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1Laboratoire d’Optique Biomédicale, École Polytechnique Fédérale de Lausanne, Route Cantonale, CH-1015
Lausanne, Switzerland, 2Department of Radioelectronics, Faculty of Electrical Engineering, Czech Technical
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Abstract

Background: Super-resolution single molecule localization microscopy (SMLM) is a method for achieving resolution beyond
the classical limit in optical microscopes (approx. 200 nm laterally). Yellow fluorescent protein (YFP) has been used for
super-resolution single molecule localization microscopy, but less frequently than other fluorescent probes. Working with
YFP in SMLM is a challenge because a lower number of photons are emitted per molecule compared with organic dyes,
which are more commonly used. Publically available experimental data can facilitate development of new data analysis
algorithms. Findings: Four complete, freely available single molecule super-resolution microscopy datasets on YFP-tagged
growth factor receptors expressed in a human cell line are presented, including both raw and analyzed data. We report
methods for sample preparation, for data acquisition, and for data analysis, as well as examples of the acquired images. We
also analyzed the SMLM datasets using a different method: super-resolution optical fluctuation imaging (SOFI). The 2
modes of analysis offer complementary information about the sample. A fifth single molecule super-resolution microscopy
dataset acquired with the dye Alexa 532 is included for comparison purposes. Conclusions: This dataset has potential for
extensive reuse. Complete raw data from SMLM experiments have typically not been published. The YFP data exhibit low
signal-to-noise ratios, making data analysis a challenge. These datasets will be useful to investigators developing their own
algorithms for SMLM, SOFI, and related methods. The data will also be useful for researchers investigating growth factor
receptors such as ErbB3.
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Data Description
Context

Fluorescence optical microscopy is one of the most important
tools available for the study of biological systems at the cellular
level. Unfortunately, due to diffraction phenomena, the resolu-
tion of fluorescence microscopes in the lateral d dimension is
limited to

d = 0.61λ

NA
, (1)

where λ is the wavelength of the detected light and NA is the nu-
merical aperture of the objective lens. As many biological struc-
tures within cells are much smaller than this, increasing resolu-
tion is of prime importance. Today several methods have been
developed that are able to image below the diffraction limit [1,
2].

Photoactivated localization microscopy (PALM) [3] was ini-
tially accomplished with the photoconvertible fluorescent pro-
tein mEOS [4]. A similar method, (direct) stochastic optical re-
construction microscopy ((d)STORM) utilizes organic dyes [5–8].
In these super-resolutionmethods, single fluorescentmolecules
are induced to blink on and off (photoswitching) randomly in
the sample. A sensitive camera is used to record an image se-
quence of the single molecule blinking events, and a computa-
tional algorithm is used to fit the imaged point spread functions
(PSFs) to a model function [9, 10]. By doing so, the coordinates of
eachmolecule can be determinedwith an uncertainty that is be-
low the diffraction limit [11]. Once enough molecules have been
imaged (usually 106–107 are required, depending on the sample
structure) [12], an image can be reconstructed with lateral reso-
lution improved by about a factor of 10. This is done by plotting
the coordinates of each molecule in a new image with a much
smaller pixel size. Together, this family of methods is known as
single molecule localization microscopy (SMLM).

Although PALM experiments were initially performed with
fluorescent proteins that are specifically photoconvertible [3],
green fluorescent protein (GFP) and its spectral variant yellow
fluorescent protein (YFP) are also known to exhibit blinking char-
acteristics [13]. GFP and YFP have been used in SMLM, but less
frequently [14–20]. Here we used a modified YFP known as mC-
itrine [21] for SMLM. The advantage of using mCitrine is that
SMLM can be accomplished with a single laser, rather than with
separate activation and readout lasers, as is done when using
mEOS [3]. The question of how fluorophore photophysics influ-
ences SMLM experiments is still under investigation [22], but
this topic has recently been reviewed fairly comprehensively,
taking into account the photoswitching characteristics of fluo-
rescent proteins for SMLM [23].

We used mCitrine to perform SMLM of the growth factor
ErbB3 in A431 epithelial carcinoma cells. A431 cells were chosen
for this study in part because of their use in previous studies of
the ErbB receptor system [24, 25], and also because they tend to
be very flat and form extended areas of membrane in contact
with the coverslip, offering good conditions for SMLM. ErbB3 is a
member of the epidermal growth factor receptor (EGFR) family,
consisting of ErbB1 (EGFR), ErbB2 (also known as HER2), ErbB3,
and ErbB4. The organization and dynamics of ErbB receptors is
an important topic of study because overexpression and unre-
strained activation of this family of receptors is implicated in
cancer [26], including breast cancer [27]. Long thought to have
no kinase activity, ErbB3 has recently been found to exhibit tyro-
sine kinase activity and to form homodimers and heterodimers

with other ErbB receptors [28]. Such heterodimer formation
between ErbB molecules can amplify signaling and appears to
be an important feature of some cancer cells. In particular, the
ErbB2/ErbB3 heterodimer appears to be important for tumor cell
proliferation in certain breast cancers [29]. High ErbB3 levels
have been linked to resistance in cancer therapies that target
ErbB1 or ErbB2 [30].

Given the importance of ErbB3 in cancer, an understanding
of its organization and dynamics in the plasma membrane of
tumor cells is critical. Super-resolution microscopy using single
molecule localization reveals the coordinates of each ErbB3 re-
ceptor, which is tagged with a YFP molecule. These data allow
one to explore parameters such as clustering tendencies, an ap-
proach used successfully in studies of the T-cell receptor [31].

We have also included an additional single molecule super-
resolutionmicroscopy dataset acquired using the dye Alexa 532.
This dye is more commonly used in (d)STORM studies [32] and is
provided for purposes of comparison of the single molecule pa-
rameters. For this experiment, we used an Alexa 532-labeled an-
tibody to detect RNA molecules in the nucleus of a HeLa cell, as
previously described [33]. The raw data are useful in this context
because they were acquired with the same microscope setup
and detector. Compared with the YFP used in the other datasets,
Alexa 532 has higher photon emission rates and exhibits less
photobleaching.

The datasets have potential for extensive reuse. Complete
raw data from SMLM experiments have typically not been pub-
lished. The YFP data exhibit low signal-to-noise ratios, making
data analysis a challenge. The datasets will be useful to inves-
tigators developing their own algorithms for SMLM, SOFI, and
related methods. The data will also be useful for researchers in-
vestigating growth factor receptors such as ErbB3, as well as to
those investigating other membrane proteins.

Methods
Cell lines and reagents

A431 cells (RRID: CVCL 0037) expressing mCitrine-ErbB3 and
HeLa cells (RRID: CVCL 0030) were maintained in phenol red-
free DMEM supplemented with 10% FCS, 100 U/ml penicillin,
100 U/ml streptomycin, and L-glutamate (obtained from Invitro-
gen, Carlsbad, CA, USA) at 37◦C and 100% humidity. Mowiol 4–88
containing 1,4-diazabicyclo(2.2.2)octane (DABCO) was obtained
from Fluka (St. Louis, MO, USA). Mercaptoethylamine (MEA) was
obtained from Sigma (St. Louis, MO, USA).

Sample preparation

Prior to SMLM experiments, A431 cells were grown on clean #1.5
coverslips for 12–18 hours. The cells were then washed with PBS
and fixed with 4% paraformaldehyde for 15 minutes at 4◦C. We
then mounted the cells on clean slides using mowiol contain-
ing DABCO and 50–100 mM MEA, pH 8.5. Before microscopy, the
mowiol was allowed to harden for 12–18 hours. The mowiol was
freshly prepared according to standard procedures.

For labeling of transcription sites in the cell nucleus, HeLa
cells were grown on #1.5 coverslips for 12–18 hours, then in-
cubated for 5 minutes with 5-fluorouridine (Sigma) at a con-
centration of 10 μM. The cells were then fixed in 2% formalde-
hyde, permeabilized with 0.1% Triton X-100, and labeled using
a mouse monoclonal anti-BrdU antibody (clone BU-33, Sigma).
The anti-BrdU antibodies were then detected with a secondary
antimouse antibody labeled with Alexa 532 (Invitrogen). The
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cells were mounted using freshly prepared mowiol containing
DABCO and 50–100mMMEA. Beforemicroscopy, themowiol was
allowed to harden for 12–18 hours.

Single molecule microscopy

For SMLM imaging, we used an IX71microscope equippedwith a
planapochromatic 100 ×/1.35 NA oil immersion objective (Olym-
pus, Tokyo, Japan) and a front-illuminated Ixon DU885 EMCCD
camera under control of IQ software (Andor, Belfast, North-
ern Ireland), as previously described [34]. The excitation source
was a 400-mW, 473-nm laser (Dragon laser, ChangChun, China),
which was coupled to the microscope using a 0.39-NA mul-
timode optical fiber. The fiber output was collimated using a
2-inch diameter, 60-mm FL lens (Thor Labs, Newton, NJ, USA).
The fiber was coupled into the microscope using an Olympus
IX2-RFAL fluorescence illuminator, resulting in an evenly illu-
minated field. Fluorescence was observed using an Olympus
U-MNIBA3 filter set (excitation 470–495 nm, dichroic 505 nm,
emission 510–550 nm). In each experiment, a sequence of 1419–
10 000 images was acquired, with an exposure time of 40–100ms
and an EM gain of 50–300. For imaging Alexa 532, we used a 1-
W, 532-nm laser (Dragon laser) and an appropriate fluorescence
emission filter (569–610 nm, Chroma), as previously described
[33].

Data analysis methods

We analyzed the data using ThunderSTORM [9, 35] with the
default settings. The default settings involve use of a wavelet-
based filter for feature enhancement [36], followed by local
maximum detection of single molecules in the filtered data.
This is followed by fitting molecules in the raw data using a
2-dimensional Gaussian function in integrated form [37] us-
ing maximum likelihoodmethods [38]. Gaussian functions have
been found to be a good representation of the true PSF of a mi-
croscope [39]. For visualization of the results, we use an average
shifted histogram approach [40]. If the camera calibration pa-
rameters (pixel size, photoelectrons per A/D count, base level,
and EM gain) are correct, maximum likelihood fitting of an in-
tegrated Gaussian function will correctly return the number of
photons detected from each molecule [9, 37, 38, 41]. An inte-
grated 2-dimensional Gaussian function can be written as

P SFIG (x, y|θ ) = θNExEy + θb,

Ex = 1
2
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, (2)

where θx, θy are the sub-pixel molecular coordinates, θσ is the
standard deviation of the Gaussian function (i.e., the width), θN

is the total number of detected photons emitted by themolecule,
and θb is the background offset.

Single molecule localization uncertainty

In ThunderSTORM, the localization uncertainty is calculated for
each detected molecule. This quantity can help one determine
whether the molecule was well localized and whether it should
be included in the final result. Let θ̂σ be the standard deviation of
a Gaussian function fitted to an imaged PSF in nm, a is the back-

projected pixel size in nm (camera pixel size divided by system
magnification), θ̂N is the estimate of the number of photons de-
tected for a given molecule, and b̂ is the background signal level
in photons, calculated as the standard deviation of the residuals
between the raw data and the fitted PSF model. The uncertainty
of estimates determined by maximum likelihood methods for
the lateral position of a molecule is given by

(
�θ̂xy

)2
= gθ̂σ 2 + a2/12

θ̂N

⎛
⎝1 + 4τ +

√
2τ

1 + 4τ

⎞
⎠ ,

τ =
2π

(
b̂2 + r

) (
θ̂2
σ + a2/12

)
a2 θ̂N

. (3)

This formula is a modified form of the Thompson-Larson-
Webb equation [11] and was derived by Rieger and Stallinga [42].
Finally, compensation for camera readout noise r and EM gain g
was added followingQuan, Zeng, andHuang [43], who suggested
that when using EMCCD cameras, the correction factors should
be set to r = 0, g = 2, and when using CCD or sCMOS cameras,
the correction factors should be set to r = g = 2.

Super-resolution optical fluctuation imaging

Super-resolution optical fluctuation imaging (SOFI) is based on
calculation of spatio-temporal cumulants over the input se-
quence of camera frames [44]. Assuming a nonfluctuating back-
ground and Gaussian additive noise, the nth order cumulant (for
n ≥ 2 and a time lag τ ) can be written as

κn{I (r, t)}(τ ) =
N∑

k=1

εnkU
n(r − rk)κn{sk(t)}(τ ), (4)

where I (r, t)is the detected intensity at position r and time t , εkis
the molecular brightness of kth emitter, Un(r − rk) is the PSF at
the position rk , and sk(t) denotes a normalized fluctuation se-
quence sk(t) ∈ {0, 1}. The PSF is raised to the nth power, result-
ing in resolution increased by a factor of

√
n . After reweighting

in frequency space, a resolution enhancement factor of n can
be achieved [45], scaling linearly with the cumulant order. SOFI
can be applied to any image sequence of stochastically blinking
emitters acquired from a conventional widefield microscope if
the emitters switch between at least 2 optically distinguishable
states (a dark state and a bright state) and if sampling of the
PSF fulfills theNyquist–Shannon sampling theorem [46]. In com-
parison with STORM, SOFI tolerates higher densities of emit-
ters and higher blinking rates [47], resulting in improved tem-
poral resolution [48]. SOFI can be applied to the same datasets
as SMLM analysis [47, 49], offering an interesting complement to
SMLM methods. Due to the entirely different image processing
methods used, SOFI and SMLM are prone to different artifacts.
Applying both processing methods to the same dataset reveals
more information about the true structure and properties of the
underlying sample. By combining multiple orders of the SOFI
analysis, molecular parameters like molecular density, bright-
ness, and on-time ratio can be extracted using the balanced SOFI
method (bSOFI) [50]. The on-time ratioρon describes the blinking
rate of the fluorescent label. Assuming a 2-state blinking model
where the emitter fluctuates between a bright state and a dark
state, the on-time ratio is given as [38]:

ρon = τon

τon + τof f
, (5)



4 Lukeš et al.

Figure 1: Super-resolution imaging of mCitrine-ErbB3 in A431 cells. (A) Conventional widefield. (B) SMLM. (C) Molecular density map. (D) Fourth-order bSOFI.

where τon and τof f are the characteristic lifetimes of the bright
state and the dark state, respectively.

SOFI analysis was carried out as reported previously [49]. We
used a customwritten algorithm (Matlab, TheMathworks) based
on the code of our SOFI simulation tool [51] and the bSOFI al-
gorithm [50]. The sequence of camera frames was divided into
subsequences of 500 frames each. The subsequences were pro-
cessed separately in order to minimize the influence of photo-
bleaching, and the resulting SOFI images were averaged. Details
about photobleaching correction for SOFI have recently been
published [52]. SOFI relies on calculating higher-order cumu-
lants, as described in the previous section. Calculating cumu-
lants raises the molecular brightness to the nth power (Equation
3). SOFI’s nonlinear response to brightness becomes an issue for
cumulants of higher than second order, where fluorescent spots
of high brightness may mask less bright details. The balanced
SOFI (bSOFI) algorithm linearizes the response to brightness
[50] or to the detected intensity [49]. Throughout this work, the
“nth-order bSOFI image” refers to an image calculated using the
nth-order cumulant and applying the subsequent linearization
according to the procedure described in Deschout et al. [49].

Super-resolution images

Figure 1 shows images of anA431 cell expressingmCitrine-ErbB3
(YFP dataset 1) [53]. Conventional widefield (WF) (Fig. 1A) and

SMLM (Fig. 1B) results are shown. Figure 1C shows a color-coded
density map, calculated by the bSOFI algorithm. This unique in-
formation cannot be obtained by conventional fluorescence mi-
croscopy. Figure 1D shows the fourth-order bSOFI image.

Figure 2A shows a histogram of the number of photons de-
tected from each YFP molecule (“intensity” in ThunderSTORM)
for the cell shown in Fig. 1, and Fig. 2B shows a histogram of the
localization uncertainty determined for each molecule for the
cell shown in Fig. 1. The localization uncertainty was calculated
using Equation 3. The 2 histograms were calculated using the
plot histogram command in ThunderSTORM.

Table 1 shows a list of quantitative parameters for the
first 10 detected molecules, as reported by ThunderSTORM for
the experiment shown in Fig. 1. Sigma (nm) is the standard
deviation of the 2-dimensional integrated Gaussian function
fitted to the molecule, intensity (photons) is the number of
photons detected from the molecule, offset (photons) is the
background offset, SD of background (photons) is the standard
deviation of the background, and localization uncertainty (nm)
is the result of Equation 2 for each molecule. Recall that the
full width at half max (FWHM) of a Gaussian function is re-
lated to its standard deviation by FWHM = 2.35σ . The varia-
tion in parameters between molecules is usually attributed to
differences in the local environment of each molecule, such as
oxygen concentration, and to factors such as the fluorophore
orientation.
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Figure 2: Quantification of molecular parameters from the experiment shown in Fig. 1. (A) Histogram of the number of photons detected from each YFP molecule. (B)

Histogram of the localization uncertainty calculated for each YFP molecule.

Table 1: Quantitative parameters for the first 10 detected molecules as reported by ThunderSTORM for the experiment shown in Fig. 1

Molecule
number

Camera
frame x, nm y, nm

Sigma,
nm

Intensity,
photons

Offset,
photons

SD of
background,

photons
Localization

uncertainty, nm

1 1 3743.17 28005.63 81.53 942 108 25 17.41
2 1 3880.95 31519.89 155.09 2014 68 21 23.33
3 1 4150.78 32662.21 60.03 433 81 21 17.75
4 1 4289.06 28407.32 36.90 407 155 32 12.97
5 1 4310.28 28737.99 103.00 1567 142 34 21.61
6 1 4615.06 23832.74 89.18 1186 73 22 14.60
7 1 4695.34 30060.77 102.05 1266 122 28 22.17
8 1 4812.40 30994.57 101.18 1051 115 24 22.61
9 1 4827.01 25960.59 83.02 717 80 20 19.35
10 1 5037.67 28686.08 149.32 2293 121 33 29.85

Figure 3 shows WF imaging of an A431 cell (Fig. 3A),
along with identification of single molecules by ThunderSTORM
(Fig. 3B, indicated by red dots, and the reconstructed SMLM re-
sult (YFP dataset 2) (Fig. 3C) [53].

Figure 4 shows WF imaging (Fig. 4A) and the reconstructed
SMLM result (YFP dataset 3) (Fig. 4B) [53]. Figure 5 shows SOFI
analysis for the cell shown in Fig. 4. Second-, third-, and fourth-
order bSOFI images are shown in Fig. 5A–C, as well as a density
map (Fig. 5D), photobleaching profile (Fig. 5E), andmolecular on-
time ratio (Fig. 5F), where second, third, and fourth denote the
order of the cumulant used during the calculation of the bSOFI
image.With increasing cumulant order of the SOFI analysis, spa-
tial resolution generally increases, but the signal-to-background
ratio (SBR) limits the spatial resolution achievable in practice.
The situation is shown in detail in Fig. 6B–D and in the line
profiles in Fig. 6F–H. The fourth-order bSOFI image (Fig. 6D) has
higher spatial resolution compared with the second- and third-
order bSOFI images (Fig. 6B and C). The dashed lines in Fig. 6F
show the average value of the background of the bSOFI images,
which increases with increasing order of SOFI analysis. In other

words, increasing the cumulant order leads to a decrease in SBR,
which hampers the resolution enhancement. Note that we cal-
culated linearized SOFI as previously described [49, 50]. In the
case of a relatively low density of emitters (Fig. 6F, H), SMLM
achieved better spatial resolution. On the other hand, in Fig. 6G,
the SMLManalysis does not agreewith the result fromSOFI, sug-
gesting that the local density of emitters was too high for suc-
cessful single molecule identification and fitting in that particu-
lar location of the cell membrane.

Comparing the density maps in Figs 1D and 5D, the sam-
ple in Fig. 5D exhibits an average density approximately 1.8-fold
higher. The presence of more emitters in the sample (Fig. 5D)
leads to higher brightness, which is likely the reason why the
bSOFI image reconstruction was still successful despite the
lower number of input frames.

Table 2 shows a summary of the imaging conditions and
quantitative parameters for the YFP and Alexa 532 datasets.
Also shown are the relevant camera settings. The camera set-
ting information should be entered into ThunderSTORM’s cam-
era setup tab to ensure correct results.
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Figure 3: Super-resolution imaging of mCitrine-ErbB3 in A431 cells. (A) Conventional widefield. (B) Single frame of SMLM, with detections indicated with red dots. (C)
SMLM reconstruction.

Figure 4: Super-resolution imaging of mCitrine-ErbB3 in A431 cells. (A) Conventional widefield. (B) SMLM reconstruction.

Re-use Potential

Super-resolution microscopy algorithms are under active de-
velopment [10]. Researchers engaged in algorithm development
may use this dataset to help develop and fine-tune their meth-
ods. As the true positions of the molecules remain unknown,
the results from ThunderSTORM may be taken as the reference
data for comparison purposes. ThunderSTORM offers an analy-
sis tool that compares reference data and experimental data and
computes several quantities that can be used to quantitatively
evaluate algorithm performance. A detailed example of use is
provided in the Supplementary Data.

Availability of source code and requirements

Project name: ThunderSTORM v1.3
Project home page: http://zitmen.github.io/thunderstorm/
Operating system: platform-independent

Programming language: Java
Other requirements: Image J https://imagej.nih.gov/ij/
License: GNU General Public License v3.0

Availability of data

All raw and analyzed data are available in the GigaScience repos-
itory, GigaDB [53].

Additional files

Figure S1: Counting localized and missed molecules. Red dot:
ground-truth position of a molecule; blue cross: localized
molecule; green arrow: association of a localized molecule with
ground-truth position; dashed circle: detection tolerance radius.
(A) 1 TP + 1 FP; (B) 1 FN + 2 FP; (C, D) example of a situa-
tion where (C) greedy approach fails by finding 1 TP + 1 FP +

http://zitmen.github.io/thunderstorm/
https://imagej.nih.gov/ij/
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Figure 5: Super-resolution imaging ofmCitrine-ErbB3 in A431 cells. (A), (B), and (C) are second-, third-, and fourth-order bSOFI reconstruction, respectively. (D)Molecular
density map estimated using bSOFI (E) Mean intensity trace of the raw image sequence (blue) with the exponential fit (black) used for photobleaching correction. (F)

Histogram of the on-time ratio estimated using the bSOFI algorithm.

1 FN and (D) Gale-Shapley algorithm finds a correct solution
with 2 TP.

Figure S2: (A) Input image (frame 100 of “YFP dataset
2”), (B) ThunderSTORM setup, default settings with maximum
likelihood fitting method selected, (C) ThunderSTORM setup,
default settings with weighted least squares fitting method
selected.

Figure S3: (A) ThunderSTORM results table using maxi-
mum likelihood fitting. (B) ThunderSTORM results table using
weighted least squares fitting. The results indicate true-positive
detections (green), false-positive detections (red), and false neg-
atives (orange). (C) Table of results when varying the molecule
matching tolerance. Statistics are calculated that quantitatively
compare the 2 results tables.

Abbreviations

(d)STORM: (direct) stochastic optical reconstructionmicroscopy;
FWHM: full width at half maximum; GFP: green fluorescent
protein; NA: numerical aperture; PALM: photoactivated local-
ization microscopy; PSF: point spread function; SMLM: single
molecule localization microscopy; SOFI: stochastic optical fluc-
tuation imaging; WF: wide field; YFP: yellow fluorescent protein.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by the UCCS center for the University
of Colorado BioFrontiers Institute, by the Czech Science Foun-
dation (GA17-05840S Multicriteria optimization of shift-variant
imaging system models), and by Czech Technical University
in Prague (grant number SGS16/167/OHK3/2T/13). T.L. acknowl-
edges a SCIEX scholarship (project code 13.183). The funding
sources had no involvement in study design; in the collection,
analysis, or interpretation of data; in the writing of the report;
or in the decision to submit the article for publication.

Author contributions

T.L.: analyzed data, developed computer code, wrote the pa-
per; J.P.: analyzed data, developed computer code; K.F.: super-
vised research; T.L.: supervised research; G.H.: conceived project,
acquired data, analyzed data, supervised research, wrote the
paper.

Acknowledgements

Epithelial carcinoma A431 cells expressing mCitrine-ErbB3 were
a kind gift from Dr Donna Arndt-Jovin and Dr Tom Jovin of the
Max Planck Institute for Biophysical Chemistry (Göttingen, Ger-
many).We thank PeterW.Winter for assistancewithmicroscopy
and Pavel Křı́žek, Josef Borkovec, Zdeněk Švindrych, and Martin
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Figure 6: Super-resolution imaging of mCitrine-ErbB3 in A431 cells. (A) Conventional widefield. Region of interest marked in (A) by the yellow square processed by
second-order bSOFI (B), third-order bSOFI (C), fourth-order bSOFI (D), SMLM (E). (F–H) Line profiles along the cuts 1–1’, 2–2’, and 3–3’, which correspond to examples of
low density of emitters (F), high density (G), and medium density (H), respectively. Dashed lines in (F) represent the average value of the background of bSOFI images.

Table 2: Summary of imaging conditions and quantitative parameters for the SMLM datasets

Data

Exp.
time,
ms

Pixel size,
nm

e− per
A/D

counta

Base level,
A/D

counts EM gain Frames
Total number
of detections

Sigma, nm
mean+/−SD

Loc.
uncertainty,

nm
mean+/−SD

YFP data 1 (Fig. 1) 50 80 3.6 414 150 10 000 482 778 86.9+/−29.0 25.6+/−8.6
YFP data 2 (Fig. 2) 100 80 3.6 414 50 6366 224 175 84.1+/−26.3 27.3+/−8.7
YFP data 3 (Figs 4–6) 50 80 3.6 414 150 1419 452 498 84.2+/−24.3 28.9+/−8.1
YFP data 4 100 80 3.6 414 100 3922 159 463 81.6+/−24.1 25.9+/−8.0
Alexa 532 data 30 80 1.5 396 50 20 000 1 128 322 121.5+/−47.6 20.6+/−7.5

aPhotoelectrons per analog to digital converter count.
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53. Lukeš T, Pospı́šil J, Fliegel K et al. Supporting data for
“Quantitative super-resolution single molecule microscopy
dataset of YFP-tagged growth factor receptors.” GigaScience
Database 2018. http://dx.doi.org/10.5524/100400.

http://dx.doi.org/10.5524/100400

