the output page by email. This URL remains active for at least 7 days after the screening.
Importantly, command-line access to SwissSimilarity is also provided. The documentation
relative to this command-line access can be found on the SwissSimilarity website.
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Figure 3. Example of an output page to analyze the most similar molecules to the query by,
e.g., accessing the database of origin, or submitting a given compound to other SwissDrugDesign
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4. Conclusions

The updated version of the SwissSimilarity Web tool has been launched to incorporate
novel approaches for molecular fingerprinting and provide access to updated chemical
libraries. In addition, the SwissSimilarity interface has been greatly improved to achieve an
enriched user experience. Virtual screening with SwissSimilarity is very easy: users only
need to submit a reference compound and choose a preferred library/method combination.
While the similarity principle is one of the main concepts in medicinal chemistry and
chemoinformatics, SwissSimilarity is primarily intended for drug discovery scientists to
support their hit-finding and scaffold-hopping activities, as well as studies addressing the
structure–activity relationship. As part of the increasingly interoperable SwissDrugDesign
project, SwissSimilarity further contributes to the development of a free, online environment
for computer-aided drug design.
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