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Abstract

Fetal inflammation is associated with increased risk for postnatal organ injuries. No means of
early detection exist. We hypothesized that systemic fetal inflammation leads to distinct alter-
ations of fetal heart rate variability (f[HRV). We tested this hypothesis deploying a novel series
of approaches from complex signals bioinformatics. In chronically instrumented near-term fetal
sheep, we induced an inflammatory response with lipopolysaccharide (LPS) injected intrave-
nously (n = 10) observing it over 54 hours; seven additional fetuses served as controls. Fifty-
one fHRV measures were determined continuously every 5 minutes using Continuous Individ-
ualized Multi-organ Variability Analysis (CIMVA). CIMVA creates an fHRV measures matrix
across five signal-analytical domains, thus describing complementary properties of fHRV. We
implemented, validated and tested methodology to obtain a subset of CIMVA fHRV measures
that matched best the temporal profile of the inflammatory cytokine IL-6. In the LPS group, IL-6
peaked at 3 hours. For the LPS, but not control group, a sharp increase in standardized differ-
ence in variability with respect to baseline levels was observed between 3 h and 6 h abating to
baseline levels, thus tracking closely the IL-6 inflammatory profile. We derived fHRV inflamma-
tory index (FII) consisting of 15 fHRV measures reflecting the fetal inflammatory response with
prediction accuracy of 90%. Hierarchical clustering validated the selection of 14 out of 15 fHRV
measures comprising Fll. We developed methodology to identify a distinctive subset of fHRV
measures that tracks inflammation over time. The broader potential of this bioinformatics
approach is discussed to detect physiological responses encoded in HRV measures.
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Introduction

Fetal inflammation due to infection is common and often remains asymptomatic.[1] A signifi-
cant number of fetuses are exposed to variable degrees of inflammation that may impact on
their organ development.[2] At present, no satisfying means exist for detection of fetal compro-
mise due to an infectious or inflammatory condition. Hence, identification of early signs of
fetal inflammation remains a physiological and clinical challenge.[3]

Cholinergic anti-inflammatory pathway (CAP) senses and reduces systemic levels of inflam-
matory cytokines via the vagus nerve. Variations in vagal activity can be measured non-inva-
sively by HRV monitoring in fetus and after birth. [4-6] CAP activity is reflected in fetal heart
rate (FHR) variability (fHRV).[7] [8] [9] HRV measures can be derived from various signal-
analytical domains such as statistical, informational, invariant or energetic. [8] [9] However,
among many dozens HRV measures that have been deduced mathematically over the past sev-
eral decades, it is not known a priori which fHRV measures reflect physiologically relevant pro-
cesses such as inflammation.

Using lipopolysaccharide (LPS)-induced inflammation in near-term fetal sheep as a model
of human fetal infection we have shown that fHRV monitoring derived from principal compo-
nent analysis (PCA) tracks well the temporal profile of inflammatory response. [8] As next
step, here we aimed to develop a more general framework to derive and validate HRV signa-
tures correlating to temporal profile of endotoxin-triggered inflammation with no a priori
knowledge of which HRV measures to choose.

Results

Our experimental fetal sheep cohort’s morphometric, arterial blood gases, acid-base status, car-
diovascular characteristics and cytokine responses have been reported elsewhere. [8] Briefly,
tetal arterial blood gases, pH (7.37 + 0.04), BE (3.3 £2.3 mmol/l) and lactate (1.5 £ 0.9 mmol/l)
were within physiological range during the baseline in both groups. We observed no overt car-
diovascular decompensation due to LPS-triggered sepsis. We detected time-LPS interaction for
IL-6 (P<0.001) (Fig 1). The LPS group showed a peak of IL-6 at 3 h.

Analysis of CIMVA fHRYV signature of fetal inflammatory response

The standardized fHRV measures dataset is plotted in S1A Fig. It is difficult to visually distin-
guish any significant structure. However, comparing the difference in the median of all stan-
dardized fHRV measures between the two groups at each time point yielded significant
statistical differences. Since the fHRV measures reported either increased or decreased with the
loss of physiological variability, we looked at absolute change rather than linear decrease. The
analysis of CIMVA of all 51 fHRV measures is summarized in S1A Fig and Table 1.

The effect of LPS on the fHRV at 3 h is consistent with the IL-6 peak at 3 h following the
LPS injection. The statistical summary of the results is shown in Table 1 and indicates that the
Time and Group effects are statistically significant.

Identification of fHRV inflammatory index

In the feature selection step, we identified a subset of fHRV measures correlated with a piece-
wise linear function, which consisted of a flat portion until LPS injection (around end of base-
line marked t = 0 h), followed by a linearly decreasing slope until 3 h (inflammatory peak) and

PLOS ONE | DOI:10.1371/journal.pone.0153515 April 21,2016 2/11



" ®
@ ’ PLOS ‘ ONE Fetal Heart Rate Variability to Detect Inflammation

=

o

o
!

IL-6, pg/mL
N
o
o

Baseline *

Fig 1. Fetal inflammatory response to lipopolysaccharide. Blue, control group (n = 5); red, LPS group (n = 10); Mean + SD. *, P = 0.001 versus control.

doi:10.1371/journal.pone.0153515.g001
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Table 1. Statistical significance of time and group effects* on the median change of fetal heart rate variability (f(HRV) corresponding to the S1A Fig
from Control and LPS group.

Variable Beta Std. Error z value p-value* 95% CI

Time -0.0029 0.0012 -2.4393 0.0147 [-0.0053-0.0005]
Group 0.1648 0.0736 2.2388 0.0252 [0.0205-0.3090]
Constant -0.0286 0.0596 -0.4793 0.6317 [-0.1454 0.0883]

The number of fHRV measures was 51.[6]
* using a Quasi Least Squares method within the framework of Generalized Estimating Equations, with a Markov Correlation structure. The standard
errors, 95% confidence intervals, and p-values are for the tests Beta = 0. Both Time and Group effects are statistically significant at the 0.05 level.

doi:10.1371/journal.pone.0153515.t001
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Table 2. fHRV measures correlating to inflammation” and their validation by Hierarchical Clustering.

Validation by
Hierarchical
Clustering
Domain Full name Abbreviation R score* * 3h 6h
Statistical Mean heart rate mupm 0.6 Cluster 1 Cluster 1
Symbolic dynamics: modified conditional entropy, non-uniform case SymDce_2 0.42 Cluster 3 Cluster 2
Symbolic dynamics: forbidden words, non-uniform case SymDfw_2 0.38 Cluster 2 -
Symbolic dynamics: Shannon entropy, non-uniform case SymDse_2 0.44 Cluster 3 Cluster 2
Symbolic dynamics: percentage of 1 variations sequences, non-uniform case SymDp1_2 0.45 Cluster 3 Cluster 2
Symbolic dynamics: percentage of 0 variations sequences, non-uniform case SymDp0_2 0.45 Cluster 2 Cluster 3
Geometric Grid transformation feature: grid count gcount 0.34 Cluster 2 Cluster 1
Energetic LF Power LFpower 0.34 Cluster 1 Cluster 2
Multifractal spectrum cumulant of the second order MF_c2 0.47 - Cluster 3
Multiscale time irreversibility asymmetry index Asyml 0.46 - Cluster 2
Informational Grid transformation feature: AND similarity index sgridAND 0.34 Cluster 2 Cluster 2
Fano factor distance from a Poisson distribution fFdP 0.3 Cluster 1 Cluster 2
Allan factor distance from a Poisson distribution aFdP 0.49 Cluster 3 Cluster 2
Invariant Correlation dimension (Global exponent) cDimG 0.32 Cluster 3 Cluster 2
Scaled windowed variance hldSWV 0.4 Cluster 3 Cluster 3

* j.e., during inflammatory response induced by LPS injections

** Spearman correlation coefficient, p-values <<0.01

The reported correlations are not with the levels of the actual inflammatory cytokine IL-6. Rather, the correlations are the (absolute) Spearman correlation
values between the time responses of each fHRV measure synchronized across LPS animals and a piecewise linear prototype function with a peak at 3h.
This function reflects our a priori assumption for the prototypical temporal inflammatory response of LPS animals based on the systemic peak response of
IL-6 to LPS exposure. The adjacent columns to the right summarize the validation of the selected fHRV measures using the hierarchical clustering
approach (cf. S2A Fig).

doi:10.1371/journal.pone.0153515.t002

This simple prototype function was designed to embody the hypothesized change in fHRV
from the inflammatory process based on our a priori assumption for the prototypical inflam-
matory response of LPS animals with the observed systemic peak response of IL-6 to LPS expo-
sure at 3 h (cf. Fig 1). We then applied Spearman’s rho to evaluate the absolute correlation
coefficient between the time responses of each fHRV measure, within the LPS group, and the
piecewise linear prototype function. This correlation analysis yielded a subset of 15 fHRV mea-
sures with an absolute correlation coefficient greater than 0.3 (Table 2).

The results are presented in Table 3, where the difference between the LPS group and the
control group is more pronounced than prior application of our method (S1A Fig, Table 1),

Table 3. Statistical significance of time and group effects* on the median change of the selected fetal heart rate variability (fHRV) measures repre-
senting the “inflammatory signature” (cf. S2B Fig) from Control and LPS group.

Variable Beta Std. Error z value p-value* 95% ClI

Time -0.0062 0.0016 -3.7728 0.0002 [-0.0094-0.0030]
Group 0.5805 0.2553 2.2737 0.0230 [0.0801-1.0808]
Constant -0.2343 0.2448 -0.9574 0.33384 [-0.7140-0.2454]

The number of fHRV measures was 15.
* using a Quasi Least Squares method within the framework of Generalized Estimating Equations, with a Markov Correlation structure. The standard
errors, 95% confidence intervals, and p-values are for the tests Beta = 0. Both Time and Group effects are statistically significant at the 0.05 level.

doi:10.1371/journal.pone.0153515.t003
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Fig 2. Graphical representation of the average time traces of representative fHRV measures from the subset of Fll. Here we show the average time
traces of one of the symbolic dynamics measures we identified with our method. aFDP, Allan factor distance from a Poisson distribution; Asyml, Multiscale
time irreversibility asymmetry index; gcount, Multiscale time irreversibility asymmetry index; SymDp1_2, Symbolic dynamics: percentage of 1 variations

sequences, non-uniform case.

doi:10.1371/journal.pone.0153515.g002

particularly at 6 h post-injection. Results shown in Table 3 indicate that both time and group
effects are statistically significant (P<0.05), and the effect of LPS on the fHRV at 3 h is consis-
tent with the IL-6 peak at 3 h following LPS injection.

Representative temporal profiles of fHRV measures from each signal analytical domain are
shown in Fig 2, as the selected fHRV measures form a 15 dimensional vector for each subject at
each time, it is difficult to visualize the dataset. While the underlying organization of these fea-
tures is not clear at this moment, we assumed the affine structure and applied PCA to visualize
the data. The results are shown in Fig 3. Visually, LPS group appears most different from the
control group at 3h and 6h.

With the 15 selected fHRV measures, at each time point, the FII was evaluated and the ROC
curve shown in Fig 3 (Bottom). It is clear that the prediction accuracy is high at 1, 3 and 6 hours
post LPS. At 1 h, the area under curve (AUC) is 0.87 with confidence interval (CI) [0.58, 1]; at
3 h, the AUC is 0.9 with CI [0.65,1]; at 6 h, the AUC is 0.9 with CI [0.63,1].
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Fig 3. Principal component analysis of the fetal heart rate variability signature of inflammation over time. (TOP) From left to right: the principal
component analysis results of the 17 animals at different times. LPS-exposed subjects are plotted in blue and controls are plotted in red. At 3, 6 and 24 hours
post LPS administration, the LPS-exposed group is distributed on the left upper half plane, whereas controls are distributed on the right lower plane.
(BOTTOM) Receiver operating curves (ROC) analysis of the fetal inflammatory index (Fll) in discriminating systemic inflammation from baseline states.

doi:10.1371/journal.pone.0153515.9003

Validation of the inflammatory signature using hierarchical clustering

We validated our finding of 15 fHRV measures reported in Table 2 with hierarchical clustering.
We visualized the normalized dataset at each time point individually and performed a hierar-
chical clustering of fHRV measures (S2A Fig). At 3 h post LPS injection, we found 13 out of 15
selected fHRV measures clustering with a z-score greater than 2 or less than -2, on three sepa-
rated nodes (S2B Fig). At 6 h post LPS injection, we identified a main cluster of 11 out 15
selected fHRV measures having a z-score greater than 2; 3 out of 15 fHRV measures clustered
with an opposite z-score (S2B Fig); meanwhile 2 fHRV measures clustered with a mixed z-
score. In total, there were 12 common fHRV measures at 3 h and 6 h that were the same as the
selected FII. In concordance with the temporal cytokine profile, this phenomenon gradually
faded after 6 to 48 hours. Each node’s likelihood was assessed and had a significant value of 1
testifying of the clustering robustness (data not shown).

In summary, the hierarchical clustering method validated 14 out of 15 fHRV measures
(Table 2).

Discussion

We identified a distinctive subset of fHRV measures with potential to track the temporal profile
of fetal inflammation.

Our experimental cohort’s morphometric, arterial blood gases, acid-base status, cardiovas-
cular characteristics and cytokine responses have been reported elsewhere. [8] Briefly, they
were within the physiological range.[10] The effect of the chosen LPS dose on the arterial blood
gases, acid-base status and cardiovascular responses indicated a septicemia.

As sympathetic and parasympathetic activities can occur in concert, their HRV signatures
are likely to be of a complex gestalt rather than states of sympathetic or vagal dominance. [11]
[12] Consequently, sepsis state may be better characterized by a multi-dimensional and unsu-
pervised HRV assessment.

Since the fHRV measures reported either increased or decreased with the loss of physiologi-
cal variability measured at baseline, prior to LPS exposure, we looked at absolute change rather
than linear decrease over time. Noteworthy, the graphic representation of standardized fHRV
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measures over time (Fig 2) shows a high degree of variability of responses at each time point.
This variability is larger in comparison to that in genomics studies since not all of these fHRV
measures are relevant to detect and track the LPS-induced inflammation. Fig 3 then shows that
the fHRV responses are more homogeneous when fewer key features are used. We validated
our findings using a hierarchical clustering approach (S2A and S2B Fig).

It must be noted that the correlations reported in Table 2 are between the evolution of
fHRV measures over time and a hypothetical prototypical inflammatory response function.
Results summarized in Table 2 are not intended to portray the predictive power of a particular
fHRV measure but to provide an example of a method to select a more focused subset of mea-
sures that better highlights the differences between control and LPS animals. Although correla-
tion between individual measures and the prototypical inflammatory response over time is not
very strong, an optimal combination of measures might provide a much stronger characteriza-
tion of inflammatory processes, as we have shown. [8] Indeed, there is consensus that a suitable
combination of underperforming features from a correlation-based feature selection can pro-
vide good discrimination between groups or conditions nonetheless. [13]

Based on the animal and human clinical perinatal body of evidence, we propose that devel-
oping longitudinal and comprehensive fHRV monitoring in a model of LPS-induced inflam-
mation will allow us to build algorithms to improve early diagnosis of infection. Such
monitoring would capture both linear and nonlinear fHRV properties, a strategy that has
proven effective in septic adult and neonatal patients. [8]

There are limitations in our approach. First, since the case number was limited, we could
not further explore the possibly non-linear structure inside the dataset, and we assumed a lin-
ear model to study the data. Although the preliminary result is encouraging, we will need a
larger dataset to confirm the finding under the linear model and pursue the finer non-linear
structure. Second, we should be aware of the potential biased result provided by PCA under the
current dataset. [14] Note that we have only 17 subjects but we end up with 15 selected features
comprising FIL It has been observed and well-studied that under this relationship between the
number of cases and the number of parameters, we might obtain biased principal components.
[14] While we do not have any a priori knowledge about the structure of the principal compo-
nents, there is no way we could correct the bias. However, since we only choose the top princi-
pal component, this issue might not be severe. In future work we could establish a finer
relationship between different parameters to improve the performance of FII.

Significance and perspectives

We identified and validated a subset of HRV measures that seem to best characterize the
inflammatory state either individually (highest correlation with expected temporal inflamma-
tory profile) or when used as a group (statistical analysis of standardized fHRV measures). This
subset of HRV measures belongs to different domains of HRV which suggests that such multi-
dimensional representation of HRV reflects an underlying code carrying information about
neuroimmunological, and possibly intrinsic cardiac, interactions modulated by system’s state.
Hence, future work will focus on more detailed delineation of the intrinsic versus autonomic
nervous system-modulated HRV signatures in the physiological and pathophysiological
contexts.

Materials and Methods

Animal care followed the guidelines of the Canadian Council on Animal Care and this study
received the approval by the University of Montreal Council on Animal Care (protocol
#10-Rech-1560).
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Anesthesia and surgical procedure

Details of the procedure have been reported elsewhere.[8] Briefly, we instrumented 24 timed-
pregnant ewes at 126 days of gestation (dGA, ~0.86 gestation) with arterial, venous and amni-
otic catheters and ECG electrodes.

Antibiotics were administered to the mother intravenously (Trimethoprim sulfadoxine 5
mg/kg) as well as to the fetus intravenously and into the amniotic cavity (ampicillin 250 mg).
The catheters exteriorized through the maternal flank were secured to the back of the ewe in a
plastic pouch. For the duration of the experiment the ewe was returned to the metabolic cage,
where she could stand, lie and eat ad libitum while we monitored the non-anesthetized fetus
without sedating the mother. During postoperative recovery antibiotic administration was con-
tinued for 3 days. Arterial blood was sampled for evaluation of maternal and fetal condition
and catheters were flushed with heparinized saline to maintain patency.

Experimental protocol

Postoperatively, all animals were allowed 3 days to recover before starting the experiments. On
these 3 days, at 9.00 am 3 mL of arterial plasma sample were taken for blood gases and cytokine
analysis. Each experiment started at 9.00 am with a 1 h baseline measurement followed by the
respective intervention as outlined below. FHR and arterial blood pressure (ABP) was moni-
tored continuously (CED, Cambridge, UK., and NeuroLog, Digitimer, Hertfordshire, U.K).
Blood and amniotic fluid samples (3 mL) were taken for arterial blood gases, lactate, glucose
and base excess (in plasma, ABL800Flex, Radiometer) and cytokines (in plasma and amniotic
fluid) at time points 0 (baseline), +1 (i.e., 1 h after LPS administration), +3, +6, +24, +48 and
+54 h. For the cytokine analysis, plasma was spun at 4°C (4 min, 4000g force, Eppendorf
5804R, Mississauga, ON), decanted and stored at -80°C for subsequent ELISAs. After the +54
hours sampling (Day 3), the animals were sacrificed using lethal dose of sodium pentobarbital
(Euthanyl™ administered slowly as 15-20 ml IV bolus to the mother). Fetal growth was
assessed by body, brain, liver and maternal weights.

Fourteen fetuses received LPS (400 ng/fetus/day) (Sigma L5293, from E coli O111:B4, ready-
made solution containing 1mg/ml of LPS) intravenously on days 1 and 2 at 10.00 am to mimic
high levels of endotoxin in fetal circulation over several days as it may occur in chorioamnioni-
tis. Ten fetuses were used as controls receiving an equivalent volume of NaCl 0.9% in lieu of
LPS.

Cardiovascular analysis

Mean ABP (mABP) and FHR were calculated for each animal, at each time point (baseline, 1h,
3h, 6h, 24h, 48h and 54h), as an average of the artifact-free 30 preceding minutes (60 preceding
minutes for the baseline) using Spike 2 (Version 7.13, CED, Cambridge, U.K.). These results
have been reported elsewhere. [8]

Cytokine analyses

Cytokine concentrations (IL-6) in plasma were determined by using an ovine-specific sand-
wich ELISA. Mouse anti-sheep monoclonal antibodies (capture antibody IL-6, Bio Rad AbD
Serotec) were pre-coated at a concentration 4 pg/ml on ELISA plate at 4°C for overnight, after
3 times wash with washing buffer (0.05% Tween 20 in PBS, PBST), plates were then blocked
for 1h with 1% BSA in PBST. Following 3 times washing, 50 pl of serial diluted protein stan-
dards and samples were loaded per well and incubated for 2 hours at room temperature. All
standards and samples were run in duplicate. Recombinant sheep proteins (IL-6, Protein
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Express) were used as ELISA standard. Plates were then washed for 3 times. Rabbit anti-sheep
polyclonal antibodies (detection antibody IL-6, Bio Rad AbD Serotec) at a dilution of 1:250
were applied in wells and incubated for 30 min at room temperature. Plates were then washed
with washing buffer for 5 times. Detection was accomplished by assessing the conjugated
enzyme activity (goat anti-rabbit IgG-HRP, dilution 1:5000, Jackson ImmunoResearch) via
incubation with TMB substrate solution (BD OptEIA TMB substrate Reagent Set, BD Biosci-
ences), colour development reaction was stopped with 25 pl of 2N sulphuric acid. Plates were
read on ELISA plate reader at 450 nm, with 570 nm wavelength correction (EnVision 2104
Multilabel Reader, Perkin Elmer). The sensitivity of IL-6 ELISA was 16 pg/ml. For all assays,
the intra-assay and inter-assay coefficients of variance was <5% and <10%, respectively.

fHRV analysis

The continuous individualized multiorgan variability analysis (CIMVA) server platform was
used to develop comprehensive continuous fHRV measures analysis.[6] The complete fetal
electrocardiogram (ECG) was uploaded onto the CIMVA server to generate continuous fHRV.
Output of the CIMV A software was a matrix of fHRV measures along with measures of data
quality for every interval evaluated linked to the timing of blood sampling for arterial blood
gases, pH and cytokines as well as LPS administrations. An important benefit of choosing the
standardized CIMVA approach is its reproducibility and ability to compare the results in
future studies.

Derivation of fHRV measures and feature selection

For each animal, at each time point (baseline, 1h, 3h, 6h, 24h and 48h) and for each fHRV mea-
sure, an average of the 30 preceding minutes (60 preceding minutes for the baseline) was calcu-
lated. Not all animals for which fHRV was to be calculated had data at 54 h time point, so this
time point was not included in the analysis. In order to remove the baseline contribution and
allow for a fair comparison between animals that may have had different initial baseline fHRV
levels, for each animal and for each fHRV measure, we subtracted the median of that measure
over the baseline period and divided by the range of that measure over the same period. Fur-
thermore, we standardized each fHRV measure across time points by removing the median of
each measure and dividing by the median absolute deviation of each measure. This resulted in
an array of standardized fHRV measures.

Inflammation prediction by fHRV inflammatory index

To classify the LPS group from the control group, we applied the principal component regres-
sion. At each time, we evaluated the most significant principal component and projected the
selected fHRV measures to form a scalar index, which we call the fHRV inflammatory index
(FII). We chose only one principal component to avoid over fitting since the case number was
limited. Then, under the binary classifier model, the receiver operating characteristic (ROC)
was evaluated to demonstrate the prediction accuracy of FII at each time point.

Validation by hierarchical clustering

To validate the FII, we ran hierarchical clustering on the complete 51 fHRV dataset computed
by CIMVA for the same five experimental time points 1, 3, 6, 24 and 48 hours, each treated
individually. Hierarchical clustering is a well-referenced method composed of two main steps:
we first calculate the distance matrix between the fHRV data and then cluster fHRV measures.
We performed a hierarchical clustering on fHRV measures using Cluster v3.0 with
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recommended default parameters, uncentered correlation metric and average linkage cluster-
ing. [15] The resulting dendrogram of the clustered fHRV measures was visualized with Java
TreeView v3.0; both softwares were used under Windows 8.[16]

Statistical analysis

Generalized estimating equations (GEE) modeling was used to assess the effects of LPS while
accounting for repeated measurements on fetal blood gases and acid-base status, plasma cyto-
kine (IL-6) and cardiovascular responses. We used a linear scale response model with time and
LPS as predicting factors to assess their interactions using maximum likelihood estimate and
Type III analysis with Wald Chi-square statistics. SPSS Version 21 was used for these analyses
(IBM SPSS Statistics, IBM Corporation, Armonk, NY). At each time point, we compared the
difference in the median of all standardized fHRV measures, between the two groups, using a
Wilcoxon rank-sum test on the medians. We assessed the global statistical significance of the
difference in medians of all standardized fHRV measures between time point and groups using
a Quasi-Least Squares approach within the GEE framework, with a Markov Correlation struc-
ture and normal distribution assumption. We used Ratcliffe and Shults’ Matlab implementa-
tion. [17] All results are presented as Mean+SD. P<0.05 is viewed as statistically significant.

Supporting Information

S1 Fig. A. Graphical representation of the 51 fHRV measures in response to inflammation
prior selection with of our method. Standardized variability measures were adjusted for the
baseline contribution for different time-points for LPS (TOP) and Control (BOTTOM). Num-
bers at the bottom of X-axis indicate animals. Left Y-axis labels indicate keywords for variabil-
ity measures. Each row corresponds to a variability measure. B. Graphical representation of
the 15 fHRV measures comprising the signature of inflammation selected with our
method. Standardized variability measures were adjusted for the baseline contribution, for dif-
ferent time-points for LPS (TOP) and Control (BOTTOM), using features highly correlated
with expected drop in variability. Numbers at the bottom of X-axis indicate animals. Left Y-
axis labels indicate keywords for variability measures (cf. Table 2). Each row corresponds to a
variability measure.

(PDF)

S2 Fig. A . Validation of fHRV signature using Hierarchical Clustering. Graphic representa-
tion of fHRV changes during the experiment in LPS (TOP) and Control (BOTTOM) with
hierarchical clustering. Note the pronounced changes at 3 and 6 h post LPS, while no apparent
pattern is visible in the control group over time. B. Highlights of Clusters forming at 3 and 6
h post LPS. Clusters of interest are highlighted at 3 and 6 h post LPS. Note the strong overlap
for 14 out of 15 fHRV signature measures selected in Table 2.

(PDF)
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