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Abstract: Mutations in the multi sex combs (mxc) gene in Drosophila results in malignant hyperplasia in
larval hematopoietic tissues, called lymph glands (LG). mxc encodes a component of the histone locus
body (HLB) that is essential for cell cycle-dependent transcription and processing of histone mRNAs.
The mammalian nuclear protein ataxia-telangiectasia (NPAT) gene, encoded by the responsible gene
for ataxia telangiectasia, is a functional Mxc orthologue. However, their roles in tumorigenesis are
unclear. Genetic analyses of the mxc mutants and larvae having LG-specific depletion revealed that a
reduced activity of the gene resulted in the hyperplasia, which is caused by hyper-proliferation of
immature LG cells. The depletion of mxc in mature hemocytes of the LG resulted in the hyperplasia.
Furthermore, the inhibition of HLB formation was required for LG hyperplasia. In the mutant larvae,
the total mRNA levels of the five canonical histones decreased, and abnormal forms of polyadenylated
histone mRNAs, detected rarely in normal larvae, were generated. The ectopic expression of the
polyadenylated mRNAs was sufficient for the reproduction of the hyperplasia. The loss of HLB
function, especially 3′-end processing of histone mRNAs, is critical for malignant LG hyperplasia
in this leukemia model in Drosophila. We propose that mxc is involved in the activation to induce
adenosine deaminase-related growth factor A (Adgf-A), which suppresses immature cell proliferation
in LG.
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1. Introduction

Leukemia encompasses a group of blood cancers that usually develop in the bone marrow
and result in the production of excessive abnormal blood cells [1–3]. Mutations in many genes
that are responsible for the pathogenesis of leukemia have been identified via genome analysis of
patient-derived leukemic cells [4–6]. Recent studies have attempted to identify and characterize
new genes that are involved in leukemia and related diseases. Previous studies have indicated that
mutations in NPAT are related to a class of malignant lymphomas, called Hodgkin’s lymphoma [7,8].
This gene is also involved in ataxia disorder, which is associated with cancer-related symptoms [9].
NPAT encodes a nuclear protein that plays an essential role in cell cycle progression to the S phase [10,11].
NPAT/p220 is a transcription factor that controls cell cycle-dependent histone gene transcription in
an E2F-dependent manner [12]. The protein is phosphorylated by cyclin E-Cdk2, which stimulates
histone mRNA synthesis [13–15]. However, the mechanisms underlying the alteration of expression

Int. J. Mol. Sci. 2020, 21, 1586; doi:10.3390/ijms21051586 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-0233-6726
http://dx.doi.org/10.3390/ijms21051586
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/5/1586?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 1586 2 of 22

and/or function of the proteins that eventually led to tumorigenesis of hematopoietic cells are still
not known.

Multi sex combs (mxc), a Drosophila gene encoding a 1837 amino acid-long protein possessing a
region that encompasses the lissencephaly homology (LisH) domain, shows high amino acid sequence
similarity to human NPAT [16,17]. This gene was previously identified as a member of the Polycomb
group genes and it has been shown to function as a tumor suppressor in Drosophila on the basis of
mutant phenotypes [18,19]. In hemizygous mutant larvae for mxcmbn1, which is a lethal allele of the
gene, a hyperplasia phenotype appeared in the lymph gland (LG) (a specialized hematopoietic organ)
at the larval stage. Previous reports demonstrated that the mutant larvae possess enlarged lymph
glands and the mutant cells invaded the surrounding tissues when these cells were injected into normal
adult abdominal cavities [20–22]. Extra hemocytes, as well as abnormally differentiated hemocytes,
were observed in the hemolymph of the mutant larvae [18,20,22,23]. Conversely, the larval imaginal
discs were underdeveloped in the mxc mutants. The development of germ line cells, including the
progression of meiotic divisions, was also compromised in the mxc mutants [19,22,24,25].

Drosophila hemocytes are responsible for immune response, such as phagocytosis and protection
from infectious bacteria and foreign matter [26]. The circulating hemocytes arise from two distinct
hematopoietic tissues, namely the embryonic head mesoderm and the LG at the later larval stage [27–29].
The LG contains hematopoietic progenitor cells called pro-hemocytes, which can give rise to three
types of hemocytes: plasmatocytes, lamellocytes, and crystal cells [27,30,31]. During the larval stage,
precursor cells that differentiate into hemocytes are generated, which undergo several rounds of
proliferation in the LGs. The formation of the hematopoietic tissue is completed in the mature stage of
the third instar larvae. The LG that develops under normal conditions has a paired multi-lobed structure
in the third instar larvae. The lobes are clusters of hematopoietic cells arranged in a hemispheric
pattern segmentally aligned in pairs along the anterior-posterior (A-P) axis of the tissue. They consist
of a pair of larger primary (first) lobe at the anterior end, several successive series of secondary (second)
lobe, and a tertiary lobe can be observed in this order [23,32,33]. The first lobe consists of three regions:
the cortical zone (CZ), which has abundant mature hemocytes; the medullary zone (MZ), which is
formed by the immature precursor cells of hemocytes located inside the lobe; the Posterior Signaling
Center (PSC), which is a small group of cells that reside on the most posterior region of the first lobe
adjacent to the second lobe [30]. The PSC cells play critical roles as hematopoietic stem cell niche.
They also play a central role in regulation of proliferation and differentiation of immature cells in the
LG [34,35]. The role of the PSC in controlling homeostasis of hemocytes in Drosophila is reminiscent of
the hematopoietic stem cell niche in the bone marrow of mammals. Pvf1, an extra-cellular protein that
is secreted from PSC, binds to its receptor, Pvr, which is localized on the surface of mature hemocytes in
the CZ. Subsequently, the binding activates the STAT-mediated signaling pathway that is downstream
of the receptor and it eventually induces the expression of Adgf-A (adenosine deaminase-related
growth factor-A). This factor, which is synthesized in CZ, suppresses the proliferation of immature
cells in the MZ of the first lobe and those consisting of the posterior lobes [36,37].

Mxc is a component of the histone locus body (HLB), which is localized on a single nuclear
foci that corresponds to a histone gene cluster in the chromatin [13,16,38]. The HLB is essential for
DNA replication-dependent expression of five canonical histones, namely, histoneH1, H2A, H2B, H3,
and H4, as well as for the processing of the histone mRNAs [39–41]. Among the HLB components,
the Spt6 and Mute proteins are required for the transcription of the histone genes. In contrast,
the ribonucleoprotein (RNP) containing the U7 snRNA, FLASH, and Cpsf family proteins play key
roles in mRNA processing [39,42–44]. The proto-HLB complex containing Mxc and FLASH are initially
assembled and recruited to a histone gene cluster on the genome. Subsequently, additional components,
U7snRNP and Mute, are assembled on the proto-HLB complexes. At the onset of S phase, Spt6 and
Simplekin are further added to generate a mature HLB complex on the histone gene cluster [45].
The mature complex is involved in both stimulating the transcription of the five canonical histone
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genes and RNA processing at the 3′ end, so as to generate unique mRNA structures lacking poly(A)
tails [16,17,41].

Few studies have investigated why the mxc mutant larvae resulted in malignant hyperplasia
in the Drosophila hematopoietic tissue in the larval stage. In this study, we aimed to investigate the
mechanism via which malignant LG hyperplasia occurs in the mxc mutants. Overall, we propose that
the loss of HLB in the mxcmbn1 flies resulted in the LG malignant hyperplasia phenotype. Our findings
in the Drosophila leukemia model will enable us to consider a similar involvement of NPAT, the human
counterpart of Mxc, in the pathogenesis and development of leukemia. Our observations indicate that
the disruption of the regulatory mechanism that is required for maintaining undifferentiated blood cell
precursors in a quiescent state might be involved in leukemia pathogenesis.

2. Results

2.1. Loss of Function Mutations of mxc and Its Depletion in LG Resulted in Hyperplasia Showing Increased
Ratio of Immature Hemocytes in the Larval Tissues

The mxcmbn1 mutant larvae showed malignant hyperplasia of hematopoietic tissue, called LGs
(see Introduction). Another recent study revealed that an over-proliferation of immature cells, but not
mature cells, occurred in the most anterior lobes of LGs of mxcmbn1 larvae [23]. In this study, we further
investigated whether the development of LG hyperplasia in the LGs was affected in the hemizygotes
for lethal alleles. We confirmed that the remarkable over-growth of the lobes located at the most
anterior side of the LG occurred in the mature larvae of the hemizygotes for two mxc alleles, mxcmbn1

and mxc16a-1 (Figure 1a–c). The average size of LGs from the mature stage of the third instar larvae of
mxcmbn1 was >3.3-fold larger than that of the control (w) at the same stage (Figure 1b,h, n = 19, p < 0.0001
in Welch’s t-test). mxc16a-1 also possessed 2.7-fold larger LGs than that of the control (Figure 1c,h,
n = 26, p < 0.0001). The LG hyperplasia in mxc16a-1 was less severe than that in the mxcmbn1 larvae.
Hemizygotes for a viable but male-female sterile allele, mxcG43, did not show the LG hyperplasia
phenotype (Figure 1d,h), while hemizygotes for a less severe hypomorphic allele, mxcG46, died at
the pharate adult stage and showed weak LG hyperplasia phenotype (1.5-fold larger LG on average,
p < 0.01 in Student’s t-test) (Figure 1e,h). The largest lobe, called the first lobe, is located at the most
anterior side of LG. After the first lobe, the secondary lobe and the tertiary lobe are aligned in a
row toward the posterior, with insertion of single pericardial cells (PC) in between (Supplementary
Figure S1a). The hyperplasia in mxcmbn1 larvae was initially detected in most anterior lobes originally
located in the first lobes of the third instar larvae in the earlier stage (Supplementary Figure S1b),
and subsequently, it became prominent in the more posterior lobes (Supplementary Figure S1c,d). In
the mature wandering larvae, the lobes were hard to distinguish, as the severity of LG disintegration
increased with development (Figure 1b–d). We have frequently observed the LGs in these mutants, in
which the first lobes appear to be lost (11 out of 11 larvae in the early third instar stage), while the largest
lobes corresponding to the first lobes were located at the anterior end of the LGs. This phenotype
was similar to that previously reported in other LG hyperplasia mutants (Karamarz et al., 2012).
Although then PC cells are originally localized between lobes in normal LGs (Supplementary Figure
S1a’), they are positioned at the anterior end of the most enlarged lobe in both hemispheres of the
mutant LG. A part of the original first lobe consisting of some DAPI-stained cells remained at the
anterior side of the PCs (Supplementary Figure S1b’). These LG phenotypes showing abnormal lobe
organization suggested that the first lobes that were originally located at the anterior end of the LG
had disintegrated after overgrowth of the lobes in the mxc mutants. We realized in those mutants
that the LG hyperplasia could occur in more posterior lobes, as well as in the anterior end of the LGs
(Figure 1b,c and Supplementary Figure S1b–d).
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Figure 1. mxcmbn1 and mxc16a-1 showing a hyperplasia phenotype of larval lymph glands (LGs) are
hypomorphic and recessive alleles of mxc gene. (a–g) Fluorescence micrographs of DAPI-stained
LGs prepared from third instar larvae at mature stage. (a) A LG from control male larva (w/Y), (b) a
larva hemizygous for mxcmbn1 (mxcmbn1/Y), (c) a larva hemizygous for mxc16a-1 (mxc16a-1/Y), (d) a larva
hemizygous for a viable but male and female sterile allele, mxcG43 (mxcG43/Y), (e) a larva hemizygous for
a less sever pharate adult lethal allele, mxcG46 (mxcG46/Y). (f,g), A LG from a female larva homozygous
for mxcmbn1 (mxcmbn1/mxcmbn1) (f), a trans-heterozygote between mxcmbn1 and amorphic allele, mxcG48

(mxcmbn1/mxcG48) (g). (h), Quantification of LG size from mature third instar larvae with each genotype.
Significant differences from control (w) are indicated by **** p < 0.0001, *** p < 0.001, ** p < 0.01.
Student’s t-test was used for comparisons between control (w) and mxcG46/Y. Welch’s t-test was used
for other five comparisons. Bar: 100 µm. Red bars indicate average size of LG and error bars are SEM.

In normal LGs, the first lobe consists of three regions, namely the CZ enriched with mature
hemocytes (Supplementary Figure S2a”), the PSCs, which functions as a stem cell niche (Supplementary
Figure S2c”), and the MZ rich in immature precursors (Supplementary Figure S2b”). The posterior
lobes of normal LG were made of only immature precursor cells. Interestingly, we observed that the
most anterior lobe of the LG lacking the first lobe possessed mature hemocytes (Supplementary Figure
S2d) and cells expressing a PSC cell marker (Supplementary Figure S2f) with immature precursors
(Supplementary Figure S2e). These observations suggested that de novo production of PSC and CZ
could occur in the case of a loss or dysfunction of the most anterior lobes.

2.2. Hemizygotes for Recessive Lethal But Not Amorphic Mutations of mxc Exhibited Hyperplasia of Lobes in
Their Larval LGs

The LG phenotypes of mxcmbn1 and mxc16a-1 mutants were completely rescued by expressing
GFP-tagged Mxc, which can rescue the lethal phenotype of the amorphic allele, mxcG48 [16].
This suggested that both mxc mutations on the X-chromosome were recessive mutations, but not
dominant oncogenic mutations. The severity of the LG hyperplasia phenotype increased with reduction
in the gene dose of the mxc mutations. The average LG size of the mature third instar larvae of mxcmbn1

was significantly larger than that of control (w) (Figure 1b,h). On the other hand, hemizygotes for the
amorphic allele mxcG48 died in the first larval stage. The LG hyperplasic phenotype was not observed
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in the mxcG48 larvae at this stage. Furthermore, the trans-heterozygous females for mxcmbn1 over the
amorphic mxcG48 allele showed more severe LG phenotypes (7.8-fold increase in LG size) than mxcmbn1

homozygotes (4.4-fold increase in LG size) (p < 0.001, in Welch’s t-test) (Figure 1f–h). The results
that are presented in Figure 1a,b,f–h indicated that these mxc mutations were hypomorphic but not
amorphic. Overall, our observations indicated that the malignant hyperplasia phenotype results from
a reduction, but not complete loss of function, of mxc.

2.3. Depletion of mxc in the Matured Hemocytes of LG Resulted in the Hyperplasia Phenotype of LG

A previous study demonstrated that the immature precursor cells in the MZ of LG hyper-proliferate
in the malignant hyperplasic LGs of mxcmbn1 larvae [23]. In this study, we showed that mxcmbn1 and
mxc16a-1 flies showing LG hyperplasia harbored recessive and severe hypomorphic mxc mutations.
We investigated whether mxc depletion in LG reproduces the same hyperplasic phenotype to further
confirm that the loss of mxc was responsible for LG hyperplasia. We induced the ectopic expression
of dsRNA against mxc mRNA in the three regions of LG, namely, CZ, MZ, and PSC, while using
region-specific Gal4 drivers. The UAS-mxcRNAiHMS00444 used in this study can efficiently deplete
endogenous mxc mRNA in the testes while using the testis-specific Gal4 driver [25]. In this study,
we used the Hml-Gal4 driver to deplete the endogenous mRNA in CZ, the upd3-Gal4 driver to deplete
it in MZ, and the col-Gal4 driver for depletion in PSC (for control see Figure 2a–c; for mxc depletion
see Figure 2d–f). We have not recognized significant differences among the GFP intensity in each
nucleus of the control LG cells (Hml>GFP, Upd>GFP and col>GFP). Consequently, the average size
of LG from mature larvae harboring CZ-specific depletion of the mxc mRNA (Hml>mxcRNAi) was
significantly larger (3.5-fold) than that of the controls (Hml>GFP) (n = 16, p < 0.0001, in Welch’s
t-test). In contrast, the average size of LGs in the larvae harboring MZ-specific depletion or that
in the larvae with PSC-specific depletion did not significantly change (n > 20 in either comparison,
p > 0.05, not significant in Welch’s t-test). In summary, the depletion of mxc mRNA in CZ resulted in a
remarkable reproduction of the LG hyperplasia phenotype in the mxcmbn1 larvae, while depletion in
MZ or PSC did not significantly alter LG size (Figure 2g). Thus, these genetic data are consistent with
the conclusion that the malignant mxc mutation is a loss of function mutation, but not a dominant
neomorphic mutation. Furthermore, we concluded that reduction in the expression in CZ, but not in
MZ or PSC, is mainly required for LG hyperplasia in mxcmbn1 larvae.

A previous quantitative reverse transcription-polymerase chain reaction (qRT-PCR) experiment
indicated that the mRNA level of mxc was not significantly altered in the mxcmbn1 larvae [23].
Consistently, the results of published comprehensive RNA sequence analysis also showed that the ratio
of the mRNA levels of mxc in mxcmbn1 to that in a wild-type strain was 1.55 [23]. We next determined
the DNA sequence of over 6.7 kb genomic region of the mutant gene, from 263 bp of the 5′ untranslated
region (UTR) upstream of the ATG codon to 460 bp of the 3′UTR downstream of the stop codon, which
included eight exons and seven introns, to understand the molecular features of the malignant mxcmbn1

mutation. We detected two point mutations, A662V and T1321A, which cause amino acid substitutions,
while no deletions or insertions were detected in the introns, 5′UTR, 3′ UTR, or introns (Supplementary
Figure S3). T1321A is a nonsynonymous amino acid substitution, while A662V is a synonymous
substitution. However, it is uncertain whether these mutations are responsible for the hyperplasia of
LG in the mxcmbn1 mutant larvae. We confirmed a previously reported result that the mxc16a-1 mutant
harbored a nonsense mutation, which produces a truncated polypeptide lacking residues after the
1824th amino acid and containing an additional 31 amino acids at the C-terminal end [16]. Whether the
truncated protein is responsible for the malignant phenotype has not been clarified.
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Figure 2. LG region-specific depletion of mxc reproduced the LG hyperplasia as observed in mxcmbn1

larvae. (a–f) DAPI-stained LGs prepared from matured third instar larvae. (a–c) LGs having
region-specific expression of GFP in CZ (Hml>GFP) (a), medullary zone (MZ) (upd3>GFP) (b), Posterior
Signaling Center (PSC) (col>GFP) (c). (d–f) LGs having region-specific depletion of mxc in CZ
(Hml>mxcRNAi) (d), MZ (upd3>mxcRNAi) (e), PSC (col>mxcRNAi) (f). (g) The sizes of LGs having mxc
depletion in each of three different regions consisting of a LG. Bar: 100 µm. **** p < 0.0001 by Welch’s
t-test. n. s.; not significant.

2.4. HLB Formation Was Disrupted in Nuclei of LG Cells From mxcmbn1 Larvae

We next investigated whether the mxcmbn1 mutation affected HLB formation in LG cells, as the gene
product of mxc is a part of the nuclear body called HLB. The expression of Mxc-GFP in larval LG cells
enabled the visualization of HLB containing Mxc at a single site on chromatin (Figure 3a,b). The HLB
foci likely corresponded to the histone gene cluster, as shown in early embryonic cell nuclei [16,38].
These single Mxc foci were also visualized via immunostaining with anti-Mxc antibodies [16]. FLASH
co-localizes to the histone locus on chromatin with Mxc, and together these proteins initiate the
hierarchical assembly of HLB. Anti-FLASH immunostaining of normal cells showed that FLASH
co-localized with Mxc in the HLB (Figure 3a,3a’). Anti-Lsm11 immunostaining further demonstrated
that Lsm11, which is another known component that is subsequently recruited on the Pro-HLB,
co-localized with Mxc in the HLB (Figure 3b). In contrast, Mxc foci that were detected by anti-Mxc
immunostaining were greatly reduced in the LG nuclei from mxcmbn1 larvae. (Figure 3c,f). Neither
FLASH foci nor Lsm11 foci were observed in the LG nuclei of mxcmbn1 mutant larvae (Figure 3g,h).



Int. J. Mol. Sci. 2020, 21, 1586 7 of 22

From these immunostaining data, we concluded that HLB formation was disrupted in the LG cell
nuclei of mxcmbn1 larvae.

Figure 3. Histone locus body (HLB) formation was disrupted in LGs of mxcmbn1 larvae. (a,b)
Immunostaining of LG cells prepared from control third instar larvae expressing GFP-tagged Mxc
(green in a, b and a’, b’, while in a”’ and b”’) with antibodies against another HLB component, FLASH
(a) or Lsm11 (b) (red in a, b and a’, b’, white in a” and b”). DAPI-staining (blue in a and b, white in a”’
and b”’). Mxc-GFP foci are overlapped with FLASH foci and Lsm11 foci, indicating that these three
components construct a single nuclear body, HLB. (c–h) Immunostaining of LG cells prepared from
control third instar larvae with antibody against Mxc, FLASH or Lsm11. LG cells from wild-type (c–e)
or from mxcmbn1 mutant larvae (f–h). Anti-Mxc immunostaining (red in c and f, white in c’ and f’),
anti-FLASH immunostaining (red in d and g, white in d’ and g’), and anti-Lsm11 immunostaining (red
in e and h, white in e’ and h’). Mxc foci, FLASH foci, or Lsm11 foci fails to be observed on chromatins
in LGs from mxcmbn1 larvae. DAPI-staining (e”–h”). Bar, 10 µm.

2.5. Inhibition of HLB Formation in CZ of Larval LGs Reproduced Hyperplasia of the Tissues

Genetic evidence showing that the formation of HLB was disrupted in mxcmbn1 larvae and that mxc
depletion in the CZ resulted in hyperplasia of the tissue suggested that the loss of HLB in the LG region
might be responsible for LG hyperplasia. Hence, we performed depletion experiments to investigate
whether a reduction of other components of HLB can reproduce LG hyperplasia. Among the HLB
components, we selected two components that were involved in the transcription of canonical histone
genes, namely, Spt6 and Mute. Additionally, we also selected Cpsf160, which is involved in processing
of histone mRNAs. First, we confirmed that the induced expression of dsRNA against the mRNA of
each component resulted in the efficient depletion of the corresponding mRNAs while using qRT-PCR
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analysis. The results of qRT-PCR using total RNAs from larvae ubiquitously expressing dsRNAs
against the relevant mRNAs showed that the levels of the endogenous mute and Cpsf160 mRNAs
efficiently decreased to 68% and 43% of the control mRNA levels, respectively (Act>muteRNAi and
Act>Cpsf160RNAi). As all these larvae raised at 28 ◦C died before the third instar stage, we isolated
RNA from the larvae raised at 25 ◦C. The mute and cpsf160 mRNAs in the LG of larvae raised at 28 ◦C
(Hml>muteRNAi, Hml>cpsf160RNAi) were also efficiently depleted. As all the larvae with ubiquitous
expression of dsRNA against Spt6 mRNA, even those raised at 25 ◦C, died before the third instar
stage, we were unable to isolate enough total RNA to confirm whether the UAS-Spt6RNAi stock can
deplete the endogenous mRNA efficiently. It is highly possible that the lethality of Act>Spt6RNAi is
due to a depletion of the Spt6 mRNA in the larvae, as no off-targets against the dsRNA sequences
expressed by the UAS-RNAi construct have been identified. Subsequently, we observed the LGs from
mature third instar larvae, in which Spt6 was depleted in CZ, MZ, and PSC while using three different
gal4 drivers; Hml-Gal4, upd3-Gal4, and col-Gal4, respectively (Figure 4a–i,k,l). The average LG size
of the mature larvae with the depletion of Spt6 mRNA in CZ (Hml>Spt6RNAi) increased by 3.5-fold
when compared to that of control larvae (Hml>GFP) (p < 0.0001, Student’s t-test) (Figure 4m). We also
observed abnormal lobe organization, absence of the original first lobes, enlargement of lobes located at
the anterior end, as well as more posterior lobes. These LG phenotypes were similar to the phenotypes
in mxcmbn1. In contrast, when compared to that in the control (upd3>GFP), the depletion of Spt6 in
MZ (upd3>Spt6RNAi) did not cause any significant alteration, (p > 0.05) (Figure 4e,f). Unexpectedly,
the larvae with Spt6 depletion in PSC died before the third instar stage. This might be responsible for
the depletion effect in other tissues rather than in LG by col-Gal4. Consistently, the depletion of mute
in CZ resulted in remarkable hyperplasia (more than five-fold larger than the size of the control) of
the tissue, which indicated that the depletion of mute could reproduce the LG hyperplasia phenotype
(Figure 4c,m). Conversely, when compared to the control, the depletion of mute and cpsf160 in MZ
suppressed LG growth by 40% (p < 0.001) (Figure 4g,h,n). However, neither mute nor cpsf160 depletion
in PSC showed any detectable difference in LG size and morphology, including lobe organization
(Figure 4k,l,o). In summary, the depletion of the mRNAs of the four components of HLB, including
Mxc in CZ, commonly resulted in the reproduction of LG hyperplasia, but not in MZ or PSC. Together
with these genetic results, we concluded that the reduction of HLB in the CZ of the LG is responsible
for the LG hyperplasia that was observed in mxcmbn1 larvae.

Figure 4. Cont.
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Figure 4. Region specific-depletion of HLB components in larval LG and their effects on reproduction
of LG hyperplasia. (a–i,k,l) DAPI-stained LGs prepared from mature larvae at third instar stage.
(a–d) LGs having ectopic expression in mature hemocytes contained abundantly in CZ of LG using
Hml-Gal4. (e–h) LGs having ectopic expression in immature precursor cells enriched in MZ using
upd3-Gal4. (i,k,l) LGs having ectopic expression in PSC cells using col-Gal4. (j) As col>Spt6RNAi died
before third instar larvae, LGs at the same stage were not able to observe. (a,e,i) Control LGs expressing
GFP in CZ (Hml>GFP) (a), MZ (upd3>GFP) (e) and PSC (col>GFP) (i). (b,f) LGs depleted of Spt6 in CZ
(Hml>Spt6RNAi) (b), MZ (upd3>Spt6RNAi) (f). (c,g,k) LGs depleted of mute in CZ (Hml>muteRNAi)
(c), MZ (upd3>muteRNAi) (g) and PSC (col>muteRNAi (k). (d,h,l) LGs depleted of Cpsf160 in CZ
(Hml>Cpsf160RNAi) (d), MZ (upd3>Cpsf160RNAi) (h) and PSC (col>Cpsf160RNAi) (l). Bar: 100 µm.
(m,n,o) Quantification of LGs that were prepared from mature third instar larvae with each genotype.
** p < 0.01, *** p < 0.001, and **** p < 0.0001 in Student t-test. Note that a significant LG hyperplasia,
as observed in the mxc mutants, was commonly seen in mature hemocyte-specific depletion of all of
four HLB components, including Mxc.

2.6. Reduced mRNA Levels of Canonical Histone mRNAs and Production of Abnormal Polyadenylated mRNAs
in mxcmbn1 Larvae

The HLB is essential for both transcription of canonical histone genes and mRNA processing to
produce mature mRNAs without poly(A) tails. Therefore, we next investigated whether the expression
of the five canonical histone genes encoding histones H1, H2A, H2B, H3, and H4 were altered while
using qRT-PCR (Figure 5a,b). The total RNAs were isolated from third instar larvae of control (w) and
mxcmbn1, and cDNA was synthesized while using a random primer. We performed qRT-PCR analysis
using the cDNAs to quantitate the total amount of the mRNAs for histones H1, H2A, H2B, H3, and H4.
In every case, we observed that these mRNA levels were reduced to 30–40% of the normal control
levels (Figure 5a). We further confirmed the results by assessing the levels of histone H4 mRNA in the
LGs using RNA in situ hybridization, as it was difficult to perform qRT-PCR using RNAs prepared
from LGs (Figure 5c,d). We observed a strong in situ hybridization signal of the histone H4 mRNA in
10% of the control LG cells on average (685 cells/6640 cells examined) (Figure 5c). They corresponded to
S phase cells in which the histone genes are transcribed in a replication-dependent manner. In contrast,
we observed that the signal of the histone H4 mRNA decreased to 20% of that in the control cells and
the intensity of the RNA in situ signal also notably reduced in the LG of cells mxcmbn1 (Figure 5e).

Furthermore, we investigated whether another HLB function, the processing of the pre-mRNAs of
canonical histones, was also compromised in the mutant larvae. In normal cells, the processing factors
in HLB cleave the pre-mRNA before the poly(A) addition signal to generate mature mRNAs lacking
poly(A) tails. Therefore, only a small amount of histone mRNAs with poly(A) tails exist in normal
cells [46]. We isolated the total RNAs from the third instar larvae of control (w) and mxcmbn1 larvae
and, subsequently, cDNA was synthesized from mRNAs with poly(A) tails while using oligo(dT)
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primers. Using the cDNAs, we performed qRT-PCR analysis to quantitate the levels of polyadenylated
mRNAs for histones H1, H2A, H2B, H3, and H4. Consequently, the levels of all abnormal canonical
histone mRNAs, with the exception of histone H1 mRNA, were two to three-fold higher than that of
the normal controls (Figure 5b). From these observations, we concluded that a reduction in the levels
of the total mRNAs of canonical histones and/or the production of abnormal polyadenylated mRNAs
occurred due to impaired HLB activities in the mxc mutants.

Figure 5. Quantification of mRNAs for five canonical histone genes in third instar larvae by qRT-PCR
and in situ hybridization of histone H4 mRNA in LG cells prepared from control and mxcmbn1 larvae.
(a) Relative levels of total mRNAs for five canonical histones, histoneH1, H2A, H2B, H3, H4 in control
and mxcmbn1 third instar larvae. Relative mRNA levels of the genes were calculated and normalized
to the control level, which was set to 1.0 (w/Y) (** p > 0.01, Student’s t-test). qRT-PCR analysis to
quantitate the amount of mRNA of each gene was repeated three times. Error bars represent s.d. Note
that mRNA level of every canonical histone gene was reduced in amount, as compared with that of
control. (b) Relative levels of polyadenylated mRNAs for five canonical histones, histone H1, H2A,
H2B, H3, and H4 in control (w) as well as mxcmbn1 third instar larvae. Note that mRNA level of every
canonical histone gene except histone H1 increased in amount. (c,d) RNA in situ hybridization of histone
H4 in LG cells prepared from male larvae at third instar larval stage. (c) control (w/Y), (d) mxcmbn1.
(e) A comparison of LG cells showing signals for histoneH4 mRNA (red in c and d, white in c’ and
d’). Note that a weaker in situ signal appeared in LGs of mxcmbn1 and that less than one fifth of cells
expressing histone H4 mRNA can be observed in the mutant LGs. (c”,d”) DAPI-staining. Bar: 100 µm.
** p < 0.01 Student t-test.

2.7. Ectopic Overexpression of Polyadenylated mRNAs of Canonical Histones in CZ Reproduced the LG
Hyperplasia Observed in the mxc Mutants

The observation that abnormal forms of canonical histone mRNAs were produced in the mxc
mutants encouraged us to investigate whether the production of abnormal histone mRNAs can
reproduce the LG hyperplasia that was observed in the mutants. We induced artificial histone mRNAs
having poly(A) tails in CZ of normal LG to investigate this possibility. We performed ectopic expression
of the histone mRNAs with poly(A) tails while using Hml-Gal4 because we showed that the LG
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hyperplasia requires the loss of the mxc function in mature hemocytes. These artificial mRNAs were
produced while using the 3′UTR sequences of other genes. We determined whether the ectopic
expression affected the LG in normal larvae in the mature third instar stage (Figure 6). For example,
the average size of LGs with ectopic expression of histone H2B polyadenylated mRNA was 5.3-fold
higher than that of normal LGs from control larvae (Hml>GFP) at the same developmental stage
(n = 20, p < 0.0001) (Figure 6a,d,g). We observed that several larvae harbored LGs that were >15 times
larger than the average size of the control LGs (Figure 6g). Consistently, the LG size of larvae having
mature hemocyte-specific expression of polyadenylated mRNAs for other four canonical histones
(histone H1, H2A, H3, and H4) significantly increased in size (p < 0.001, n > 21) (Figure 6a–c,e–g).
In summary, the ectopic expression of all five canonical histone mRNAs with poly(A)tails resulted
in LG hyperplasia. In contrast, the mRNAs of non-canonical histones are originally transcribed as
polyadenylated forms that are independent of DNA replication. The ectopic expression of mRNAs for
the non-canonical histones, histone H3.3B and histone H2Av, did not affect the LG morphology and
size (n > 10, p > 0.05 in Welch’s t-test). The DAPI-stained LG images were not presented. The results
of this genetic analysis strongly suggested that the production of abnormal polyadenylated forms of
canonical histone mRNAs was, at least partially, responsible for LG hyperplasia.

Figure 6. LG hyperplasia induced by ectopic expression of polyadenylated mRNA for each of canonical
five histones. (a–f) LGs stained with DAPI prepared from mature third instar larvae having ectopic
expression of polyadenylated mRNA for canonical histones that express in a DNA replication-dependent
manner. A LG from control larvae (Hml>GFP) (a), LGs expressing polyadenylated histone H1
mRNA (Hml>HisH1-poly(A)) (b), expressing polyadenylated histone H2A (Hml>HisH2A-poly(A))
(c), expressing polyadenylated histone H2B (Hml>HisH2B-poly(A)) (d), expressing polyadenylated
histone H3 (Hml>HisH3-poly(A)) (e), expressing polyadenylated histone H4 (Hml>HisH4-poly(A)) (f).
(g) Quantification of LG size (n ≥ 21). (*** p < 0.001, **** p < 0.0001. Student t-test was used for
comparison between control and Hml>H1-poly(A). Welch’s t-test was used for other four comparisons).
Note that ectopic overexpression of polyadenylated mRNA for histoneH4 in CZ resulted in a significant
hyperplasia of LG, as compared with the size of controls. Bars: 100 µm.

2.8. Ectopic Expression of the Negative Regulator Adgf-A, Which Suppresses Proliferation of Immature
Hemocytes, and Signaling Factors Required for Induction of the Regulator Suppressed Hyperplasia in mxcmbn1

We demonstrated that thee loss of Mxc function in the CZ of LG is required for hyperplasia of
the tissue in mxc mutants. It is known that Adgf-A is involved in the suppression of immature cell
proliferation in LG, and this negative regulator is secreted from the CZ [37]. Combining these previous
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observations with our data, we speculated that Adgf-A might be involved in LG hyperplasia in mxcmbn1

larvae. We next induced ectopic expression of this negative regulator in LGs of mxcmbn1 to verify this
hypothesis. The average LG size of mxcmbn1 larvae having mature hemocyte-specific expression of
Adgf-A (mxcmbn1/Y; Hml>Adgf-A) decreased by 42.6% when compared to that of mxcmbn1 (mxcmbn1/Y;
Hml>GFP) (n = 28, p < 0.0001 in Student’s t-test) (Figure 7a,b,j). It is also known that the expression
of Adgf-A is induced by Pvf1, a signaling pathway that is mediated by Pvr (a Pvf1 receptor), and its
downstream factor, Stat92E. We enhanced the Pvr-mediated signal that induces Adgf-A expression
by overexpressing Pvr and Stat92E in CZ using the Gal4/UAS system to confirm that Adgf-A is
involved in LG hyperplasia. When compared to that in mxcmbn1 (mxcmbn1/Y; Hml>GFP), the average
size of LG overexpressing Pvr or Stat92E in mxcmbn1 (mxcmbn1/Y;Hml>Pvr, mxcmbn1/Y;Hml>Stat92E)
significantly decreased (59.1% and 36.8% of that of the control (n = 21, p < 0.0001 for each) (Figure 7c,d,j).
Conversely, we also investigated whether the depletion of Adgf-A, Pvr, and Stat92E in CZ enhanced
LG hyperplasia (Figure 7a,e–g,j). All the larvae with ubiquitous expression of dsRNA against each of
these three mRNAs raised at 25 ◦C died before the third instar stage. Thus, we were unable to perform
qRT-PCR experiments to confirm whether the UAS-RNAi stocks can deplete the relevant endogenous
mRNAs efficiently. However, as no off-targets against the dsRNA sequences that were expressed by
these UAS-RNAi constructs have been identified, it is highly possible that the lethality is due to an
efficient depletion of each mRNA in the larvae. Subsequently, we induced each of these dsRNAs in CZ
(Hml>Adgf-ARNAi, Hml>PvrRNAi, and Hml>Stat92ERNAi). Consequently, the ectopic expression of
dsRNA for Adgf-A, as well as that for Pvr and STAT92E in CZ, significantly enhanced LG hyperplasia
in mxcmbn1 (1.4 to 2.0-fold enlargement, n > 27, p < 0.001 to 0.0001 in Student’s t-test or Welch’s t-test).
We induced the overexpression of Pvf1 in PSC, from which Pvf1 is secreted (col>Pvf1) (Figure 7h,i).
We demonstrated that Pvf1 overexpression also significantly suppressed LG hyperplasia (by 60% of the
original LG size in mxcmbn1 larvae at the mature stage, n = 22) (p < 0.001 in Welch’s t-test) (Figure 7k).
Based on these genetic data, we concluded that the downregulation of Adgf-A and Pvr-mediated
signaling is required for the expression of factors that are involved in LG hyperplasia in mxcmbn1 larvae,
although direct evidence showing the down-regulation is lacking.
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Figure 7. Suppression of the LG hyperplasia in mxcmbn1 larvae having ectopic expression of Adgf-A and
signaling factors required for its expression in the CZ. (a–i) DAPI-stained LGs prepared from mxcmbn1

mature larvae at third instar stage. (a) A control LG expressing GFP in the CZ (a). (b–d) LGs having
mature hemocyte-specific over-expression of Adgf-A (b), Stat92E (c), and Pvr (d). (e–g) LGs having
mature hemocyte-specific expression of dsRNAs against mRNAs for Adgf-A (e), Stat92E (f), Pvr (g).
(h,i) LGs having over-expression of GFP (h), and Pvf1 (i) in PSC cells, from which Pvf1 is secreted. Bars:
100 µm. (j,k) Quantification of LG size. (n ≥ 21). *** p < 0.001, **** p < 0.0001. Student’s t-test was used
for comparisons between mxcmbn1/Y;Hml>GFP and mxcmbn1/Y;Hml>Adgf-A, mxcmbn1/Y;Hml>Stat92E,
mxcmbn1/Y;Hml>Pvr, mxcmbn1/Y;Hml>Adgf-ARNAi. Welch’s t-test was used for comparisons between
mxcmbn1/Y;Hml>GFP and mxcmbn1/Y;Hml>Stat92ERNAi, mxcmbn1/Y;Hml>PvrRNAi. Note that ectopic
overexpression of Adgf-A, PvR, and Stat92E in CZ resulted conversely in a significant suppression of the
LG hyperplasia. Conversely, ectopic expression of dsRNAs against Adgf-A, PvR, and Stat92E mRNA in
CZ resulted in a significant enhancement of the LG hyperplasia of mxcmbn1.
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3. Discussion

3.1. Reduction of mxc Expression or Its Function in Mature Hemocytes Resulted in LG Hyperplasia Caused by
Over-Proliferation of Undifferentiated Cells in the Tissue

Unique mutations that cause amino acid substitutions, such as RasV12, and the production of fusion
proteins, for example PML-RARα generated via T(15;17)(q22;12) translocation, have been identified as
candidates for gene aberration responsible for the diseases in several types of human leukemia and
lymphoma cells [47–49]. These mutations were proven to act in a dominant manner, and this results
in malignant transformation of hematopoietic cells. Further, a number of recessive mutations in the
tumor suppressor genes, such as p53, Myc, and the cyclin-dependent kinase inhibitor INK4 family
genes, are also deeply implicated in human leukemia and lymphoma [4,50,51]. On the other hand,
mxcmbn1, which is responsible for the malignant hyperplasia of immature cells in LG, is a recessive and
loss of function mutation [20,22] and this study. We concluded that a reduction in mxc expression or its
function in mature hemocytes is responsible for LG hyperplasia in the mxc mutants. It is likely that
a reduction, but not a complete loss of the gene function, is essential for LG malignant hyperplasia,
as the gene product plays a critical role in histone biogenesis. A previous study has demonstrated
that the over-proliferation of undifferentiated hemocyte precursors, but not mature hemocytes, in LG
resulted in hyperplasia of the tissue [23]. These phenotypes of the mxcmbn1 mutants were reminiscent of
symptoms of human leukemia and lymphoma [52,53]. Immature hemocyte precursors that are present
in LG are arrested at the G0 state of the cell cycle in the tissue. The maintenance of the quiescent state
is required for a certain signal emanating from the mature hemocytes to control the proliferation of
the immature cells in LG [37,54]. While considering these previous findings with the current genetic
data, we speculated that the reduced expression or function of mxc in mature hemocytes resulted in a
failure to maintain the quiescent state of the immature hemocyte precursors, and this eventually led to
malignant hyperplasia of the LG.

Along with the disappearance of the first lobe in mxcmbn1 mutants, hyperplasia of second and
third lobes was frequently observed in the LGs. The first lobe, but no other posterior lobes, possesses
mature hemocytes in the CZ and PSC, which acts as a stem cell niche. Similar LG phenotypes, such as
excess enlargement, and thereby rupture of the first lobe of LG, were also observed in the Ubc9 mutant
larvae [55]. A large number of hemocytes have to be produced in LGs, not only in these mutants,
but also in the cases of severe immune challenge, such as severe bacterial infection or oviposition of
wasp. Consequently, this is sometimes accompanied by enlargement and the resultant burst of the
first lobe [56]. In both cases, excessive hemocytes were released into hemolymph and hyperplasia of
the second and third lobes was observed. Upon elimination of the first lobes, the signal suppressing
proliferation of undifferentiated cells was lost as a result. Therefore, suppression of precursor cell
proliferation can be avoided and, subsequently, the proliferation of immature cells in the posterior
lobes can be stimulated. We observed de novo generation of PSC and CZ in LGs, in which the first
lobes were eliminated in the mutant larvae. The presence of the PSC and CZ in the posterior lobes
of LGs lacking the first lobes has not been analyzed in Ubc9 mutants or larvae with severe infection
in the LGs. Therefore, we cannot conclude whether the de novo production of PSC cells and mature
hemocytes is a backup system originally provided or characteristic of the mxc mutants. Whether the
signaling center, including a stem cell-niche and mature hemocytes, can be newly generated when the
first lobe is lost warrants further investigations.

3.2. Mature Hemocyte-Specific Expression of Polyadenylated mRNAs for Canonical Histones Was Responsible
for Hyper-Proliferation of Immature Cells in LG Hyperplasia

HLB is a nuclear body that is associated with the histone gene cluster and it is required for
transcription of genes for five canonical histones in the S phase. It is also required for 3′ processing to
produce mRNAs without poly(A) tails [13,43,57]. Both reduced the levels of mRNAs for the canonical
histones and the production of abnormal histone mRNAs harboring poly(A) tails were observed in
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mxcmbn1 larvae. Ectopic expression of the abnormal type of each histone mRNA was sufficient for the
reproduction of LG hyperplasia. Therefore, generation of polyadenylated mRNAs is a more likely
cause of LG hyperplasia in mxcmbn1. However, we cannot exclude the possibility that a reduction
in mRNA levels led to hyperplasia. The mRNAs cannot be readily depleted sufficiently via dsRNA
overexpression while using the Gal4/UAS system, as large amounts of the histone mRNAs are expressed
from more than 100 sets of histone genes in the Drosophila genome [45].

The histone genes are transcribed in a DNA replication-dependent manner and their mRNAs
exclusively exist in S phase cells [41,58]. Most of the mRNAs do not possesses poly(A) tails, owing to
the action of HLB. In fact, histone mRNAs with artificial poly(A) tails exist at all cell cycle stages,
not being restricted to the S phase [59]. The replication-coupled synthesis of histones can be also
achieved as a consequence of selective degradation of the mRNAs before the end of the S phase [46].
The S phase-specific expression of canonical histones requires the rapid degradation of the mRNAs
at the end of the S phase [60]. In contrast, the degradation of polyadenylated mRNAs is usually
time-consuming, as it occurs via multiple steps, including processes that remove the poly(A) tails
from the mRNAs [61]. The impediment of replication-dependent synthesis of histones can reduce the
amount of total core histones. In addition, the poly(A) tails participate in nuclear export of mRNA
toward the cytoplasm [62]. The nuclear export of mRNAs is mediated by the TAP protein that is
associated with the poly(A) tails of mRNAs [63]. On the other hand, the mRNAs for canonical histones
originally lacking poly(A) tails are associated with PHAX proteins, and the RNA-protein complexes
are exported from the nucleus [64]. The alteration of the nuclear export system due to aberrant poly(A)
addition on the histone mRNAs might prevent the RNA transport and translation required for efficient
production of core histones.

The formation of rigid chromatin structure is certainly interrupted, when replication-coupled
incorporation of core histones is inevitably affected. Thus, it is highly possible that the production
of polyadenylated histone mRNAs affected the chromatin structure, which eventually affected gene
expression in the LG cells. Some studies have shown that reduced transcription and/or expression of
histone genes resulted in gross alteration of gene expression patterns in human cells [65,66]. A previous
RNA-seq analysis revealed that the expression of several genes, such as tumor-related genes, such
as nimC1 and Pvf2, related to tumorigenesis or cell cycle progression, was altered in the mxcmbn1

larvae [23]. Consistently, earlier studies have reported that hypomorphic mxc mutations enhanced
phenotypes of PcG mutants and cause ectopic expression of homeotic genes [18,19]. On the basis of
these results, we speculated that modified chromatin structure due to reduced histone expression in
the mxc mutants altered the expression of the genes that maintain immature cells in the quiescent stage.
It is also possible that these alterations eventually led to malignant hyperplasia of LG cells in mxcmbn1.
Hence, the identification of the altered gene expression responsible for malignant LG hyperplasia in
the mxc mutant is important.

Genome instability and histone expression levels show positive correlation [67]. A previous study
on a hypomorphic mxc mutant reported that the mRNA levels of four canonical histones, with the
exception of histone H3, decreased, while the level of histone H3 increased in other hypomorphic mxc
mutants [24]. Although the mechanism underlying the changes in histone gene expression has not
yet been clarified, it can be interpreted, as follows; the alterations in the expression of the five histone
mRNAs resulted in DNA replication stress and the accumulation of DNA damage [24,68]. However,
another study showed that the mRNA levels of the five canonical histones were constantly reduced in
the testes of the hypomorphic mutants for mxc [25]. In addition, DNA damage foci that were examined
by immunostaining using anti-H2Av antibody were not evident in the mutant cells. Further studies
regarding DNA replication stress in the mxc mutants are necessary.
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3.3. Involvement of mxc in the Signaling That Induces Adgf-A Expression, Which Suppresses Excess
Proliferation of Immature Cells in LG

The reports show that the CZ in LG is rich in mature hemocytes, which transmit a signal to
suppress the excessive proliferation of immature hemocyte precursors [37,54]. The signal corresponds
to an extracellular protein, called Adgf-A, which is expressed in mature cells that are located in the CZ.
The factor is secreted from the mature hemocytes in LG and acts on immature precursors of hemocytes
in the MZ to suppress their proliferation. Adgf-A expression requires the activation of a signaling
pathway that is mediated by Pvr, which is homologous to a receptor for a mammalian PDGF and VEGF
ligands. For the activation of the signaling pathway, a ligand for Pvr, called Pvf-1, and a signaling
molecule, called Stat92E, acting downstream of Pvr, are required [54]. Here, we showed that the ectopic
expression of Adgf-A and enhancement of Pvr-Stat92E-mediated signaling resulted in the suppression
of LG hyperplasia In mature hemocytes of the mxcmbn1 LG. Conversely, the depletion of Adgf-A
and downregulation of the Pvr-Stat92E-mediated signaling pathway enhanced tissue hyperplasia.
These genetic interactions between Mxc and Adgf-A, or that between Mxc and the signaling molecules,
strongly suggest that mxc is closely related to an Adgf-A expression or signal transduction mediated
by Pvr and Stat92E. While considering that the supply of core histones required for generating the
substantial chromatin structure decreases in the LG cells of the mxc mutants, expression Adgf-A,
or of signaling factors that are essential for Adgf-A expression, was downregulated due to altered
chromatin structure in the mutant LG cells. To verify this hypothesis, it will be important to show
that Adgf-A expression decreases in the mature hemocytes in the CZ of the mutant LG. Furthermore,
whether Mxc or Mxc-HLB colocalizes with Stat92E in the LG nuclei warrants further investigation.
Overall, we propose that the loss of HLB function and thereby the inhibition of canonical histone
mRNA expression that is required for substantial chromatin construction, is critical for malignant LG
hyperplasia in this Drosophila leukemia model. Our findings in the Drosophila model will enable us
to consider a similar involvement of NPAT, the human counterpart of Mxc, in the pathogenesis and
development of leukemia. Animal models of other species should clarify the hypothesis derived from
investigations while using Drosophila.

4. Materials and Methods

4.1. Drosophila Stocks

All of the Drosophila melanogaster stocks were maintained on standard cornmeal food at 25 ◦C,
as previously described [69]. Gal4-dependent expression was performed at 28 ◦C. w1118 (w) was
used as a normal control stock. Recessive lethal alleles of mxc showing the LG tumor phenotype,
mxcmbn1 (#6360) and mxc16a-1 (#7133) were obtained from Bloomington Drosophila Stock Center (BDSC)
(Bloomington, IN, USA) [23]. Non-tumorous hypomorphic allele, mxcG43 and mxcG46, which are
able to develop to adult stage and pharate adult stage, respectively, were obtained from BDSC [25].
Amorphic allele, mxcG48 was also obtained from BDSC (#7141). For the depletion of the mxc mRNA,
P{TRiP.HMS00444} (UAS-mxcRNAi) was used. This stock (#32446 from BDSC) can be used for efficient
Gal4-dependent depletion of the gene [23]. To rescue the phenotypes of mxc mutants, we used
PBac{Ubi-GFP-Mxc} (Ub-Mxc) [16] (a gift from Dr. R.J. Duronio (North Carolina Univ., Chapel Hill,
NC, USA). The following Gal4 driver stocks were used for ectopic expression in specific larval tissues;
P{w+mC=Hml-GAL4.G}6-4P (Hml-Gal4) for the induction of the gene expression in CZ of LG (a gift from
Dr. D. Hultmark (Umea Univ., Umeå, Sweden)), P{upd3-Gal4}(upd3-Gal4) for the induction in MZ of
LG (a gift from Dr. N. Perrimon (Harvard Medical School, Boston, MA, USA)), P{col-Gal4}(col-Gal4)
for the induction in PSC of LG [70] (a gift from Dr. M. Crozatier (Université Toulouse III, Toulouse,
France)), and p{Actin5C-Gal4}25F01 (Act-Gal4) for ubiquitous expression (#4414 from BDSC). For a
depletion of other HLB components, we used the following UAS-RNAi stocks; P{TRiP.HMS00364}
(UAS-Spt6RNAi) (#32373), and P{TRiP.GL01166} (UAS-Cpsf160RNAi) (#42478), both which were
obtained from Bloomington Drosophila Stock Center. P{KK104734}VIE-260B (UAS-muteRNAi)
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(#105257), P{KK102041} (UAS-Adgf-ARNAi) (#110152), P{KK100519} (UAS-Stat92ERNAi) (#106980),
P{GD14375} (UAS-PvrRNAi) (#43459) from Vienna Drosophila RNAi Center. For ectopic expression
of canonical histone mRNAs carrying a poly (A) tails at the 3′ends, we used the following stocks;
UAS-HistoneH1-YFP [71] (a gift from Dr. A. Tulin (Univ. North Dakota, Grand Forks, ND, USA)),
UAS-HistoneH2A-YFP [71] (a gift from Dr. A. Tulin (Univ. North Dakota)), UAS-HistoneH2B-GFP [72]
(a gift from Dr. Xin Chen (Johns Hopkins Univ., Baltimore, MD, USA), UAS-HistoneH3-GFP [72] (a gift
from Dr. Xin Chen (Johns Hopkins Univ.), and UAS-histone H4 ORF-3 x HAF000777 (UAS-HistoneH4-HA)
obtained from Fly ORF. UAS-HintoneH2Av (#5941 from BDSC). The mRNAs that are induced by these
UAS stocks possess 3′UTR sequences and poly(A) tails of other genes after each of coding sequences
and a fluorescence tag.

For the ectopic expression of Adgf-A and signaling factors that induce the factor, the following
UAS stocks were used; PBac{WH}Adgf-Af04691 (UAS-Adgf-A) (#04691 from Exelixis at Harvard
Medical School), M{UAS-Stat92E.ORF.3xHA}ZH-86Fb (UAS-Stat92E) (#F000750 from FlyORF(Univ. of
Zurich, Zurich, Switzerland)), M{UAS-Pvr.ORF.3xHA}ZH-86Fb (UAS-Pvr) (#F000896 from FlyORF),
and M{UAS-Pvf1.ORF.3xHA.GW}ZH-86Fb (UAS-Pvf1) (#F002862 from FlyORF).

4.2. LG Preparation

Normal controls (w/Y) pupated at six days (28 ◦C) and seven days (25 ◦C) after egg laying (AEL),
whereas some of the mxcmbn1 mutant remained in third instar larval stage at eight days (28 ◦C) and
10 days (25 ◦C) AEL. The comparative analysis of hemizygous mutants and controls was performed on
the same day, when the wandering third instar larval stage was seen, to minimize the possibility of a
delay that might allow the hyperplastic tissue to grow. Alternatively, the tissues were collected from
hemizygous mutant larvae one day after the timing of the LG collection from control larvae. For the
staging of the larvae, parent flies were transferred into a new culture vial and left there to lay eggs for
24 h. Careful attention was given to avoid overcrowding of the larvae in the vial. A pair of anterior
lobes of the LG without connected cardiac cells from mature stage larvae were isolated and fixed with
3.7% formaldehyde for 15 min. to compare the size of LGs. The fixed samples were mildly flattened
under constant pressure while using an apparatus so that the tissue became spread out into cell layers
with a constant thickness. The LG area of each DAPI-stained sample was measured while using ImageJ
ver.1.47 (https://imagej.nih.gov/ij/).

4.3. qRT-PCR Analysis

The total RNA was extracted from third instar larvae with each genotype while using
the Trizol reagent (Thermo Fisher Scientific, Waltham, MA, USA). cDNA synthesis from the
total RNA was carried out using the PrimeScriptTM High Fidelity RT-PCR Kit (TaKaRa,
Clontech Laboratories, Shiga, Japan) using an oligo dT primer. Real-time PCR was performed
while using the FastStart Essential DNA Green Master (Roche, Mannheim, Germany) and
a Light Cycler Nano instrument (Roche). According to software the Primer3Plus (http:
//www.bioinformatics.nl/cgi-bin/primer3plus.cgi), the primers for qRT-PCR were synthesized
as follows: RP49-Fw,5′-TTCCTGGTGCACAACGTG-3′; RP49-Rv,5′-TCTCCTTGCGCTTCTTGG3′;
histoneH1-FW,5′-AGTTGCAACGTCCGCTTC-3′; histoneH1-RV,5′-TTGTGCCAGCAGATCCAG-3′;
histoneH2A-Fw,5′-GAAGGGAAACTACGCAGAGC-3′; histoneH2A-Rv,5′-AGCCAACTCGAGAA
CCTCAG-3′; histoneH2B-Fw, 5′-TTCGTCGAAGGCGATGAG-3′; histoneH2B-Rv 5′-CGAGCGCTTGTT
GTAGTGAG-3′, histoneH3-Fw, 5′-GAGCACCGAGCTTCTAATCC-3′; histoneH3-Rv 5′- CTTCC
TGCAGAGCCATAACC-3′, histoneH4-Fw, 5′-GCGTCATCGCAAAGTACTGC-3′; histoneH4-Rv;
5′-CCAGATATGCGCTTCACACC-3′ Each sample was duplicated on the PCR plate, and the final results
average three biological replicates. For the quantification, the ∆∆Ct method was used to determine the
differences between target gene expressions relative to the reference Rp49 gene expression.

https://imagej.nih.gov/ij/
http://www.bioinformatics.nl/cgi-bin/primer3plus.cgi
http://www.bioinformatics.nl/cgi-bin/primer3plus.cgi
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4.4. Lymph Gland Immunostaining

For the immunostaining of larval lymph glands, anterior lobes of LGs were dissected from matured
third instar larvae and fixed in 3.7% paraformaldehyde in PBS for 15 min. at 25 ◦C. After repeated
washing, samples were blocked with PBS containing 0.1% Triton X-100 and 10% normal goat serum and
the fixed samples were incubated with primary antibodies at 4 ◦C overnight. The following antibodies
were used as primary antibodies: anti-Mxc antibody [16] (a gift from Dr. B. Marzluff, diluted at 1:
2000), anti-Lsm11 antibody [73] (a gift from Dr. J. Gall, 1: 1000). After extensive washing, specimens
were incubated with Alexa 594 or Alexa 488 secondary antibodies (1: 400; Molecular Probe, Eugene,
OR, USA). The LG specimens were placed on a fluorescence microscope (Olympus, Tokyo, Japan,
model: IX81), which was outfitted with excitation, emission filter wheels (Olympus). The fluorescence
signals were collected while using 10×, 20×, 40× dry objective lens. The specimens were illuminated
with UV filtered and shuttered light while using the appropriate filter wheel combinations through a
GFP filter cube. GFP fluorescence images were captured with a CCD camera (Hamamatsu Photonics,
Shizuoka, Japan). Image acquisition was controlled through the Metamorph software version 7.6
(Molecular Devices, Sunnyvale, CA, USA) and processed with ImageJ or Adobe Photoshop CS (Adobe
Systems, San Jose, CA, USA).

4.5. Fluorescence In Situ Hybridization (FISH)

We amplified a 351 bp-long genomic DNA of the gene while using a set of a PCR
primer, 5′-TACTCGAGCTTTCGTGCTGTGCGTG-3′ and 5′-CGGAATTCTAACCGCCAAATCCGTA-3′,
for RNA in situ hybridization to examine a distribution of histoneH4 mRNA in larval LGs. The DNA
fragment was inserted into pOT2 plasmid to produce a RNA probe for the FISH using FISH Tag
RNA Kit (Catalogue #F32954 Invitrogen, Carlsbad, CA, USA). The LGs were collected from third
instar larvae at mature stage and fixed with 4% paraformaldehyde. Subsequently, they were treated
with 80% acetone for 10 min. at −30 ◦C, rehydrated in PBS-10% Triton X-100 (PBST), and then fixed
again with 4% paraformaldehyde. RNA hybridization was carried out with fluorescence-labelled
RNA probe described above in a hybridization buffer provided at 56 ◦C, for 16 h following the
manufacturer’s instructions. After repeated rinse steps, the LG samples were observed while using a
confocal microscope (Fv-10i, Olympus, Tokyo, Japan).

4.6. Statistics

The results of the LG area measurements were presented as bar graphs or scatter plots created
using GraphPad Prism 6. The area in pixels was calculated and an average determined for each
LG. Each single dataset was assessed while using Welch’s t-test or Student’s t-test, as described
(Araki et al., 2019). An F-test was performed to determine equal or unequal variance. If the value was
less than 0.05, and then P-values were calculated using Welch’s t-test of unequal variance. If the F-value
was greater than 0.05, then the P-values were calculated while using the Student’s t-test of equal
variance. Statistical significance is described in each figure legend: *p < 0.05, ** p < 0.01, *** p < 0.001
and **** p < 0.0001.

5. Conclusions

We performed genetic analysis of Drosophila mutants showing malignant hyperplasia in larval
hematopoietic tissues to reveal the mechanisms by which the leukemia-like phenotypes appear.
Reduced activity of the mxc gene encoding a component of the HLB essential for histone mRNAs in
mature cells of the LG is responsible for the hyper-proliferation of immature cells in the mutant LG.
A loss of HLB function, especially 3′-end processing of histone mRNAs, is critical for the malignant LG
hyperplasia. It is likely that that mxc is involved in the regulation to induce Adgf-A, which suppresses
immature cell proliferation in LG. We propose that the inhibition of the suppression mechanism by the
mxc mutation is involved in the LG hyperplasia in this leukemia model in Drosophila.
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