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SUMMARY

Microglia, the tissue-resident macrophages in the brain, are damage sensors that react to nearly 

any perturbation, including neurodegenerative diseases such as Alzheimer’s disease (AD). Here, 

using single-cell RNA sequencing, we determined the transcriptome of more than 1,600 individual 

microglia cells isolated from the hippocampus of a mouse model of severe neurodegeneration with 

AD-like phenotypes and of control mice at multiple time points during progression of 
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neurodegeneration. In this neurodegeneration model, we discovered two molecularly distinct 

reactive microglia phenotypes that are typified by modules of co-regulated type I and type II 

interferon response genes, respectively. Furthermore, our work identified previously unobserved 

heterogeneity in the response of microglia to neurodegeneration, discovered disease stage-specific 

microglia cell states, revealed the trajectory of cellular reprogramming of microglia in response to 

neurodegeneration, and uncovered the underlying transcriptional programs.

In Brief

Mathys et al. use single-cell RNA sequencing to determine the phenotypic heterogeneity of 

microglia during the progression of neurodegeneration. They identify multiple disease stage-

specific cell states, including two molecularly distinct reactive microglia phenotypes that are 

typified by modules of co-regulated type I and type II interferon response genes, respectively.

INTRODUCTION

Microglia are tissue-resident macrophages in the brain and spinal cord (Prinz and Priller, 

2014). They clear apoptotic cells and are involved in both the elimination and maintenance 

of synapses for proper neural circuit wiring (Aguzzi et al., 2013). As the damage sensors for 

the CNS, microglia have been found to respond to nearly any CNS perturbation (Fourgeaud 

et al., 2016). Indeed, a growing body of evidence based on genome-wide association studies, 

transcriptomic, and epigenomic analyses, as well as experimental evidence in mouse models, 

implicates immunological mechanisms and their cellular component, microglia, in the 

pathogenesis of Alzheimer’s disease (AD) (Gjoneska et al., 2015; Mosher and Wyss-Coray, 

2014; Neumann and Daly, 2013; Wang et al., 2015; Zhang et al., 2013). In brain tissue taken 

at autopsy from individuals with AD, microglia surround Aβ plaques, and their altered 

morphology indicates that these cells are responding to challenge (Bouvier et al., 2016; 

Heppner et al., 2015).
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However, much remains to be learned about the molecular changes underlying the response 

of microglia in the AD brain. In particular, the signal that triggers the initial microglial 

response in the brain undergoing neurodegeneration remains to be determined. Genome-

wide transcriptional profiling in microglia has revealed widespread changes in gene 

expression in mouse models of AD (Orre et al., 2014; Wang et al., 2015). However, 

ensemble-based approaches that measure gene expression from bulk populations of 

microglia cells in AD brains can only report population averages that may not reflect the 

response of individual cells or reveal cell subsets. Furthermore, these studies characterized 

the reactive microglia phenotype at only one time point, late in the progression of 

neurodegeneration. Therefore, it remains to be determined how the transcriptional programs 

in microglia cells change over time as they transition from their initial homeostatic state in 

the healthy brain to the reactive phenotypes seen in the neurodegenerating brain. Because 

the microglia phenotype may change drastically over the course of neurodegeneration, 

tracking with a fine temporal resolution is needed to capture the full spectrum of microglia 

cell states.

Here, we use single-cell RNA sequencing to examine the phenotypic heterogeneity of 

microglial cells in the healthy brain and in a mouse model of severe neurodegeneration with 

AD-like phenotypes. We identified multiple disease stage-specific microglia cell states that 

are almost exclusively observed in the diseased but not in the healthy brain. We delineate 

early- versus late-response gene modules and find that microglia proliferation is an early 

response to neuronal insult. We further identify two distinct reactive microglia phenotypes 

that arise at a later stage of neurodegeneration and are typified by modules of co-regulated 

type I and type II interferon response genes, respectively. Our work identifies previously 

unobserved heterogeneity in the response of microglia to neurodegeneration, discovers 

microglia cell states, reveals the trajectory of cellular reprogramming of microglia in 

response to neurodegeneration, and uncovers the underlying transcriptional programs.

RESULTS

RNA Sequencing Profiling of Single Microglial Cells Isolated from the Hippocampus

To determine the phenotypic heterogeneity and the transcriptional dynamics of microglia 

cells during the progression of neurodegeneration, we used the CK-p25 inducible mouse 

model of severe neurodegeneration. In CK-p25 mice, the expression of p25, the calpain 

cleavage product of Cdk5 activator p35, is under the control of the CamKII promoter and 

can be switched on by withdrawing doxycycline from the animal’s diet (Cruz et al., 2003; 

Cruz and Tsai, 2004; Fischer et al., 2005; Patrick et al., 1999). Although the CK-p25 model 

is not based on any genetic mutations associated with familial AD, it develops many aspects 

of AD-like pathology. A recent study reported that transcriptional profiles from CK-p25 

mice and 5XFAD mice, a commonly used AD mouse model, show moderate but similar 

concordance with human AD brain signatures (Hargis and Blalock, 2017). 

Neurodegeneration in CK-p25 mice occurs in a temporally compressed but highly 

predictable manner (Cruz et al., 2003, 2006; Fischer et al., 2005). At 2 weeks after p25 

induction, CK-p25 mice exhibit DNA damage and increased amyloid-β levels, followed by 

progressive neuronal and synaptic loss with cognitive impairment, which is severe by 6 
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weeks of p25 induction (Cruz et al., 2003, 2006; Fischer et al., 2005; Kim et al., 2008). 

Additional AD-like phenotypes found in 6-week induced CK-p25 mice include forebrain 

atrophy, astrogliosis, aberrant APP processing, and hyperphosphorylation of tau (Cruz et al., 

2003, 2006). CK-p25 mice also display neurofibrillary tangle-like pathology after 27 weeks 

of p25 induction (Cruz et al., 2003). Importantly, as the p25 transgene is strictly expressed 

only in excitatory neurons (Figures S1A–S1D), this model permits us to examine the 

microglial response to neuronal cell death. We isolated cells expressing the microglia 

markers CD11b and CD45 from the hippocampus of three to four CK-p25 mice and three 

CK control littermates at each of the following four time points during the progression of 

neurodegeneration: before p25 induction and 1, 2, and 6 weeks after p25 induction 

(henceforth abbreviated as 0wk, 1wk, 2wk, and 6wk, respectively) (Figure 1A; Table S1). 

Individual CD11b-positive and CD45-positive microglial cells were sorted directly into 

RNA lysis buffer in 96-well plates using fluorescence-activated cell sorting (FACS) (Figure 

S2). To verify that our sorting protocol resulted in single cells in each well, we mixed 

microglia cells from two individually distinguishable mouse strains (wild-type and a 

Cx3cr1-knockout strain expressing TdTomato in microglia) and sorted single cells into the 

wells of a 96-well plate. We then measured the level of Cx3cr1 and TdTomato mRNA in 

each well using qPCR. In the large majority of wells, we detected either Cx3cr1 or 

TdTomato—but not both—mRNA species, confirming that the large majority of wells 

contained a single cell (Figures S1E–S1G). We prepared a total of 2,183 single-cell RNA 

sequencing libraries using a modified version of the Smart-Seq2 protocol (Picelli et al., 

2014) and sequenced the libraries to a depth of 251,353 (median) mapped reads per cell. The 

average expression profile across single cells and the matching population profile were 

tightly correlated (Figures 1B and S1H), with an average Pearson product-moment 

correlation coefficient (r = 0.86) comparable with that observed in previous studies 

(Gaublomme et al., 2015; Shalek et al., 2014). We removed 498 cells on the basis of quality 

metrics (see Experimental Procedures), retaining 1,685 cells for further analyses. To verify 

that the cells isolated were indeed microglia cells, we compared the average expression 

profile of cells isolated from CK control mice with previously published expression profiles 

of specific brain cell types and with the expression profiles of monocytes and tissue-resident 

macrophages (Zhang et al., 2014; Lavin et al., 2014). We found that the average expression 

profile of cells isolated from CK control mice clustered with previously published microglia 

profiles (Figures S1I and S1J). Comparison with the set of 86 microglia signature genes 

defined by Butovsky et al. (2014), showed that microglial marker genes (including Csf1r, 

Tmem119, P2ry12, Hexb, and Sall1) were expressed at a relatively uniform level in the large 

majority of cells. In contrast, marker genes of peripheral immune cells (Cdc20, Ccr2, 

Cd163, and Ly6c1), and natural killer cell and T cell signature genes (including Zap70, 

Skap1, and Cd247) (Bezman et al., 2012) were expressed in only a small subset of the cells 

(Figures 1C and S1K).

Non-linear Dimensionality Reduction Reveals Multiple Distinct and Disease Stage-Specific 
Microglia Cell States

We analyzed 1,685 transcriptomes of single cells expressing the microglia markers CD11b 

and CD45, isolated from the hippocampus of 0wk, 1wk, 2wk, and 6wk CK-p25 and CK 

control littermates. Non-linear dimensionality reduction with t-distributed stochastic 
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neighbor embedding (t-SNE) followed by density clustering revealed multiple distinct cell 

populations (Figure 2A) (van der Maaten and Hinton, 2008). Cluster 2 predominantly 

contained cells isolated from the CK control and 0wk CK-p25 (Figures 2B and 2C). Clusters 

3 and 7 mainly contained cells isolated from 1wk CK-p25 mice, and cluster 6 was composed 

almost exclusively of cells isolated from 2wk and 6wk CK-p25 mice (Figures 2B and 2C). 

The large majority of cells isolated from the CK control mice at all four time points and 

from 0wk CK-p25 grouped together in cluster 2 (Figures 2B–2D). We obtained similar 

results after using a normalization technique to reduce the effects of confounders 

(Gaublomme et al., 2015) (Figures S3A and S3B), when we used a different RNA 

sequencing transcript quantification program, RSEM (Figures S3C and S3D), and when we 

used the GENECODE release M9 gene annotation (data not shown). We saw a similar 

disease stage-specific response of microglia to neurodegeneration using linear 

dimensionality reduction (data not shown) and found comparable results using the Single 

Cell Consensus Clustering (SC3) algorithm as an alternative approach to partitioning 

cellular subpopulations (Kiselev et al., 2016) (Figures S3E and S3F). Thus, our analysis 

revealed multiple microglia cell states in the progression of neurodegeneration that clustered 

separately from most of the cells isolated from the healthy brain (homeostatic microglia): an 

early-response state composed mainly of cells from 1wk CK-p25 mice and a late-response 

state composed of the large majority of cells isolated from 2wk and 6wk CK-p25 mice.

The t-SNE analysis also revealed clusters 4 and 5 (Figure 2A), which contained only a small 

number of cells (9 and 21 cells, respectively) and expressed peripheral immune cell marker 

genes at higher levels relative to all other clusters, suggesting that they represent bone 

marrow-derived peripheral immune cells (Table S2). Cluster 8 (Figure 2A) contained cells 

that came exclusively from one out of three biological replicates (Table S3), indicating that it 

likely resulted from technical confounders and this cluster was therefore excluded from 

further analyses (see Experimental Procedures).

Single-Cell Differential Expression Analysis Reveals Hundreds of Genes Regulated during 
Cellular Reprogramming of Microglia in Response to Neurodegeneration

We next examined how microglia respond over time in the neurodegenerating brain 

environment by comparing homeostatic microglia (cluster 2) with early-response state 

(clusters 3 and 7) versus late-response state microglia (cluster 6). We used the single-cell 

differential expression (SCDE) software package (Kharchenko et al., 2014) to reveal 

hundreds of significantly up-and downregulated genes in the early and late-response 

microglia cell states, compared with homeostatic microglia (Figures S4A–S4C; Table S4). 

All future references to up- and downregulated gene expression refer to comparison with 

homeostatic microglia cluster 2. Gene Ontology (GO) term enrichment analysis revealed 

that cell cycle genes and genes involved in DNA replication and repair were over-

represented among the genes upregulated in the early-response cluster 3 (Figures 3A and 

3D). Cell cycle-related genes were also found to be upregulated in the early-response cluster 

7. The top five GO terms enriched among the genes upregulated in cluster 7 were all related 

to cell division (Figures 3B and 3E). Plotting the average expression of G1/S and G2/M 

genes (Tirosh et al., 2016) revealed an approximate circle (Figure S4D), presumably 

reflecting progression along the cell cycle. Cells from Cluster 3 and Cluster 7 were separated 
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by G1/S and G2/M phase scores, indicating they are in different phases of the cell cycle 

(Figure S4D). To measure the proliferative activity of microglia, we injected CK and CK-

p25 mice with the thymidine analog, 5-ethynyl-2′-deoxyuridine (EdU), every second day 

during the first 2 weeks after p25 induction. Fluorescent labeling of EdU followed by flow 

cytometry analysis using the microglia markers CD11b and CD45 revealed that 3% of the 

microglia from CK control mice had incorporated EdU, in contrast to the significantly larger 

fraction (22%) seen in CK-p25 mice (Figure S4E). To test whether this increased 

proliferative activity is reflected in higher microglia density, we performed immunostaining 

of hippocampal sections and imaged across the major subregions in CK and CK-p25 mice. 

In 1wk CK-p25 mice, we observed that the density of Iba1-positive microglia was 

unchanged in the CA1 subregion (Figure S4F) but already significantly increased in CA3 

(Figure S5G) and dentate gyrus (Figures S4H and S4K). In 2wk and 6wk CK-p25 mice, 

microglia density was significantly increased in all three hippocampal subregions examined 

(Figures S4F–S4K). These findings are consistent with our analysis of single-cell RNA 

sequencing (Figures 3A, 3B, 3D, and 3E) and EdU incorporation data (Figure S4E), 

indicating that hippocampal microglia show increased proliferation early in the response to 

neurodegeneration.

Among the genes upregulated in the late-response cluster 6, we did not see cell cycle genes 

but rather saw over-representation of immune response-related genes instead (Figure 3C). 

The top five GO terms included immune system process, defense response to virus, and 

innate immune response (Figures 3C and 3F). The list of genes included those encoding 

major histo-compatibility complex (MHC) class 1 (H2-D1, H2-Q5) and class II (H2-Aa, H2-

Ab1, Cd74) components. We also identified many interferon response genes (Ifitm3, Irf7) 

and genes associated with the GO term “defense response to virus” (OaS1a, Rsad2, Zbp1). 

Binding motifs of the interferon-regulatory factor (IRF) family were significantly enriched 

within a 1 kb window around the transcription start site of genes upregulated in cluster 6, 

providing further evidence for an enrichment of interferon response-related genes in late-

response state microglia (Table S5). Overall, these data indicate that microglia mount a 

pronounced immune response during the later stages of neurodegeneration.

Temporally Distinct Transcriptional Dynamics among Immune Response-Related Genes 
during Microglia Activation

To further dissect the gene expression changes underlying cellular reprogramming of 

microglia, we analyzed the pairwise correlations between the expression levels of 

upregulated genes (see Experimental Procedures). Hierarchical clustering of the resulting 

correlation matrix of genes upregulated in the early-response cluster 3 cells revealed at least 

two major modules of co-regulated genes (Figure S5A). GO term enrichment analysis 

suggested that these two modules contained functionally distinct sets of genes. Whereas 

genes related to translation, metabolic processes, and immune response were over-

represented in module 1, genes involved in cell cycle and DNA metabolic processes were 

over-represented in module 2 (Figure S5B). A similar separation into two functionally 

distinct modules was observed for the genes upregulated in the early-response cluster 7 

(Figure S5C). Genes involved in cell cycle and mitosis were over-represented in module 1, 

while genes with a role in the immune response and metabolic processes were over-
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represented in module 2 (Figure S5D). Modules of co-regulated genes upregulated in the 

late-response cluster 6 also contained functionally distinct sets of genes (Figure S5E). 

Whereas genes involved in the immune response were over-represented in module 1, genes 

related to translation and metabolic processes were over-represented in module 2 (Figure 

S5F). Thus, this analysis identified functionally distinct modules of co-regulated genes in 

microglia responding to neurodegeneration. Interestingly, the GO terms enriched among 

module 1 genes upregulated in cluster 3 were also found to be the most highly enriched 

among the genes upregulated in cluster 6. Indeed, 199 of the 255 module 1 genes 

upregulated in cluster 3 were also found to be upregulated in cluster 6, indicating a partial 

overlap in the gene expression signatures that distinguish cells of the early and the late-

response cluster from cells in the healthy brain (data not shown).

To more precisely examine the relationship between the early and late response of microglia 

cells, we next focused only on cluster 3 cells that were isolated from 1wk CK-p25 mice 

(Figure 2D). We found that a substantial fraction (191) of the genes significantly upregulated 

in late-response cluster 6 cells were also significantly upregulated (with a certainty of 95%) 

in CK-p25 microglia after only 1 week of p25 induction (Figure 4A). Of the two early-

response clusters, we focused our analysis on cluster 3 because of relatively higher cell 

numbers, but a similar overlap in gene expression signatures could be seen in cluster 7, as 38 

of the 57 module 2 genes upregulated in Cluster 7 were also found to be upregulated in 

cluster 6 (data not shown). When we plotted the fold change of gene expression in 1wk CK-

p25 cluster 3 versus the fold change of gene expression in late-response cluster 6, we found 

roughly two groups of differentially expressed genes: one in which the early and late 

expression changes appeared to be correlated and a second group that was exclusively 

upregulated only in late-response microglia but not in early-response microglia (Figure 4A). 

Among the set of 191 early and consistently upregulated genes, 38 genes were significantly 

upregulated with a more stringent cutoff (p < 0.001) in cells of the early-response cluster 3 

(data not shown). This latter set included genes encoding lysosomal cysteine proteases 

(Ctsb, Ctsz), the cysteine protease inhibitor Cst7, the inflammatory cytokine Mif, 

chemokines (Ccl12, Ccl3, Ccl4, Cxcl16), other immune response-related genes (Tlr2, 

Lilrb4), and genes involved in glycolysis (Pkm, Pgk1, Gapdh, Pgam1). These genes were 

also significantly upregulated (with a certainty of 95%) in the microglia of the early-

response cluster 7 (Table S4). The set of genes that was exclusively upregulated during the 

later stages of neurodegeneration included many genes we had identified to be more than 10-

fold upregulated in the cells of cluster 6, including complement components (C3, C4b, and 

Cfb), MHC class 1 (H2-D1, H2-Q4, H2-Q5) and class II (H2-Aa, H2-Ab1, Cd74) 

components, genes involved in the interferon response (Ifitm3, Irf7) and genes associated 

with the GO term “defense response to virus” (OaS1a, Rsad2, Zbp1). Overall, our analysis 

revealed a dichotomy in the transcriptional dynamics among genes significantly upregulated 

in late-response microglia and point to the possibility that the early-response cluster 

represents a transient, intermediate activation state of microglia.

Next, we explored the transcriptional dynamics of these genes during the time course of 

neurodegeneration in individual microglia. This analysis provided evidence that a subset of 

immune response-related genes in late-response cluster 6, including chemokines Ccl3, Ccl4, 

and Cxcl16 and inflammatory cytokine Mif, were already upregulated in a subset of 

Mathys et al. Page 7

Cell Rep. Author manuscript; available in PMC 2017 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



microglia 1 week after p25 induction (Figure 4B). In contrast, the expression of other 

immune-related genes, such as H2-D1, Axl, Apoe, and Lgals3bp, was increased in the 

majority of cells of the late-response cluster 6 but not in 1wk CK-p25 Cluster 3 (Figure 4C). 

In summary, our analysis of transcriptional dynamics during disease progression uncovered 

temporally distinct subsets of immune response-related genes during microglia activation in 

a neurodegenerative context.

Heterogeneous Late Response of Microglia to Neurodegeneration Is Typified by Different 
Modules of Co-regulated Genes

We next focused solely on the transcriptional dynamics in late-response microglia and 

discovered small subsets of single cells characterized by upregulation of specific gene sets, 

such as antiviral and interferon response genes (Figure 5A) and components of the MHC 

class II pathway (Figure 5B). To quantify the activation of these two gene sets within 

individual cells, we computed a module score as previously described (Shalek et al., 2014; 

see Experimental Procedures). We computed the module scores for a set of 132 co-regulated 

antiviral and interferon response genes. Most 2wk and 6wk CK-p25 microglia showed 

activation of the antiviral and interferon response gene expression module (Figures 6A and 

6C). However, there was substantial variation across individual cells, with a small subset of 

cells exhibiting a fold induction module score that was at least an order of magnitude higher 

than the average (Figures 6A and 6C). We also computed the module scores for the four 

genes encoding components of MHC class II. Whereas some 2wk and 6wk CK-p25 

microglia showed no detectable activation of the MHC class II module, other cells exhibited 

a fold induction value at least an order of magnitude higher than the average (Figures 6B and 

6D). In contrast to the variability seen in antiviral and interferon response genes and MHC 

class II components, the induction scores of another module of co-regulated genes, 

containing mainly ribosomal protein-encoding genes exhibited a much narrower distribution 

(Figure 6E). Moreover, for the MHC class II components, although the expression of these 

genes was highly variable between cells, it was tightly correlated within individual cells and 

the expression of the MHC class II-related gene CD74 was not correlated with the 

expression of the housekeeping genes Actb, Gapdh, and Rpl13 (Figure 5C). These 

observations indicate that the extensive variability in the expression of MHC class II 

components measured across cells reflects true biological differences, rather than technical 

noise inherent to single-cell RNA sequencing experiments There was no correlation 

observed between the induction of the antiviral and interferon response module and the 

MHC class II module, indicating that the cells expressing high levels of antiviral and 

interferon response genes and the cells expressing high levels of MHC class II genes are not 

necessarily identical (Figure 6F). Thus, these data indicate that there are at least two distinct 

reactive microglia phenotypes in neurodegeneration.

To corroborate the observed heterogeneity among microglia with an alternative approach, we 

performed immunostaining of hippocampal sections from CK and CK-p25 mice. To 

examine the expression of co-regulated antiviral and interferon response genes, we stained 

the sections with antibodies recognizing the protein products of Cd40 and Cd69 and for the 

microglia marker Iba1. We observed an increase in the number of CD40-expressing cells in 

all three hippocampal subregions of 6wk CK-p25 mice compared with CK control mice 
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(dentate gyrus: Figures 7A, 7C, and S6A; CA1 and CA3: Figure S6B). Importantly, the 

immunostaining revealed that only a subset of the Iba1-positive cells detectably express 

CD40 (dentate gyrus: Figures 7A, 7C, and S6A; CA1 and CA3: Figure S6B). Similarly, we 

found an increased number of CD69-positive cells in all three hippocampal subregions of 

CK-p25 mice 6 weeks after p25 induction compared with CK control mice (dentate gyrus: 

Figures 7B, 7D, and S6C; CA1 and CA3: Figure S6D). However, again, only a subset of 

Iba1-positive cells detectably expressed CD69 in CK-p25 mice (dentate gyrus: Figures 7D 

and S6C; CA1 and CA3: Figure S6D). We next stained the sections with an antibody 

recognizing the MHC class II component CD74. In the hippocampus of CK control mice, 

only very few cells expressing the MHC class II component CD74 were detected (dentate 

gyrus: Figures 7E, 7F, and S6E; CA1 and CA3: Figure S6F). In contrast, the number of 

CD74-positive cells was dramatically increased in the hippocampus of CK-p25 mice 6 

weeks after p25 induction (dentate gyrus: Figures 7E, 7F, and S6E; CA1 and CA3: Figure 

S6F). Importantly, the overall proportion of CD74-expressing microglia was limited to only 

a subset of cells, confirming the heterogeneity of the hippocampal microglia population in 

the response to neurodegeneration (dentate gyrus: Figures 7E, 7F, and S6E; CA1 and CA3: 

Figure S6F). Taken together, our immunostaining data show that the expression of two 

components of a module of co-regulated antiviral and interferon response genes (CD69 and 

CD40) as well as the MHC class II component CD74 are strongly upregulated in subsets of 

microglia in the hippocampus of CK-p25. Thus, our immunostaining data confirm a 

previously unobserved heterogeneity in the response of microglia to neurodegeneration.

Gene Sets Induced in the CK-p25 Mouse Model of Neurodegeneration Also Tend to Be 
Upregulated in Microglia of Aged Human Individuals

Finally, we wondered whether the gene sets induced in the CK-p25 mouse model of 

neurodegeneration might also be relevant for the biology of human microglia. To this end, 

we compared our data with a recently published transcriptomic analysis of purified human 

cortical microglia (Galatro et al., 2017). Specifically, we asked whether the gene sets 

induced in the CK-p25 mouse model of neurodegeneration also tend to be upregulated in 

microglia of aged human individuals compared with microglia of younger individuals. 

Indeed, we observed that the expression of gene sets that are human orthologs of the genes 

significantly upregulated in clusters 3, 6, and 7 was positively correlated with age (Figures 

S7A, S7C, and S7E). In contrast, the expression of genes downregulated in clusters 3, 6, and 

7 was not significantly correlated with age (Figures S7B, S7D, and S7F). We also found that 

the expression of human orthologs of the modules of co-regulated antiviral and interferon 

response genes and MHC class II components was positively correlated with age (Figures 

S7G and S7H). Specifically, the antiviral and interferon response genes Isg15, Oasl, Ifitm3, 

Irf7, and Ifi30 were found among the genes most significantly correlated with age in human 

microglia (Table S6). Thus, these data indicate that the gene sets induced in the CK-p25 

mouse model of neurodegeneration also tend to be upregulated in microglia of aged human 

individuals.
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DISCUSSION

In this study we comprehensively surveyed the transcriptome of microglia cells as they 

progressed from healthy to neurodegeneration states in the brain at single-cell resolution. We 

found a remarkable phenotypic heterogeneity of microglia: from early-response states, 

characterized by marked proliferation, to late-response states of mounting immune response. 

In this latter group, we discovered a further heterogeneity that was typified by functionally 

distinct modules of co-regulated genes.

Temporal Changes of Microglia Response to Neurodegeneration

We were interested to decipher the initial response of microglia to insult and to track the 

temporal changes of these cells over the course of neurodegeneration. We used the CK-p25 

mouse model of severe neurodegeneration, as it displays key pathological hallmarks of AD 

in a temporally predictable manner, to study the response of microglia at fine- and single-

cell resolution. Our single-cell RNA sequencing analysis identified two neurodegeneration-

associated microglia cell states that are distinct from the microglia state in the healthy brain. 

Importantly, we found that microglia isolated at an early stage of neurodegeneration (early-

response microglia cell state) are distinct from microglia isolated at a late stage of 

neurodegeneration (late-response microglia cell state). However, the early- and late-response 

microglia cell states are not completely unrelated, as we found that a substantial fraction of 

genes that are upregulated in late-response microglia are already increased in early-response 

microglia. Moreover, 1wk CK-p25 cells were distributed across homeostatic microglia 

cluster 2 and early-response cluster 3, and share characteristics with both microglia in the 

healthy brain and fully activated microglia at the later stages of neurodegeneration. These 

observations suggest that the early-response microglia cell state represents a transient 

intermediate activation state that constitutes part of the trajectory of cellular reprogramming 

of homeostatic microglia in response to neurodegeneration.

Although we cannot exclude the possibility that some of the cells analyzed are peripheral 

immune cells, our data suggest that the large majority of cells examined are microglia cells. 

First, the large majority of cells analyzed expressed microglia marker genes but not 

peripheral immune cells signature genes (Figures 1C and S1K). Second, only a very small 

fraction of cells expressed high levels of CD45, a characteristic of peripheral immune cells 

(Figure S2). Third, t-SNE analysis revealed two small clusters (clusters 4 and 5) that 

expressed peripheral immune cell marker genes, showing that our methods have sufficient 

power to detect the subtle differences in gene expression between mi-croglia and peripheral 

immune cells (Figure 2A).

Microglia Proliferate and Increase the Expression of a Small Set of Cytokines at an Early 
Stage of Neurodegeneration

Our previous study had revealed an increased level of transcripts encoding immune 

response-related genes in hippocampal tissue of CK-p25 mice (Gjoneska et al., 2015). 

However, it was unclear whether this increase was due to gene expression changes in 

microglia or to an expansion of the microglia population as a result of proliferation. Our data 

clearly demonstrate that microglia respond to neurodegeneration with both a dramatic 
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reprogramming of their transcriptome and increased proliferation. We identified a small set 

of cytokines, including the pro-inflammatory cytokines MIF and TNF, that are upregulated 

in the late-response microglia cell state but already show upregulation 1 week after p25 

induction. Interestingly, the pro-inflammatory cytokine TNF has recently been identified as 

one of the factors that are necessary and sufficient to induce a neurotoxic astrocyte cell state 

(Liddelow et al., 2017). This raises the possibility that early-response microglia may 

contribute to the initiation of a cascade that ultimately leads to neuronal death during the 

later stages of neurodegeneration. Given the pleiotropic effects of TNF reported (Probert, 

2015), it is possible that increased expression of TNF in microglia serves multiple distinct 

functions that remain to be explored.

Two Distinct Reactive Microglia Phenotypes in Neurodegeneration

We discovered small subsets of microglia in the hippocampus of CK-p25 mice late in 

neurodegeneration typified by strong upregulated expression of selected gene sets, such as 

antiviral and interferon response genes and MHC class II components. Interestingly, these 

two subsets do not overlap entirely, indicating that not only are there at least two distinct 

reactive microglia phenotypes in the heterogeneous cell population but that there are likely 

multiple triggers of microglia activation. Interestingly, we detected many genes that are 

induced by type I interferon among the module of co-regulated antiviral and interferon 

response genes. In contrast, MHC class II genes have been shown to be induced by 

interferon-gamma (type II interferon) (O’Keefe et al., 2001). This raises the intriguing 

possibility that the two distinct subsets of reactive microglia we observed in CK-p25 mice 

could reflect exposure to type I interferon versus type II interferon.

What might be the trigger to induce expression of the co-regulated antiviral and interferon 

response gene module? We found that a subset of microglia with activated type I interferon 

pathway are in close proximity to neurons harboring DNA damage (Figures S6G and S6H). 

It is well established that DNA damage can lead to the induction of type 1 interferons 

(Härtlova et al., 2015). Thus, DNA damage might be one factor that contributes to the 

induction of antiviral and interferon response genes in microglia. Consistent with this idea, 

we found that the module of co-regulated antiviral and interferon response genes was 

significantly upregulated in microglia of the DNA-repair deficient mouse model Ercc1Δ/− 

compared with wild-type control mice (Figures S7I and S7J).

In the peripheral immune system, MHC class II molecules are responsible for presenting 

peptides derived from extracellular pathogens to T cells and are expressed by a subset of 

antigen-presenting cells, such as macrophages, dendritic cells, and B cells (Ting and 

Trowsdale, 2002). Whether the subset of microglia expressing high levels of MHC class II 

molecules indeed functions as antigen-presenting cells is an intriguing hypothesis that 

remains to be addressed. Alternatively, MHC class II molecules could serve a T cell-

independent function in microglia. Supporting this idea, it has been shown that the presence 

of MHC class II molecules exacerbated both neurodegenerative symptoms and 

neuropathology in murine globoid leukodystrophy, most likely in a T cell-independent 

manner (Matsushima et al., 1994).
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Recently, Keren-Shaul et al. (2017) reported the identification of a microglia type associated 

with neurodegenerative diseases, termed disease-associated microglia (DAM). The authors 

carried out single-cell RNA sequencing on microglia isolated from a mouse model of AD 

that expresses five human familial AD gene mutations (5XFAD) and from a mouse model of 

amyotrophic lateral sclerosis (mSOD1 [G93A] mice). The DAM microglia phenotype was 

observed only in the 5XFAD and mSOD1 (G93A) mice but not in the corresponding wild-

type mice. Using a different mouse model of neurodegeneration (CK-p25), we identified a 

microglia cell state that was almost exclusively observed at the later stages of disease 

progression (late-response microglia). Interestingly, late-response microglia express 

increased levels of many genes that were also observed to be upregulated in DAM (e.g., 

Cd9, Itgax, Clec7a, Cd63, Spp1, Fth1, Axl, Lpl, Cst7, Ctsb, Apoe). Of the 278 genes 

significantly upregulated in DAM, 202 genes were also significantly upregulated in late-

response microglia, suggesting a substantial similarity between the expression profiles of 

DAM and late-response microglia. This observation is consistent with the idea that the DAM 

program may be a primed set of genes that is expressed in response to varied conditions of 

altered homeostasis (Keren-Shaul et al., 2017). However, we found that many antiviral and 

interferon response genes were significantly upregulated in late-response microglia but not 

in DAM, suggesting that there may also be potential differences between these two 

microglia cell states. Keren-Shaul et al. (2017) proposed that DAM are generated through a 

two-step activation process. Homeostatic microglia first transition to an intermediate stage 

(stage 1 DAM) in a Trem2-independent manner, followed by a second, Trem2-dependent, 

transition to stage 2 DAM. We saw significant differences in the expression of both stage 1 

DAM and stage 2 DAM characteristic genes in late-response microglia but much less so in 

early-response microglia (Figure S7K). This observation may indicate that early-response 

microglia are in an even more naive activation state than stage 1 DAM. Whether the 

induction of a DAM-like expression program in microglia of the CK-p25 model of 

neurodegeneration is protective, neutral, or deleterious remains to be determined.

In summary, our work identified previously unobserved heterogeneity in the response of 

microglia to neurodegeneration, including the discovery of microglia cell states, and 

uncovered transcriptional programs underlying the trajectory of cellular reprogramming of 

microglia in response to neurodegeneration. Our analysis also indicates that many of the 

gene expression regulatory events identified in our mouse model are conserved in aged 

human microglia. Thus, these insights into the molecular programs underlying microglia 

activation may pave the way for designing rational and efficient strategies to treat AD and 

other neurodegenerative diseases.

EXPERIMENTAL PROCEDURES

Animals

All animal work was approved by the Committee for Animal Care of the Division of 

Comparative Medicine at the Massachusetts Institute of Technology.
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Isolation of Microglia from the Hippocampus

Hippocampal tissue was enzymatically digested using the Neural Tissue Dissociation Kit (P) 

(catalog number 130-092-628; Miltenyi Biotec) according to the manufacturer’s protocol, 

with minor modifications. The resulting cell suspension was then stained using 

allophycocyanin (APC)-conjugated CD11b mouse clone M1/70.15.11.5 (130-098-088; 

Miltenyi Biotec) and phycoerythrin (PE)-conjugated CD45 antibody (553081; BD 

PharMingen) according to the manufacturer’s (Miltenyi Biotec) recommendations. FACS 

was then used to purify CD11b and CD45 positive microglial cells.

Single-Cell RNA Sequencing Library Preparation

Single-cell RNA sequencing libraries were generated on the basis of the SMART-Seq2 

protocol (Picelli et al., 2014) with minor modifications. Libraries were tagmented using the 

Nextera XT DNA Library Preparation Kit (catalog number FC-131-1096; Illumina) and the 

Nextera XT Index Kit version 2 Sets A, B, C, and D according to the manufacturer’s 

instructions with minor modifications. Specifically, reactions were run at one fourth the 

recommended volume, the tagmentation step was extended to 10 min, and the extension time 

during the PCR step was increased from 30 s to 60 s.

Click-iT Plus EdU Cell Proliferation Assay

Animals were intraperitoneally injected with 50 mg/kg EdU every second day during the 

first 2 weeks after p25 induction. Two weeks after p25 induction, the animals were 

transcardially perfused with ice-cold PBS, and microglia were isolated using the Neural 

Tissue Dissociation Kit (P) as described above. EdU incorporation was then detected using 

the Click-iT Plus EdU Pacific Blue Flow Cytometry Assay Kit (catalog number C10636; 

Thermo Fisher Scientfic) according to the manufacturer’s instructions.

Immunohistochemistry

Immunohistochemistry experiments were performed as described previously (Iaccarino et 

al., 2016).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Transcriptomes of 1,685 individual microglia cells from healthy and diseased 

brains

• Identification of disease stage-specific microglia cell states

• Trajectory of cellular reprogramming of microglia in response to 

neurodegeneration

• Two distinct reactive microglia phenotypes in the neurodegenerating brain
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Figure 1. Single-Cell RNA Sequencing of Microglia Cells Isolated from the Hippocampus of CK-
p25 Mice and CK Control Littermates
(A) Workflow diagram for single-cell RNA sequencing of microglia cells isolated from the 

hippocampus of CK-p25 mice and CK control littermates at four different time points after 

p25 induction.

(B) Quality of single-cell RNA sequencing. Scatterplots compare transcript expression 

(log10[FPKM+1]) between the average of 95 single-cells and a bulk population of 200 cells. 

The data from four representative animals are shown.

(C) Heatmap showing the expression level of 86 microglia signature genes (yellow), genes 

preferentially expressed in peripheral immune cells (black), and natural killer cell and T cell 

signature genes (green) across the 1,685 CD11b- and CD45-positive cells analyzed in this 

study.

Mathys et al. Page 17

Cell Rep. Author manuscript; available in PMC 2017 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Non-linear Dimensionality Reduction Reveals Multiple Distinct and Disease Stage-
Specific Microglia Cell States
(A) Clustering of 1,685 CD11b and CD45 double-positive cells isolated from the 

hippocampus into eight populations. The t-SNE plot shows a two-dimensional 

representation of global gene expression profile relationships among 1,685 cells.

(B) Pie charts showing the composition of some of the clusters identified in (A).

(C) Pie charts showing the distribution of each group of cells indicated across the clusters 

identified in (A) (excluding cluster 8). Cells are grouped by genotype and time point.

(D) t-SNE plots as shown in (A). Cells isolated from CK control mice (at all four time 

points) and cells from CK-p25 mice 1, 2, and 6 weeks after p25 induction (0wk, 1wk, 2wk, 

and 6wk, respectively) are highlighted in red in individual panels.
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Figure 3. Single-Cell Differential Expression Analysis Reveals Hundreds of Genes Regulated 
during Cellular Reprogramming of Microglia in Response to Neurodegeneration
(A–C) Bar plots showing the top 5 Gene Ontology (GO) terms (biological processes) 

associated with genes upregulated in (A) cluster 3 compared with cluster 2, (B) cluster 7 

compared with cluster 2, and (C) cluster 6 compared with cluster 2.

(D and E) Bar graphs showing the fold change in gene expression of the top upregulated 

genes associated with the top 10 GO terms in cells of cluster 3 (D) and cluster 7 (E) 

compared with cells of cluster 2.

(F) Bar graph showing the fold change in gene expression of selected genes associated with 

the top 10 GO terms in cells of cluster 6 compared with cells of cluster 2.

For all panels, error bars show the 95% confidence interval.
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Figure 4. Temporally Distinct Transcriptional Dynamics among Immune Response-Related 
Genes during Micro-glia Activation
(A) Scatterplot comparing the fold change in gene expression in early- and late-response 

microglia for genes significantly differentially expressed. The genes significantly 

upregulated (with a certainty of 95%) in early- and late-response microglia are shown in 

orange. All other genes are shown in blue. Definition of early-response microglia: cells of 

cluster 3 that were isolated from CK-p25 mice 1 week after p25 induction (1wk CK-p25). 

Definition of late-response microglia: cells of cluster 6.

(B and C) t-SNE plots as shown in Figure 2A. Selected genes showing early and consistent 

upregulation (B) and selected genes exclusively upregulated in the late-response cluster 6 

(C) are shown. Data points are colored by the expression levels of the genes indicated.
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Figure 5. Heterogeneous Late Response to Neurodegeneration of Microglia Is Typified by 
Different Modules of Co-regulated Genes
t-SNE plots as shown in Figure 2A.

(A) Data points are colored by the expression level of selected antiviral and interferon 

response genes as indicated.

(B) Data points are colored by the expression level of the genes encoding MHC class II 

components as indicated.

(C) Scatterplots showing the correlation of the expression level of MHC class II related 

genes (H2-Aa, H2-Ab1, Cd74) and of Cd74 and the housekeeping genes Actb, Gapdh, and 

Rpl13 across the cells of cluster 6.
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Figure 6. Two Distinct Reactive Microglia Phenotypes in Late Response to Neurodegeneration
(A and B) Histograms showing the distribution of the weighted fold induction of a module 

of 132 antiviral and interferon response genes (A) and four MHC class II complex-related 

genes (B) across the cells of the groups indicated.

(C and D) t-SNE plots as shown in Figure 2A. Data points are colored by the weighted fold 

induction of (C) a module of 132 antiviral and interferon response genes and (D) a module 

of four MHC class II complex-related genes.

(E) Histograms showing the distribution of the weighted fold induction of a module of co-

regulated genes mainly containing ribosomal protein-encoding genes across the cells of the 

groups indicated.

Mathys et al. Page 22

Cell Rep. Author manuscript; available in PMC 2017 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(F) Scatterplot showing the correlation between the induction of the antiviral and interferon 

response module and the MHC class II module across the cells isolated from CK-p25 mice 2 

and 6 weeks after p25 induction.
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Figure 7. Immunostaining Reveals Heterogeneous Late Response of Microglia to 
Neurodegeneration
Immunostaining in the dentate gyrus of CK-p25 mice 6 weeks after p25 induction.

(A) Immunohistochemistry with anti-CD40 (red) and anti-Iba1 (white) antibodies. Cells 

indicated with blue and red arrows are shown at higher magnification on the right.

(B) Immunohistochemistry with anti-CD69 (red) and anti-Iba1 (white) antibodies.

(C–E) Quantification of the CD40 (C), CD69 (D), MHC2 (E), and Iba1 immunostaining. 

Values are percentages of Iba1-positive cells expressing CD40, CD69, and MHC2, 

respectively.

(F) Immunohistochemistry with anti-GFP (green), anti-CD74 (MHC2, red), and anti-Iba1 

(white) antibodies. For all graphs, quantification is based on immunostaining in the dentate 

gyrus of seven CK mice and four CK-p25 mice, with two sections per animal.
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Error bars show SEM. **p < 0.01; ***p < 0.001.
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