Behind phyllotaxis, within the meristem: a REM-ARF complex shapes inflorescence in *Arabidopsis thaliana*

Francesca Caselli¹, Carlotta Ferrario¹, Veronica Beretta¹, Sri Amarnadh Gupta Tondepu^{1,4}, Renaud Dumas², Humberto Herrera-Ubaldo^{3,5}, Stefan de Folter^{3,} Martin M. Kater¹, Veronica Gregis^{1,*}

Supplementary Figures and Tables

Supplementary Figure 1. Models for interactions between REM35-REM35 and REM34-REM35.

Supplementary Figure 2. Description of rem34 and rem35 mutants and complementation test.

Supplementary Figure 3. Y2H matrix.

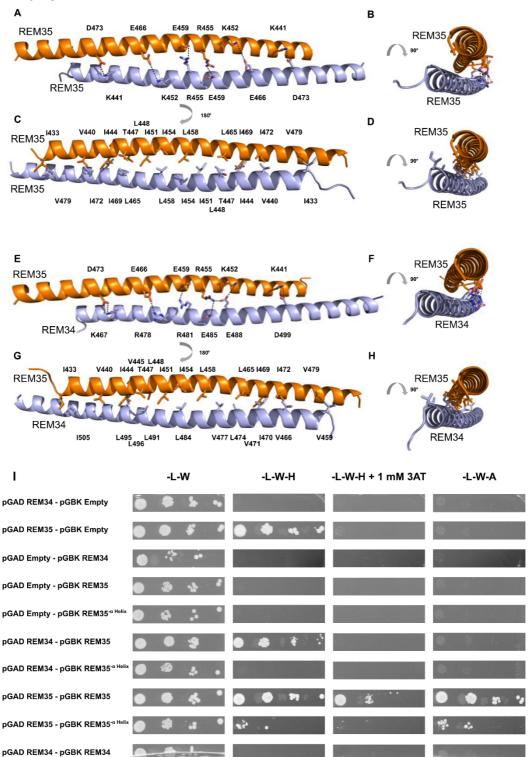
Supplementary Figure 4. *REM34* overexpression analysis in roots.

Supplementary Figure 5. *in situ* hybridization controls.

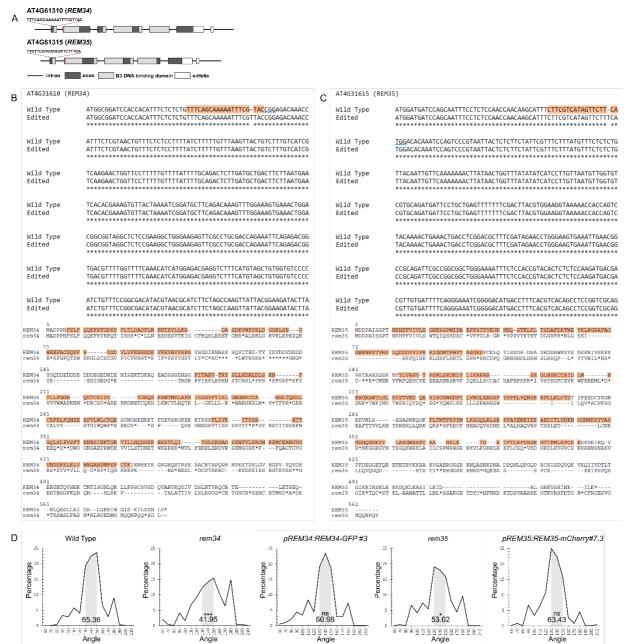
Supplementary Table 1. Primers employed in this work.

¹ Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy

² Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l'énergie atomique et aux énergies alternatives, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Département de Biologie Structurale et Cellulaire intégrée, Grenoble F-38054, France


³ Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico.

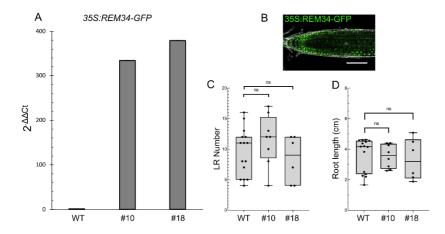
⁴ Present address: Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata 9, 27100 Pavia, Italy.


⁵ Present address: Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK

^{*} Corresponding author: veronica.gregis@unimi.it

Supplementary Figures and Tables

Supplementary Figure 1. Models for interactions between REM35-REM35 and REM34-REM35. AlphaFold models indicate that interaction between REM35 and REM35 or REM34 involved the C-terminal amphipathic helix with ionic interactions on one side of the helices and hydrophobic contacts on the other side (A-D). Interaction between REM35 and REM35. (A-B). Ionic interactions. (C-D) Hydrophobic contacts. (E-H) Interaction between REM34 and REM35. (E-F) Ionic interactions. (G-H) Hydrophobic contacts. (I) Yeast-2-Hybrid demonstrating the crucial role of the C-terminal helix of REM35 in mediating its interaction with REM34 and REM35. The interactions between REM34, REM35 and REM35 full length and a truncated version of the same protein, lacking the C-terminal domain (REM35-^{\alpha} Helix), were tested on different selective media. Serial dilutions of yeast colonies, starting from an OD600 of 0.5, harboring the vectors of interest were plated on different selective media. All the employed constructs were tested for autoactivation activity by cotransformation with the empty vectors. REM34-REM35, REM35-REM35 interactions were used as positive controls, while REM34-REM34 was employed as a negative control. The deletion of REM35 C-terminal abolishes its interaction with REM34 and clearly weakens the homodimerization of the protein.


Supplementary Figure 2. Complementation of rem34 and rem35. (A) Schematic representation of the structure of REM34 and REM35. Boxes: exons, lines: introns. The two genes are characterized by three repetitions of the B3 DNA binding domain, indicated by the light grey boxes, the premature stop codon location is indicated in red at the beginning of the second exon. Above each gene, the protospacer sequence with the nucleotide insertion is indicated in red. (B) Comparison between REM34 wild type and edited sequences. The top panel shows the alignment of the first 420 bp of the genomic region of REM34 wild type and edited sequence, the edited sequence is characterized by the insertion of a T at position 45; the protospacer and PAM sequences are respectively highlighted and underlined in the wild type sequence. The panel below shows the protein alignment between REM34 and rem34, the T insertion causes a frameshift starting from aa15 which leads to the formation of a stop codon in position 25, at the beginning of the first B3 DNA binding domain; the three B3 DNA binding domains are highlighted in the wild type sequence. (C) Comparison between REM35 wild type and edited sequences. The top panel shows the alignment of the first 420 bp of the genomic region of REM35 wild type and edited sequence, the edited sequence is characterized by the insertion of a T at position 58; the protospacer and PAM sequences are respectively highlighted and underlined in the wild type sequence. The panel below shows the protein alignment between REM35 and rem35, the T insertion causes a frameshift starting from aa20 which leads to the formation of a stop codon in position 31, at the beginning of the first B3 DNA binding domain; the three B3 DNA binding domains are highlighted in the wild type sequence. (D)The phyllotactic pattern of wild type (10 plants, 280 angles), rem34 (10 plants, 298 angles), pREM34:REM34-GFP in rem34 (10 plants, 315 angles) rem35 (10 plants, 315 angles), pREM35:REM35-mCherry in rem35 (10 plants, 268 angles) was assessed. Compared to the wild type, the two mutants showed a significant decrease in the percentage of angles falling in the canonical 130°-150° range. The mutants transformed with the pREM34:REM34-GFP and pREM35:REM35-mCherry constructs exhibited a wild typelike phyllotactic pattern. Significance was calculated with a t-test (ns non-significative, *<0.05, ***<0.001).

SCR1	CUC1	CUC2	HEC1	WUS	YAB1	CRC	BP	KNAT6	STM	KNAT2	
AT3G54220	AT3G15170	AT5G53950	AT5G67060	AT2G17950	AT2G45190	AT1G69180	AT4G08150	AT1G23380	AT1G62360	AT1G70510	
REM13	PHV	ALC	AS2	BEE1	ARR4	ARR16	TCP15	REV	LSH1	IAA27	ARR15
AT3G46770	AT1G30490	AT5G67110	AT1G65620	AT1G18400	AT1G10470	AT2G40670	AT1G69690	AT5G60690	AT5G28490	AT4G29080	AT1G74890
NGA1	BEL1	RPL	STY1	STY2	ARF19	LSH3	ARF8	IAA27	PHB	BHLH14	
AT2G46870	AT5G41410	AT5G02030	AT3G51060	AT4G36260	AT1G19220	AT2G31160	AT5G37020	AT4G29080	AT2G34710	AT4G00870	
NIN	JAG	REM11	ARR10	SEU	WIP3	KAN2	LUG	PNF	ARR12	GIK	TPL
AT4G24020	AT1G68480	AT2G24681	AT4G31920	AT1G43850	AT3G13360	AT1G32240	AT4G32551	AT4G29080	AT2G25180	AT2G35270	AT1G15750
AS1	AG	ARF18	LSH4	ARF4	MSI1	ETT	FIE	NGA2	KAN1	HEC2	ARF17
AT2G37630	AT4G18960	AT3G61830	AT3G23290	AT5G60450	AT5G58230	AT2G33860	AT3G20740	AT3G61970	AT5G16560	AT3G50330	AT1G77850
ARR14	YAB3		LEP	ARR7	HEC3	NGA3	WIP6	DRN	JAIBA/HAT1	JAIBA/HAT1	JAIBA/HAT1
AT2G01760	AT4G00180		AT5G13910	AT1G19050	AT5G09750	AT1G01030	AT1G13290	AT1G12980	AT4G17460.1	AT4G17460.2	AT4G17460.3
ARF1	VDD	ANT	DKM	SHP2	STK	AG	SHP1	AGL14	FUL	SEP3	AGL63
AT1G59750	AT5G18000	AT4G37750	AT2G21230	AT2G42830	AT4G09960	AT4G18960	AT3G58780	AT4G11880	AT5G60910	AT1G24260	AT1G31140
BPC1	BPC2	BPC3	BPC6	EMF2	VRN2	SWG	LHP1	REM34	REM35	REM36	BPC4
AT2G01930	AT1G14685	AT1G68120	AT5G42520	AT5G51230	AT4G16845	AT4G02020	AT5G17690	AT4G31610	AT4G31615	AT4G31620	AT2G21240

Supplementary Figure 3. Y2H matrix. Schematic representation of the yeast-2-hybrid library employed to identify novel interactors of REM34 and REM35. For the screening REM34 and REM35 were cloned in the pDEST32 bait vector, containing the GAL4 DNA Binding Domain, and tested against the matrix of factors, previously cloned into the pDEST22 bait vectors, in frame with the GAL4 Activation Domain. Positive interactions were screened on media lacking Leu, Trp, Ade and His. A LacZ assay was also performed to confirm the detected interactions.

Supplementary Figure 4. Mutants employed. Photo of the inflorescence and rosette of all the mutants employed in this study.

Supplementary Figure 5. *REM34* overexpression analysis in roots (A) Levels of overexpression of REM34 in the seedling of two independent 35S:REM34-GFP lines, compared to the wild type. (B) Confocal images showing the ectopic expression of REM34 (green), under the control of the 35S CaMV promoter (top) Cell walls were stained with PI (grey). Scale bars= $100 \mu m$. (C-D) LR number and primary root length in wild type (n=15) and two 35S:REM34-GFP lines (#10 n=8, #18 n=6). Statistical significance was determined with ANOVA followed by Dunnett's multiple comparison test (ns non-significative).

Supplementary Figure 6. *in situ* **hybridization controls** *in situ* hybridization showing longitudinal section of inflorescence meristems. To assess the specificity of the newly designed *LBD18* probe, both antisense and sense probes were used on the same tissues. While the antisense probe showed a strong signal in wild type inflorescences, localizing in the developing primordia, no signal was visible when the sense probe was used.

Supplementary Table 1. Primers employed in this work

Description	Primer Sequence				
arf7-1 genotyping	fw TGCACTCCTTTTGAACCATC				
urj7-1 genotyping	rv TGGTTCACGTAGTGGGCCATCG				
ARF7 genotyping	fw TGCACTCCTTTTGAACCATC				
ANT genotyping	rv AAGAGGAAGGTGCATCTCCTC				
arf19-1 genotyping	fw ACACTTGCTTACCACAGGTTGG				
dij19-1 genotyping	rv TGGTTCACGTAGTGGGCCATCG				
ARF19 genotyping	fw ACACTTGCTTACCACAGGTTGG				
An 13 genotyping	rv CTGCAACAACCACCAAGGTTAG				
<i>lbd18-1</i> genotyping	fw ACACTTGCTTACCACAGGTTGG				
ibuto 1 genotyping	rv TGGTTCACGTAGTGGGCCATCG				
LBD18 genotyping	fw GGAAACGTATGTATGACTCGGG				
LDD10 genotyping	rv TTTTAAAATAACACGTACTAACTAGC				
puchi-1 genotyping	fw GGTTACTTGGATTGCATTGT				
pucin 1 genotyping	rv CTAAAAGACTGAGTAGAAGC				
REM34 expression	fw AGCTTGTGAGACTGCTCCAC				
NEWIS-F EXPICUSION	rv CCTGATCGGAGACTGAGCAC				
REM35 expression	fw CATTTGATGAAGGAGGGGAGAC				
NEWIOS EXPICISION	rv CTTTCTAGCTCTGACCGAATCC				
<i>H4</i> ISH probe	fw ATGGCAGGAAGAGGAAAAG				
777 ISTT PT 0000	rv+T7 TAATACGACTCACTATAGGGTCAACCACCAAATCCATATAG				
<i>PUCHI</i> ISH probe	fw CTCCACAGTTTGTCATCGATC				
7 Oct II 1311 probe	rv+T7 TAATACGACTCACTATAGGGGACTGAGTAGAAGCCTGTAG				
LBD18 ISH probe	fw AGCTACCTCAACCGCAAACG				
20010 1311 prose	rv+T7 TAATACGACTCACTATAGGGTAGTTCGAGACGGCGAGTGG				
<i>pPUCHI I</i> ChIP	fw gactatgagcaattttcttg				
procent cim	rv agtcaacaacaatcttagtc				
<i>pPUCHI II</i> ChIP	fw ttatttcagctggttaagcc				
p. 00	rv agaatggaagtgaagtgttg				
<i>pLBD18 I</i> ChIP	fw attcaaggcaacatttctac				
P20010 / CIIII	rv tattcatagcaactacaacc				

<i>pLBD18 II</i> ChIP	fw tcatttatccatcttgttcg						
pada n em	rv tctcacatttagttgtttgc						
ACTIN7 ChIP	fw CGTTTCGCTTTCCTTAGTGTTAGCT						
ACTIVY CHIP	rv AGCGAACGGATCTAGAGACTCACCTTG						
ARF19 CDS	fw+GW ggggacaagtttgtacaaaaagcaggcttcACCATGAAAGCTCCTTCA						
AKF19 CD3	rv+GW GGGGACCACTTTGTACAAGAAAGCTGGGTG CTATCTGTTGAAAGAAGC						
ARF19 ^{B3} CDS	fw+GW ggggacaagtttgtacaaaaagcaggcttcACCATGAAAGCTCCTTCA						
ARF19 CD3	rv+GW GGGGACCACTTTGTACAAGAAAGCTGGGTTTaTCCCATCCAAGGCATTGC						
ARF19 ^{B3MR} CDS	fw+GW ggggacaagtttgtacaaaaagcaggcttcACCATGAAAGCTCCTTCA						
AKF19CD3	rv+GW GGGGACCACTTTGTACAAGAAAGCTGGGTTCaTTGAGTCTGATTGGG						
ARF19 ^{MRPB1} CDS	fw+GW GGGGACAAGTTTGTACAAAAAAGCAGGCTccATGCCTTGGATGGGAGAAGAC						
ARF19s1 CD3	rv+GW GGGGACCACTTTGTACAAGAAAGCTGGGTG CTATCTGTTGAAAGAAGC						
ARF19 ^{PB1} CDS	fw+GW GGGGACAAGTTTGTACAAAAAAGCAGGCTccATGCGAACATATACAAAGGTTC						
ARF19. 51 CD3	rv+GW GGGGACCACTTTGTACAAGAAAGCTGGGTG CTATCTGTTGAAAGAAGC						
REM35-α Helix CDS	fw+GW GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGATGATCCAGCAATTTC						
KEIVISS WINGING CDS	rv+GW GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAATGTGGTTGCCCAGGCTGCAAG						
ADEZ CDC	fw+GW ggggacaagtttgtacaaaaaagcaggcttcACCATGAAAGCTCCTTCA						
ARF7 CDS	rv+GW GGGGACCACTTTGTACAAGAAAGCTGGGTG TCACCGGTTAAACGAAGTGG						