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Abstract: Precision medicine in cancer treatment refers to targeted therapy based on the evaluation
of biomarkers. Although precision medicine for pancreatic cancer (PC) remains challenging, novel
biomarker-based therapies, such as pembrolizumab, olaparib, and entrectinib, have been emerging.
Most commonly, endoscopic ultrasound-guided tissue acquisition (EUS-TA) had been used for the
diagnosis of PC until now. However, advances in EUS-TA devices and biomarker testing, especially
next-generation sequencing, have opened up the possibility of sequencing of various genes even in
limited amounts of tissue samples obtained by EUS-TA, and identifying potential genetic alterations
as therapeutic targets. Precision medicine benefits only a small population of patients with PC,
but biomarker-based therapy has shown promising results in patients who once had no treatment
options. Now, the role of EUS-TA has extended beyond diagnosis into decision-making regarding
the treatment of PC. In this review, we mainly discuss tissue sampling by EUS-TA for biomarker
testing and the current status of precision medicine for PC.

Keywords: endoscopic ultrasound-guided tissue acquisition; endoscopic ultrasound-guided fine
needle aspiration; endoscopic ultrasound-guided fine needle biopsy; next-generation sequencing;
precision medicine; pancreatic cancer; chemotherapy; biomarker; targeted genome sequencing

1. Introduction

Pancreatic cancer (PC) is one of the deadliest cancers known and the fourth leading
cause of cancer death. It is estimated that, in 2017, approximately 441,000 patients died
of this disease around the world, which corresponds to an increase in the mortality from
this cancer by 2.3-fold since 2003 [1]. The disease carries a dismal prognosis, with a 5-year
survival rate of 10%, which is the lowest known for any cancer types [2]. Furthermore, there
has also been little improvement in the prognosis of PC over the years. One epidemiological
report based on the Netherlands Cancer Registry data concluded that the overall survival
(OS) of patients with PC had improved by only 0.7 months in the past 20 years [3].

There are two major possible reasons for the poor prognosis of PC. One is the difficulty
in early diagnosis of this cancer. The absence of specific symptoms usually results in
late diagnosis, with the disease often already having advanced by the time of diagnosis.
Furthermore, both serologic evaluation and abdominal imaging have disadvantages in
identifying tumors in an early stage. Probably, carbohydrate antigen 19-9 (CA19-9) testing
and abdominal computed tomography (CT) are the most widely used tools included in
the primary diagnostic approach for PC in suspected cases. The reported sensitivity and
specificity of CA19-9 for the diagnosis of PC range from 70–90% and 90%, respectively [4–9].
However, measurement of the serum CA19-9 level is of limited sensitivity for the diagnosis
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of small-sized cancers. In one large screening study that included 70,940 asymptomatic
individuals, the positive predictive value was very low (only 0.9%) [10]. In a meta-analysis
conducted to compare the diagnostic efficacy of multiple imaging tests for the diagnosis of
PC, CT showed a high pooled sensitivity and specificity of about 90% [11]. However, the
accurate diagnosis of small PC by CT is still a challenge, with a reported sensitivity of 58–
77% for the detection of small (≤20 mm) tumors [12]. Endoscopic ultrasound (EUS), which
provides high-resolution images, has a complementary role with CT for identifying small
tumors and assessing the presence/absence of vascular invasion [13,14]. Furthermore, EUS
guidance also enables the safe and easy acquisition of tissue samples; thus, “endoscopic
ultrasound-guided tissue acquisition” (EUS-TA) has now become a standard approach for
the diagnosis of PC.

The other reason is chemoresistance of PC. Molecular-targeted therapies and immune
checkpoint inhibitors (ICIs), whose efficacies have been highlighted for various kinds of can-
cers [15–18], are of limited value in PC [19–22]. PC is characterized histopathologically by a
fibrosis-rich stroma and macrophage infiltration. This so-called “tumor-microenvironment”
not only prevents the infiltration of chemotherapeutic agents into the tumor but also pro-
tects the tumor tissue from immune response and promotes tumor growth by expressing
growth factors [23–25]. Thus, PCs are called immunologically “cold tumors” that have
been shown to be refractory to ICI therapy.

Precision medicine refers to the tailoring of treatment based on an individual’s genet-
ics, lifestyle, and environment [26,27]. In cancer treatment, precision medicine refers to
targeted therapy based on biomarkers, including proteins and genes: for example, EGFR
in lung cancer [28] and BRCA1/2 in ovarian cancer [16]. Although precision medicine has
drawn much attention recently, precision medicine for PC still remains a challenge. In the
carcinogenesis of PC, KRAS mutations are first triggered, followed by mutations in tumor
suppressor genes such as CDKN2A, TP53, and SMAD4. Mutations of these four genes are
seen at a high frequency in PC, and these are referred to as driver gene [29]. However,
none of these driver gene inhibitors have reached the stage of clinical application, despite
intensive efforts.

At present, the importance of next-generation sequencing (NGS) for precision medicine
is gaining attention. NGS enables the sequencing of various genes even in the limited
amounts of samples obtained by EUS-TA and allows potential genetic alterations as ther-
apeutic targets to be identified. Thus, obtaining adequate tissue samples is mandatory
for NGS, and the role of EUS-TA has now extended beyond diagnosis to decision-making
in the treatment of PC. Thus, not only oncologists, but also endoscopists, need to arm
themselves with knowledge about the current status of precision medicine for PC and the
role of EUS-TA in precision medicine. In this review, we summarize the recent advances in
the application of EUS-TA to biomarker testing and the current status of precision medicine
for PC based on these biomarkers.

2. Endoscopic Ultrasound-Guided Tissue Acquisition (EUS-TA)

Previously, the diagnostic performance of EUS-TA was mainly evaluated based on the
sensitivity and specificity of cytological diagnosis of malignancy. For the diagnosis of a
solid pancreatic mass, EUS-TA has been proven by meta-analyses to be highly accurate
(pooled sensitivity 85%–89% and specificity 96%–100%) [30–32]. A recent prospective
study showed that the sensitivity of endoscopic ultrasound-guided fine needle aspiration
(EUS-FNA) for the diagnosis of a solid pancreatic mass is over 90% [33,34]. In addition
to such conventional pathological assessment, the importance of ancillary studies, such
as immunohistochemistry (IHC) and molecular analyses, has also been emphasized for a
long time.

Many studies have already indicated that the addition of molecular/genetic analyses,
such as the identification of the KRAS mutations, to cytological examination may improve
the diagnostic sensitivity for PC, especially in cases in which the pathological diagnosis
proves inconclusive [35–37]. In a meta-analysis conducted by Gillis et al., the pooled
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sensitivities of cytology and KRAS mutations for the diagnosis of a pancreatic mass were
0.806 and 0.768, respectively, but when the two tools were used in combination, the
diagnostic sensitivity increased to 0.887 [38]. However, in the past, the roles of both
tools were limited to being complementary to histopathological diagnosis. Now, with
the emergence of precision medicine, the significance of KRAS mutations is changing,
as KRAS itself is coming to be recognized as a therapeutic target in PCs. For example,
sotorasib showed promising antitumor activity in patients with advanced solid tumor
harboring KRASG12C in a phase 2 trial [39]. Thus, the therapeutic strategy for PC is changing
dramatically as novel chemotherapies based on biomarkers, such as pembrolizumab [19],
have come to be approved.

Newer EUS-TA needles may enable the acquisition of adequate core tissue samples
for biomarker testing [40], but the total amount of sample obtained by EUS-TA is limited.
Although advances in molecular biology have enabled the detection of biomarkers even
in limited amounts of samples, the acquisition of relatively large tissue samples, while
avoiding contamination, is mandatory for genomic analyses. The effects of various factors
on the quality of tissue samples obtained by EUS-TA have been identified. These factors
are described below in greater detail.

2.1. Needle Type (EUS-FNA vs. EUS-FNB)

Previously, EUS-FNA needles were developed with a focus on how to collect as many
specimens as possible. The EUS-FNA needle, a needle with a simple structure used in
combination with suction, is the most widely used needle for the diagnosis of PC, with
a reported high sensitivity for the diagnosis of approximately 90% [30–32,41]. However,
diagnostic failures may be caused by various factors, including insufficient sample volume,
loss of histological structures, and the need for IHC. Therefore, endoscopic ultrasound-
guided fine needle biopsy (EUS-FNB) needles began to be developed to preserve the
tissue architecture and improve sample adequacy and diagnostic accuracy. The first
developed EUS-FNB needle was stiff and difficult to use. However, newer generation
EUS-FNB needles were developed and improved on sample adequacy and diagnostic
accuracy [42–44]. In brief, EUS-FNA needles have a simple structure with an inner lumen
and allow the collection of cells by aspiration with a syringe. On the other hand, EUS-
FNB needles have a complex tip structure, which allows core samples to be collected by
shearing the tissue from the target lesion [40] (Figure 1). Although the diagnostic benefit of
EUS-FNB needles had been debated for a long time [41,44–53], the diagnostic accuracy of
third-generation EUS-FNB needles has shown superiority in accuracy in recent randomized
controlled trials [54,55]. Furthermore, the FNB needle showed a higher histologic core
procurement rate than the FNA needle [54]. This is also true for pancreatic neuroendocrine
tumors [56,57]. To date, the superiority of the EUS-FNB needle in tissue sample quality has
been widely accepted [58]. Furthermore, considering tissue sample quality, the EUS-FNB
needle may be more suitable for biomarker testing, as shown in the randomized trial [59]
and retrospective studies [60,61].
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2.2. Needle Size

Obviously, cellularity in the specimen is important for biomarker testing. Furthermore,
the tumor fraction is also important for successful NGS. Samples with low cellularity are
associated with an increased risk of insufficient DNA and polymerase chain reaction (PCR)
failure, whereas samples with low tumor fractions are associated with an increased risk
of false-negative results [62]. Theoretically, larger needles allow the collection of larger
samples. Commercially available EUS-TA needles range in size from 19–25 gauge. The
25-gauge needle, the thinnest needle of them all, is flexible and easy to use. Although the
amount of sample obtained is relatively low with this one, it has the advantage of being
less contaminated [63]. On the other hand, a 19/20-gauge larger needle is stiffer and more
difficult to handle, and its use is potentially associated with a high risk of complications.
Furthermore, larger needles may cause greater contamination with blood, necrosis, and fi-
brous stroma, resulting in a lower tumor fraction. Based on these findings, the intermediate
22-gauge needle is considered the most versatile and appropriate for obtaining tissue sam-
ples for genomic analyses. Park JK et al. reported from their retrospective study how larger
needles allow the retrieval of a higher quantity of DNA obtained by EUS-TA [64]. They
performed sampling using a FNA needle or a reverse bevel needle (19, 22, or 25-gauge),
and DNA was extracted from the frozen tissue sample. The NGS success rate was 57.4%.
The DNA quantity obtained with a 25-gauge EUS-TA needle was significantly smaller than
that obtained with a 19- or 22-gauge needle (p < 0.001). A multivariate logistic regression
model only identified needle size as a significant factor influencing the success rate of NGS
(a 19- or 22-gauge needle versus a 25-gauge needle: odds ratio, 2.29; 95% CI, 1.08 to 4.47).

2.3. Technical Aspects (Suction vs. Non-Suction Technique)

In contrast to the conventional suction technique using a syringe, the slow-pull tech-
nique, which was recently introduced for EUS-TA, minimizes the negative pressure, be-
cause the stylet itself is removed from the needle slowly and continuously. It was expected
that the slow-pull technique would minimize blood contamination and allow higher-
quality specimens to be obtained. However, the improved diagnostic performance of
this non-suction technique still remains under debate. As compared to the conventional
suction technique, there are reports that the non-suction technique is associated with a
significantly lower rate of blood contamination [65,66] and higher cellularity [67]. On the
other hand, many reports suggest the absence of any significant difference in the diagnos-
tic performance between the two techniques [65–70]. One meta-analysis concluded that,
although there was no difference in the accuracy or sensitivity between the two techniques,
use of the non-suction technique was associated with a significantly lower rate of blood
contamination compared to use of the conventional suction technique [71].

When performing EUS-TA, it is important to remain attentive to the need for obtaining
tissue samples that would allow ancillary biomarker testing. In cases of metastasis, the
use of a 22-gauge FNB needle and the non-suction technique may be optimal for tissue
sampling. On the other hand, in EUS-TA for preoperative cases or cases of recurrence after
surgery, the primary aim of EUS-TA is the diagnosis of malignancy, and biomarker testing
is not necessary in tissue samples obtained by EUS-TA; surgical specimens should be used
for biomarker testing, as they provide more adequate samples.

3. Biomarker Testing

Tissue samples obtained by EUS-TA are basically applied for the preparation of cyto-
logical smears and cell blocks. With cytological smears, diagnosis of malignancy is mainly
made by Papanicolaou staining. Rapid on-site evaluation (ROSE) is also performed using
Diff-quik staining to minimize the number of passes [72] and improve the diagnostic per-
formance [73,74]. On the other hand, with cell blocks, histological assessment, and where
necessary, biomarker testing is performed. The American Society of Clinical Oncology
(ASCO) guidelines recommended early biomarker testing in PC patients who are likely to
be potential candidates for precision medicine after first-line chemotherapy [75]. Widely
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used biomarker testing methods are IHC, fluorescence in situ hybridization (FISH), and
NGS. While IHC and FISH are mainly used to identify single protein and gene alterations,
novel genome sequencing technologies, such as NGS, are used to detect multiple genetic
alterations simultaneously in relatively small amounts of tissue samples [76–78]. In IHC
and FISH, the targeted protein or DNA in the sample is captured using a probe; then, these
targets are visualized under the microscope using a dye or an enzyme bound to the probe.
These methods allow analysis of a small number of tumor markers by searching for known
“hotspots,” namely, genetic loci that are known to frequently show alterations. On the
other hand, genome sequencing can determine the nucleotide order of a DNA fragment.
Although traditional Sanger sequencing is widely used for DNA sequencing [79], it allows
the sequencing of only one fragment at a time, making this method costly as well as time-
and labor-intensive for large-scale sequencing. Furthermore, substantial amounts of DNA
are required. NGS platforms allow the sequencing of a massively parallel collection of clon-
ally amplified or single DNA molecules that are spatially separated in a flow cell [76]. This
feature facilitates the sequencing of millions to billions of short fragments of DNA [80,81].
This is an important advantage that enables the screening of large numbers of samples
with a short turnaround time. Furthermore, NGS technology requires a relatively small
amount of DNA or RNA, in contrast to traditional sequencing technologies, along with a
reduced overall cost of multiple-marker screening [77].

Several studies have examined the surrogacy of EUS-TA samples for surgically re-
sected specimens in NGS. The results of these studies of NGS using EUS-TA samples
showed high concordance with that in a surgically resected specimen used as a reference
standard [82–84]. These findings are important because PC patients who potentially benefit
from precision medicine are ineligible for surgical resection.

3.1. Immunohistochemistry

IHC, a familiar tool to clinicians, involves the use of an antibody as a probe. It
specifically captures the targeted proteins and can also localize them in cancer cells. IHC
used to examine protein expression has several advantages. It is commonly used in clinical
laboratories and is therefore relatively straightforward to implement and validate. It also
has the benefits of being inexpensive, requiring only a single unstained slide, and having a
rapid turnaround time.

3.2. Fluorescence In Situ Hybridization

FISH involves the use of an oligonucleotide probe (consisting of relatively short base-
pairs) labeled with fluorescent dyes to hybridize with the targeted DNA, and then be
visualized with fluorescence microscopy. FISH can detect large structural variations at
the DNA level and is often used in the clinical laboratory to detect oncogenic fusions
in solid tumors. Advantages of FISH are that the amount of material required is only
a few unstained slides—usually one unstained slide per probe examined—and that the
turnaround time is usually only a few days [85].

3.3. Next-Generation Sequencing

NGS enables the sequencing of multiple genes in a limited number of samples obtained
by EUS-TA. Recently, several studies have reported the adequacy of EUS-TA samples for
NGS [61,64,84,86–88]. These reports are summarized in Table 1. Carrara S et al. reported,
from their prospective study, that proper tissue specimens could be obtained by EUS-TA.
They obtained samples with a 22-gauge Franseen FNB needle using the fanning and slow-
pull technique and achieved successful DNA sample extraction and subsequent NGS in
97% of cases [88]. Young et al. reported on the performance of NGS from a retrospective
review of sequencing performed in formalin-fixed paraffin-embedded (FFPE) samples
obtained by EUS-TA. Using a customized gene panel (287 genes), genomic profiles were
generated successfully from all 23 of 23 (100%) solid pancreatic masses, and the most
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common mutations observed were mutations of KRAS (78%), TP53 (74%), CDKN2A/B
(35%), SMAD4 (17%), and PTEN (13%) [87].

Table 1. Adequacy rate of EUS-TA samples for NGS (target genome sequencing) in pancreatic cancer.

Author (Year) Study Type No. of
Patients

Type of
Tumor

Needle Type
(Needle Size)

Adequacy
Rate for NGS

Required
Tumor

Fraction

Targeted
Panel

Frequency of
Genomic

Alterations

Elhanafi S, et al.
(2018) [61]

Retrospective
study 167 PDAC EUS-FNA/B 70.1% ≥10% Custom panel

(47 genes)

KRAS (88%),
TP53 (68%),

SMAD4 (16%)

145 EUS-FNA
(22-gauge) 66.9%

22 EUS-FNB
(22-gauge) 90.9%

Larson BK, et al.
(2018) [86]

Retrospective
study 61

Pancreatic
exocrine

malignancy
EUS-FNA/B 67.2% ≥20% FoundationOne

(315 genes) NA

7 EUS-FNA 42.9%
54 EUS-FNB 70.4%

Young G, et al.
(2013) [87]

Retrospective
study 23

PDAC,
Mucinous ade-
nocarcinoma,
adenocarci-
noma NOS,

PanNET

EUS-FNA 100% ≥20% Custom panel
(287 genes)

KRAS (78%),
TP53 (74%),
CDKN2A/B

(35%), SMAD4
(17%), PTEN

(13%)

Gleeson FC, et al.
(2016) [84]

Retrospective
study 47

PDAC,
Ampullary
adenocarci-

noma,
IPMN

EUS-FNA 61.7% ≥20%

Human Com-
prehensive

Cancer
GeneRead
DNAseq

Targeted Panel
V2 (160 genes)

KRAS (93.1%),
TP53 (72.4%),
SMAD4 (31%),
GNAS (10.3%)

Park JK, et al.
(2020) [64]

Retrospective
study 190 PDAC

EUS-FNA/B
(19, 22,

25-gauge)
57.4% ≥30% Custom panel

(83 genes)

KRAS (93.1%),
TP53 (72.4%),
SMAD4 (31%),
GNAS (10.3%)

Carrara S, et al.
(2021) [88]

Prospective
study 33 PDAC EUS-FNB

(22-gauge) 97%

AmpliSeq
Comprehen-
sive Panel v3
(161 genes)

KRAS (94%),
TP53 (78%),

SMAD4 (13%),
CDKN2A

(19%), GNAS
(9%), NOTCH2

(9%), ATM
(9%)

NGS, next-generation sequencing; PDAC, pancreatic ductal adenocarcinoma; NOS, not otherwise specified; PanNET, pancreatic neuroen-
docrine tumor; EUS-FNA, endoscopic ultrasound-guided fine needle aspiration; EUS-FNB, endoscopic ultrasound-guided fine needle
biopsy; NA, not available.

Various factors can affect the results of NGS, including the process of library prepara-
tion, choice of assays, and the biomarker testing technique itself [89–91]. From the aspect
of sample quality, two major factors are important to obtain successful results from NGS.
One is the fixation/preservation of the tissue samples. FFPE specimens are still preferred
for NGS, since FFPE specimens provide the advantage of direct evaluation of the tumor
cellularity. Pathologists can select the appropriate area in the specimen for NGS, such as
areas with high cellularity. Furthermore, FFPE samples allow the tissue architecture to be
preserved and can be used for future ancillary studies. However, FFPE samples subjected
to inappropriate fixation methods (i.e., inappropriate duration of fixation or concentration
of fixative) may yield incorrect results [90,92]. Furthermore, DNA extracted from FFPE
tissues is generally damaged, and long-term storage may also affect the DNA quality. Thus,
it is preferable to perform NGS in FFPE samples that have been prepared less than three
years ahead of the sequencing [89].

Another factor is the quality of the tissue samples. It is important to provide the
optimal absolute number of neoplastic cells. Typically, tissue samples acquired by EUS-TA
contain relatively fewer neoplastic cells as compared to surgical FFPE samples. In general,
the frequency of successful NGS is lower in smaller specimens (EUS-TA) as compared
with larger specimens (resection and excisions). Goswami RS et al. reported that the NGS
success rate was lower in specimens obtained by FNA than in specimens obtained by
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resection (50% versus 97%, respectively; p < 0.0001) [93]. In their report, the extracted
DNA concentration from larger tissue samples was significantly higher compared to that
from smaller samples. However, an increase in the tissue sample size does not necessarily
yield an increased NGS success rate. The tumor fraction, the percentage of tumor cells
in the tissue sample, is more important than cellularity, when NGS is performed in small
specimens. Increasing the tissue sample (nucleic acid) sometimes results in a decrease
of the tumor fraction as a result of the inclusion of a greater number of non-tumor cells,
such as stromal or inflammatory cells [91]. A low tumor fraction could potentially yield
false-negative results; NGS commonly requires a minimum tumor fraction of about 10–
20% [94,95].

The pathological sample quality is also important for the success of NGS. PC not only
tends to show low cellularity but also to contain necrotic regions. Necrotic tissue contains
cell debris, non-viable tumor cells, fragmented DNA, and few viable tumor cells [96]. These
components may interfere with obtaining accurate results. Although anucleated blood
cells, such as red blood cells, do not reduce the tumor fraction, the heme in the red blood
cells can act as an inhibitor of the PCR reaction [97]. Therefore, special care is needed
during the selection of tissue samples to enrich the tumor fraction, while minimizing the
entrapped red blood cells in bloody specimens. Mucin and hyalinized stroma in tissue
samples do not affect the PCR reaction itself; however, large quantities of these in tissue
sections can reduce the overall tumor cellularity and dilute the samples [91].

FFPE specimens are frequently used for biomarker testing. Although the cellularity
and tumor fraction are important for testing, the tumor fraction is generally low in PCs,
since PC tissue contains more stromal cells, hematopoietic cells, or desmoplastic fibroblasts
than tumor cells. In order to avoid a low-tumor fraction, the tissue samples obtained
by EUS-TA should be divided among multiple blocks rather than being limited to a
single block. On the other hand, in recurrent cases, surgical specimens are more suitable
for biomarker testing because of their higher cellularity and tumor fraction. Therefore,
biomarker testing should ideally be performed using surgical specimens.

There are 3 major types of NGS used for the identification of genomic alterations:
whole-genome sequencing (WGS), whole-exome sequencing (WES), and targeted genome
sequencing. Of these methods, WGS and WES are mainly used in the research field and
are generally performed on blood or fresh frozen biopsy specimens. On the other hand,
targeted genome sequencing is performed on both DNA (targeted DNA sequencing) and
RNA (targeted RNA sequencing), with the former being mainly used in the clinical field.
Tumor DNA can be extracted from FFPE specimens and then sequenced to investigate
whether specific alterations are present in the tumor. One drawback of targeted genome
sequencing is that, when novel structural variants are detected, it can be difficult to deter-
mine whether the event would result in a functional expressed fusion. Other drawbacks
include the turnaround time, which is significantly longer than for IHC or FISH, and that a
relatively large amount of material is required for the testing. On the other hand, a major
advantage of targeted genome sequencing is that many genomic events can be interrogated,
allowing for the simultaneous direct assessments of point mutations, insertions, deletions,
copy number variations, and the tumor mutation burden, in addition to gene fusions.

3.3.1. Whole-Genome Sequencing

WGS enables the most comprehensive study of entire genomes, which is valuable
when seeking to discover novel genomic alterations. Since the entire genome is being
sequenced, the noncoding sections of DNA within genes, called introns, can also be
sequenced. Thus, performing WGS is a lengthy process that requires a large amount of
sample input and is expensive. WGS typically requires 100–1000 ng of DNA, and it is
generally not practical for testing the limited amounts of tissue samples obtained by EUS-
TA. Thus, we recommend the use of more-focused targeted sequencing panels, to a limited
number of specific genome alterations or RNA targets implicated in cancer pathways in
clinical practice.
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3.3.2. Whole-Exome Sequencing

An alternative approach to WGS is to sequence only the exomes, called whole-exome
sequencing, or WES. The exome consists of the exons, which are the coding parts of
genes that are translated and expressed as protein; the exome comprises only about 2%
of the whole genome. Exome sequencing allows researchers to focus on the part of the
genome that is more likely to contain clinically actionable alterations, such as mutations of
tumor-suppressor genes. However, it still requires a large amount of DNA (100–1000 ng).
Compared to WGS, WES-generated data provide more confidence for detecting low-allele-
frequency somatic alterations found in tumor tissue samples. However, it still produces
large amounts of data that are irrelevant.

3.3.3. Targeted Genome Sequencing

Targeted genome sequencing is the most widely used method for NGS. We can
simultaneously analyze preselected target regions that include many known driver or
clinically actionable genetic mutations. As compared to WGS and WES, targeted DNA
sequencing is more flexible, since it allows the accurate and highly sensitive identification
of the target genes to be balanced with the overall cost and data burden. Typically, targeted
DNA sequencing requires a relatively small amount of DNA (10–300 ng). The great depth
of sequencing coverage in targeted genome sequencing enables the profiling of even clinical
samples with relatively low DNA quality and/or tumor content, such as FFPE specimens,
and to detect genomic alterations that are present only in a small fraction of cancer cells.
On the other hand, extra care needs to be taken during the analysis, especially for data
generated from low-quality or fragmented DNA and/or without data from matched
normal control tissue, because of the high depth of sequencing coverage. Ready-to-use
NGS panels are commercially available for applications such as deep sequencing of single
oncogenes (e.g., KRAS), as well as for emerging applications, such as monitoring the tumor
mutation burden (TMB) and microsatellite instability (MSI).

Targeted RNA sequencing is also performed in the research field. Targeted RNA
sequencing presents several advantages over targeted DNA sequencing. Detection of
RNA-level fusions provides direct evidence that they are functionally transcribed, and
analysis of the spliced sequence can determine whether the protein would be translated
and in-frame. Fusion transcripts can also be detected with high confidence in the RNA of
low-quality tumor samples, because gene fusions are often highly expressed in the tissue.
One of the main drawbacks to working with RNA is its fragility. RNA can be extracted
from FFPE tissue specimens, and targeted RNA sequencing generally requires 100–1000
ng of RNA. However, RNA is susceptible to fragmentation and degradation, especially in
older tissue specimens, so extra attention needs to be paid to adequate quality control.

3.4. Future Perspectives

Future perspectives in NGS include the use of cytological specimens. Cytological
smear specimens of EUS-FNA are rich in tumor cells, whereas FFPE specimens are often
rich in tumor stroma. Recently, the excellent performance of cytological smear specimens
in molecular analyses has been shown [98,99]. For lung cancer, the College of American
Pathologists guidelines state that pathologists may use either FFPE samples (cell blocks) or
other cytological preparations (cytological smears) as suitable specimens for biomarker
molecular testing, including NGS [100]. In addition, FNA rinse sample and touch imprint
cytology are promising approaches for NGS. EUS-TA samples are routinely rinsed and
fixed in an alcohol-based fixative immediately after their acquisition, and this contributes to
excellent preservation and quality of DNA and RNA. Wei et al. compared the performance
of this FNA rinse samples and that of cell block samples used for NGS [101]. NGS was
successfully performed using all samples, but much more DNA was obtained from the
FNA rinse samples compared with the paired cell block samples (176.3 versus 10.6 ng/µL,
respectively). Touch imprint cytology is a simple and cost-effective method: a tissue sample
is touched onto a slide, leaving an imprint on the glass slide in the form of cells. Crinó et al.
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reported that the sample quality of touch imprint cytology was comparable to cytological
smear specimens [102]. Touch imprint cytology allows obtaining both valuable cytological
smears and histological samples in a single session of EUS-FNB. Thus, this method is a
potentially useful method for NGS.

Another future perspective is to apply EUS-TA to the establishment of organoids.
Organoids are three-dimensional self-assembled in vitro cultured structures derived from
tissues and stem cells. They are widely used in various research fields, from basic de-
velopmental and stem cell research to personalized medicine. Recently, there have been
increasing reports on the organoids’ establishment using tissue sample obtained by EUS-
TA, and the success rate of organoids establishment ranged between 70 and 82% [103–106].
These patient-derived organoids have the potential to be used in drug screening and
predicting the response to chemotherapeutic agents in pancreatic cancer patients in the
future [107].

4. Precision Medicine for Pancreatic Cancer

Approximately 60% of PC patients have metastatic disease at diagnosis [3,108,109],
and most patients are candidates for systemic chemotherapy. Chemotherapy for PC can be
divided into two main categories: fluorouracil-based chemotherapy and gemcitabine-based
chemotherapy. Among them, first-line treatment with FOLFIRINOX [110] (fluorouracil-
based) and gemcitabine plus nab-paclitaxel [111] (gemcitabine-based) have been shown
to increase the OS in patients with metastatic PC. However, the treatment needs to be
discontinued in most patients, because of disease progression or the emergence of adverse
events. Then, second-line chemotherapy is attempted, if the patient’s PS is good [112,113].
In the second-line setting, fluorouracil-based chemotherapy is recommended after previ-
ous gemcitabine-based chemotherapy, while gemcitabine-based chemotherapy is recom-
mended after previous fluorouracil-based chemotherapy [113–116]. However, a phase III
trial has clearly revealed only the efficacy of the nanoliposomal irinotecan/fluorouracil/
leucovorin regimen in the second-line setting [117]. In general, median OS in first-line
chemotherapy is about one year [110,111,118–120], and about six months in second-line
chemotherapy [117,121–123] (Table 2). Precision medicine for PC is basically applied based
on the evaluation of biomarkers after the failure of such standard chemotherapies. In this
section, we provide an overview of precision medicine that has been approved in patients
with PC.

4.1. Immune Checkpoint Inhibitors

ICIs have emerged as a new treatment paradigm for patients with many types of
cancer [124,125]. Immune checkpoints are a normal component of the immune system
that inhibit the immune response to protect the host from excessive immune responses, in
order to maintain immune homeostasis. However, some cancer cells utilize this immune
checkpoint mechanism to attenuate the immune response and survive [126]. ICIs bind to
immune checkpoint proteins or their ligands and block these immunosuppressive signals.
Although, until now, only a limited number of cancer patients have been shown to derive
benefit from ICIs, MSI-high (MSI-H)/mismatch repair-deficiency (dMMR) is considered a
biomarker for predicting the efficacy of ICIs [127,128] (Figure 2).
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Figure 2. Clinical response to pembrolizumab in a PC patient with MSI-H. (A) Tissue sample from PC. MSI analysis using
a FFPE sample obtained by EUS-FNB showed MSI-H; (B) The pancreatic head cancer was refractory to the previously
administered systemic chemotherapy, with disease progression; (C) A durable and confirmed partial response was achieved.
Substantial shrinkage in the size of the pancreatic head mass was noted even from early (by week 8, as shown; arrowed) in
the course of therapy.

A microsatellites is a repetitive sequence of 1–6 nucleotides. As the number of repe-
titions increases, the gene or its product, the protein, tends to become unstable. If there
is a base mismatch during DNA replication associated with cell division, the mismatch
repair (MMR) mechanism works to repair it. MSI is the accumulation of microsatellite
repeats in a genome because of the functional deficiency of MMR genes, such as in cancer
cells, or because of defects in the process of replication repair. MSI-H is well-known to
play an important role in the development and progression of cancers, such as Lynch
syndrome [129,130]. On the other hand, MSI-H/dMMR tumors express more neoantigens
newly derived from the genomic alterations in the cancer cells [131]. These neoantigens are
easily recognized by the T-cells and induce an immune response [132].

Currently, approved ICIs targeting immune-checkpoint proteins are CTLA-4, PD-1,
and PD-L1. Anti-PD-1 antibody, pembrolizumab, binds to PD-1 on the T cells and inhibits
the interaction of PD-1 with the PD-L1 expressed in the cancer cells [133]. As a result,
immunosuppressive signals to T cells are blocked, which allows T cells to attack cancer
cells. In the KEYNOTE-158 trial, pembrolizumab showed efficacy in different tumor types
harboring MSI-H/dMMR [19]. In the overall study population, the ORR and median PFS
were 34.3% and 4.1 months, respectively. The frequency of MSI-H/dMMR in PCs is low,
occurring approximately in only 1.0% [134,135]. However, 22 patients with PC harboring
MSI-H/dMMR were included in this trial, and pembrolizumab showed some efficacy
(ORR, 18.2%; median PFS, 2.1 months; OS, 4.0 months) in this population.

MSI analysis, IHC for MMR proteins, and NGS are used for MSI-H/dMMR testing.
Both techniques showed high accuracy, over 90% [136]. MSI analysis is performed using
DNA extracted from both the tumor and surrounding normal tissue in FFPE samples [137].
The usefulness of EUS-TA has been reported for MSI-H/dMMR testing. Sugimoto M et al.
evaluated the adequacy of EUS-TA samples for MSI analysis in patients with PC [138]. Of
a total of 89 samples (61 via EUS-FNA and 28 via EUS-FNB), EUS-FNB yielded a higher
proportion of sufficient samples for MSI analysis compared to EUS-FNA (88.9% versus
35.7%, respectively; p = 0.03). NGS can also accurately assess MSI status in tumors [139,140],
allowing for the comprehensive profiling of targeted genome sequencing, as well as MSI
status by a single NGS.

Recently, TMB has been highlighted as another biomarker for predicting the efficacy of
ICIs [141]. TMB is a measure of the number of somatic mutations per megabase (mut/Mb)
in cancer cells. The TMB varies widely among tumor types, and PCs typically have a
relatively low TMB (approximately 1 mut/Mb) [142]. Tumor with dMMR are characterized
by a very high TMB (≥10 mut/Mb), and some studies have shown that, due to dMMR,
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cancer cells can produce heterologous antigens that are easily recognized by T cells [143].
TMB can be determined by using different methods; however, the optimal approach is the
calculation of the mutational load based on WES encompassing approximately 30 Mb [144].
However, the commercially available, targeted DNA sequencing panel encompassing
0.8 Mb can also be used to estimate the TMB and has been validated [145]. Based on these
findings, the US Food and Drug Administration (FDA) approved pembrolizumab for the
treatment of refractory PC with MSI-H/dMMR or TMB-high.

4.2. PARP Inhibitors

Germline mutations of BRCA1/2 are known to be associated with an increased risk
of the development of ovarian cancer and breast cancer [146–148] and are also found in
PCs at a frequency of about 4–7% [149–153]. Presence of germline BRCA1/2 mutations is
reported to be associated with enhanced antitumor effects of platinum drugs, such as oxali-
platin, which exert their antitumor effects by inducing the formation of DNA interstrand
cross-links and DNA damage [154]. PARP inhibitors, such as olaparib, inhibit homolo-
gous recombination during the repair process after DNA damage and thus, exert their
antitumor effects by inducing the apoptosis of tumor cells harboring germline BRCA1/2
mutations. Olaparib has already been shown to be useful for maintenance treatment after
platinum-based chemotherapy of ovarian cancer harboring germline/somatic BRCA1/2
mutations [16,155].

Table 2. Summary of pivotal trials of chemotherapy for pancreatic cancer.

Author
(Year) Trial Extent of

Disease Treatment n ORR Median PFS
(Months)

Median OS
(Months) HROS p-Value

First-line
chemother-

apy

Burris HA,
et al. (1997)

[118]

Locally
advanced/
metastatic

Gemcitabine
versus 5-FU 63 vs. 63 0% vs. 5.65% NA 5.65 vs. 4.41 NA 0.0025

Moore MJ,
et al. (2007)

[119]

NCIC CTC
PA.3

Locally
advanced/
metastatic

Gemcitabine/
erlotinib
versus

gemcitabine

285 vs. 284 8.2% vs. 6.9 3.75 vs. 3.55 6.24 vs. 5.91 0.82 (95% CI,
0.69–0.99) 0.038

Conroy T,
et al. (2011)

[110]

PRODIGE4/
ACCORD11 Metastatic

FOLFIRINOX
versus

gemcitabine
171 vs. 171 31.6% vs.

9.4% 6.4 vs. 3.3 11.1 vs. 6.8 0.57 (95% CI,
0.45–0.73) <0.001

Ueno H,
et al. (2013)

[120]
GEST

Locally
advanced/
metastatic

Gemcitabine/S-
1 vs. S-1
versus

gemcitabine

277 vs. 280
vs. 275

29.3% vs.
21.0% vs.

13.3%

5.7 vs. 3.8 vs.
4.1

10.1 vs. 9.7
vs. 8.8

0.96 (97.5%
CI *,

0.78–0.1.18)
0.88 (97.5%

CI *,
0.71–1.08)

<0.001 † 0.15
‡

Von Hoff
DD, et al.

(2013) [111]
MPACT Metastatic

Gemcitabine/
nab-

paclitaxel
versus

gemcitabine

431 vs. 430 23% vs. 7% 5.5 vs. 3.7 8.5 vs. 6.7 0.72 (95% CI,
0.62–0.83) <0.001

Second-line
chemother-

apy

Pelzer U,
et al. (2011)

[121]
CONKO-003

Locally
advanced/
metastatic

OFF versus
BSC 23 vs. 23 NA NA 4.82 vs. 2.30 0.45 (95% CI,

0.24–0.83) 0.008

Oettle H,
et al. (2014)

[122]
CONKO-003

Locally
advanced/
metastatic

OFF vversus
5-FU/LV 77 vs. 91 NA 3.0vs. 2.1 5.9 vs. 3.3 0.66 (95% CI,

0.48–0.91) 0.010

Gill S. et al.
(2016) [123] PANCREOX

Locally
advanced/
metastatic

mFOLFOX6
versus

5-FU/LV
54 vs. 54 13.2% vs.

8.5% 3.1 vs. 2.9 6.1 vs. 9.9 1.78 (95% CI,
1.08–2.93) 0.024

Wang-
Gillam A,

et al. (2016)
[117]

NAPOLI-1 Metastatic

nal-IRI/5-
FU/LV
versus

5-FU/LV
versus
nal-IRI

117 vs. 149
vs. 151

16% vs. 1%
vs. 6%

3.1 vs. 1.5 vs.
2.7

6.1 vs. 4.2 vs.
4.9

0.67 (95% CI,
0.49–0.92)

0.99 (95% CI,
0.77–1.28)

0.0120.94
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Table 2. Cont.

Author
(Year) Trial Extent of

Disease Treatment n ORR Median PFS
(Months)

Median OS
(Months) HROS p-Value

Precision
medicine

Marabelle A,
et al. (2020)

[19]

KEYNOTE-
158

Locally
advanced/
metastatic

Pembrolizumab 22 18% 2.1 4.0 NA NA

Golan T,
et al. (2019)

[156]
POLO Metastatic ‡

Olaparib
versus

placebo
92 vs. 62 23% vs. 12% 7.4 vs. 3.8 19.0 vs. 19.2

[131]
0.83 (95% CI,

0.56–1.22) 0.3487

ORR, objective response rate; PFS, progression-free survival; OS, overall survival; HR, hazard ratio; NA, not applicable; CI, confidence
interval; FOLFIRINOX, 5-FU/LV/irinotecan/oxaliplatin; OFF, oxaliplatin/5-FU/leucovorin; BSC, best supportive care; LV, leucovorin;
mFOLFOX6, 5-FU/LV/oxaliplatin; nal-IRI, nanoliposomal irinotecan; *, one-sided; †, non-inferiority; ‡, maintenance therapy setting after
first-line platinum-based chemotherapy.

In a phase III study (POLO trial), olaparib was demonstrated to show efficacy as
maintenance therapy after first-line platinum-based chemotherapy in PC patients with
germline BRCA1/2 mutations [156]. The PFS, the primary endpoint of the trial, was
7.4 months in the olaparib group and 3.8 months in the placebo group (hazard ratio [HR],
0.53; 95% confidence interval (95% CI), 0.35–0.82).

On the other hand, the effects of PARP inhibitors against PCs harboring somatic
BRCA1/2 mutations are still unclear. However, one phase II study showed the efficacy
of olaparib administered as monotherapy in previously treated PC patients with DNA
damage repair gene (DDR) alterations other than germline BRCA1/2 mutations [157]. The
overall efficacy was modest (ORR, 2%; median PFS, 3.7 months; OS, 13.6 months). However,
olaparib was demonstrated to exert efficacy in 24 patients with DDR phenotypes (14 with
ATM, 3 with ARID1A, 2 with PALB2, 6 with other alterations). Another PARP inhibitor,
rucaparib, has shown some activities in PC patients with a germline or somatic BRCA1/2
mutations in phase 2 trials. Shroff et al. reported the efficacy of rucaparib in previously
treated PC patients with a germline or somatic BRCA1/2 mutations [158]. A total 19 patients
were enrolled in this trial (16 with germline mutation, 3 with somatic mutation). Although
subsequent enrollment was stopped due to futility, 2 out of the 3 patients harboring a
somatic BRCA2 mutation showed PR. Rucaparib was also demonstrated to show efficacy
as maintenance therapy after first-line platinum-based chemotherapy in PC patients with
germline or somatic BRCA1/2 or germline PALB2 mutations [159]. Rucaparib showed
response in 3 out of 6 patients with a germline PALB2 mutation, and 1 out of 2 patients with
a somatic BRCA1/2 mutation. One meta-analysis reported similar ORR of PARP inhibitors
in patients with germline and somatic BRCA1/2 mutations [160]. These findings indicate
that PARP inhibitors may be effective in patients with a somatic BRCA1/2 mutation and
other DDR alterations, as well as in patients with a germline BRCA1/2 mutation. In the
near future, it may be meaningful to evaluate a somatic BRCA1/2 mutation as a biomarker.
In such a scenario, NGS using tissue samples would allow us to detect both germline and
somatic BRCA1/2 mutations. When BRCA1/2 mutations are found by NGS in tumor-tissue
specimens, it is necessary to distinguish between somatic and germline mutations [161].
For the identification of germline alterations, peripheral blood specimens are the most
frequently used biological material. However, the variant allele frequency (VAF) reported
by NGS can aid in distinguishing germline mutations from somatic mutations. A mutation
is potentially a germline mutation if the VAF is approximately 50% (heterozygous) or
100% (homozygous). The VAF values associated with somatic mutations are usually lower,
because these mutations are not present in all cells. However, somatic mutations may be
associated with VAF values of over 50%, if the tumor fraction in the analyzed sample is
high [162,163].

4.3. TRK Inhibitors

Members of the tropomyosin receptor kinase (TRK) receptor family, encoded by
NTRK1, NTRK2, or NTRK3, are expressed in nervous tissue and are known to play roles in
the development of the nervous systems and in pain perception [164]. Fusions involving
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these NTRK genes result in a TRK fusion protein that stimulates cell proliferation through
the constant activation of signal transduction in cancer cells (Figure 3) [165]. These fusions
are found at high frequencies in rare cancer types, such as secretory breast carcinoma [166]
and mammary analogue secretory carcinoma of the salivary gland [167]. On the other
hand, the frequency of NTRK fusion was low, less than 1.0%, in PCs [165,168].
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MAPK, and PI3K pathways. Functional TRK-fusion proteins induce the ligand-independent activation of the tyrosine
kinase domain to upregulate downstream cancer-related pathways. TRK inhibitors are tyrosine kinase inhibitors of TRK
receptors and inhibit cancer-cell survival and proliferation by suppressing the MAPK pathway.

Two TRK fusion inhibitors, larotrectinib and entrectinib, have been demonstrated
to show promise. Drilon et al. reported the efficacy of larotrectinib against different
tumor types harboring the TRK fusion gene [169]; a total of 55 patients were treated with
arotrectinib: the ORR, the primary endpoint, was 75%, and the 1-year PFS rate was 55%.
The subject population included 1 patient with PC, who showed partial response (PR).

Entrectinib is a potent and selective TRK and ROS1 inhibitor. In an integrated analysis
of 3 phase I/II trials (the STARTRK-1, ALKA-372-001, and STARTRK-2 trials), entrectinib
was revealed to be safe and effective against different tumor types harboring an NTRK
fusion protein (ORR, 57%; median PFS, 11 months; median OS, 21 months) [170]. The
subject population in these trials included 3 patients with PC. Of the 3 patients, 2 showed
PR and 1 showed stable disease (SD) [171]. Thus, the FDA granted accelerated approval to
larotrectinib and entrectinib for the treatment of PC harboring NTRK fusion. NTRK fusion
is detected using NGS, FISH, or IHC [172].
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4.4. Future Perspectives

Several promising targeted therapy based on biomarkers are currently being tested in
clinical trials. Sotorasib irreversibly inhibits the function of KRAS G12C mutant protein by
locking the protein in its GDP-bound inactive form [173]. In a phase II study (CodeBreaK100
trial), sotorasib was found to show promising efficacy in patients with different tumor
types harboring KRASG12C [39]. A total of 12 PC patients were enrolled in this trial, 1
patient showed PR, and 8 patients showed SD. Now sotorasib-based clinical trials, such
as combination therapy with sotorasib and ICIs, are ongoing (ClinicalTrials.gov Identifier:
NCT04185883).

Neuregulin-1 (NRG1) stimulates the proliferation, differentiation of mammary epithe-
lial cells, glial cells, nerve cells, and muscle cells, and NRG1 fusions result in the activation
of various signaling pathways to promote cell proliferation [174]. The reported frequency
of NRG1 fusion in PC is as low as 0.13–0.4%; however, NRG1 fusion is considered a driver
gene in KRAS wild-type PC. Scharam, et al. reported their findings from an ongoing phase
I/II basket trial of zenocutuzumab (MCLA-128) in patients with NRG1 fusion-positive
solid tumors [175]. Among 10 PC patients harboring NRG1 fusion, ORR was 40% [176]. In
the near future, precision medicine in PC will expand further.

5. Conclusions

Precision medicine still benefits only a small population of patients with PC. However,
biomarker-based therapy has shown promising results in patients who once had no treat-
ment options. With the advancement of precision medicine for PC, the impact of EUS-TA
on therapeutic decision-making will become more significant. Thus, while performing
EUS-TA, the operator should remain attentive to the need for obtaining tissue samples that
would allow biomarker testing.
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