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SUMMARY

Diabetes is a major health issue of increasing prevalence. ß-cell replace-
ment, by pancreas or islet transplantation, is the only long-term curative
option for patients with insulin-dependent diabetes. Despite good func-
tional results, pancreas transplantation remains a major surgery with
potentially severe complications. Islet transplantation is a minimally inva-
sive alternative that can widen the indications in view of its lower morbid-
ity. However, the islet isolation procedure disrupts their vasculature and
connection to the surrounding extracellular matrix, exposing them to
ischemia and anoikis. Implanted islets are also the target of innate and
adaptive immune attacks, thus preventing robust engraftment and pro-
longed full function. Generation of organoids, defined as functional 3D
structures assembled with cell types from different sources, is a strategy
increasingly used in regenerative medicine for tissue replacement or repair,
in a variety of inflammatory or degenerative disorders. Applied to ß-cell
replacement, it offers the possibility to control the size and composition of
islet-like structures (pseudo-islets), and to include cells with anti-inflam-
matory or immunomodulatory properties. In this review, we will present
approaches to generate islet cell organoids and discuss how these strategies
can be applied to the generation of a bioartificial pancreas for the treat-
ment of type 1 diabetes.
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Introduction

Diabetes represents a major health issue with a current

prevalence of 463 million affected adults worldwide and

an expected prevalence of 578 million in 2030 [1]. In

the long term, poor glycemic control puts diabetic

patients at risk of developing micro- and macro-vascu-

lar complications leading to cardiopathy, neuropathy,

retinopathy, and nephropathy [2]. Type 1 diabetes

(T1D) is characterized by autoimmune destruction of

insulin-producing ß cells and the current basis of treat-

ment is by exogenous insulin administration. Despite

recent improvements, insulin injection only imperfectly

controls blood sugar levels, which may lead to two

major clinical issues: the development of chronic com-

plications, including end-stage renal failure and the

need of kidney transplantation, and life-threatening

problematic hypoglycemia. Beta-cell replacement by
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transplantation of the whole pancreas or isolated islets

of Langerhans is an efficient way of restoring eug-

lycemia, thus preventing the occurrence of severe hypo-

glycemia and protecting kidney grafts from the

recurrence of diabetic nephropathy [3]. Pancreas trans-

plantation, usually performed simultaneously with a

kidney (SPK) in diabetic patients with end-stage renal

insufficiency, is a major surgical procedure associated

with significant morbidity [4]. Islet transplantation (IT)

is a minimally invasive procedure, showing promising

functional results that can be offered to a wider range

of patients with T1D. However, the isolated islets have

to face several challenges. The isolation procedure and

engraftment process lead to a significant loss of insulin-

producing tissue, due to isolation-related damage, loss

of vascularization, loss of extracellular matrix, and an

inflammatory microenvironment at the site of implanta-

tion [5]. These phenomena lead to the need for multi-

ple donors in order to achieve insulin independence as

well as to attrition of islet graft function over time [5]

(Fig. 1). In the past decades, remarkable progress has

been achieved in the enhancement of islet survival and

engraftment, such as refinements in the islet isolation

procedure, the design of steroid-free immunosuppres-

sive regimens, and the development of anti-inflamma-

tory strategies [6]. In the research field, further

advances have shown promise in addressing the issues

of immune protection and shortage of insulin-produc-

ing tissue. One strategy that has been widely studied,

especially in tissue engineering, is the generation of

organoids allowing to recreate organs from embryonic

and/or adult stem cells [7]. This technology has been

especially attractive in pancreatic islet research because

of its ability to control the size and composition of the

generated units, and the possibility to add supporting

cells, such as endothelial or anti-inflammatory cells. The

aim of this review is to highlight different approaches

to improve the function and maturation of insulin-se-

creting organoids and discuss the perspectives and chal-

lenges of their clinical application.

The islet of Langerhans: a connected object

Islets of Langerhans are endocrine cell aggregates, repre-

senting less than 5% of the total pancreas volume and

with a mean diameter of 100–150 lm [4,8,9]. In

humans, an islet equivalent (IEQ, defined as a standard-

ized islet with a 150 lm diameter) contains approxi-

mately 1500 cells [10] and is composed of 60% insulin-

secreting cells (ß cells) and 30% glucagon-secreting cells

(a cells) [11,12]. The remaining 10% is composed of

somatostatin-secreting cells (d cells), pancreatic

polypeptide-secreting cells (c or PP cells), and ghrelin-

secreting cells (e cells) [11,12]. In addition to endocrine

cells, islets contain stromal cells, macrophages, neuronal

elements, endothelial cells (EC), and pericytes, alto-

gether representing <5% [10]. This indicates that more

than a simple cell aggregate, the islet is a functional

mini-organ with its own innervation [13] and complex

intercellular communications [14]. In order to exert

their endocrine functions, islet cells have to receive and

process signals coming from the bloodstream and/or

interstitial space such as nutrients, hormones, and neu-

rotransmitters but also inputs from their innervation.

Cell-to-cell contacts are therefore crucial for hormone

release. In addition to autocrine, paracrine, and endo-

crine pathways, cells communicate via intercellular con-

nections using cell adhesion molecules (cadherins), gap

junctions, and ephrin receptors and ligands [15,16]. Cell

adhesion molecules are important in the development

of islet architecture and function. For example, lack of

neural cell adhesion molecule (N-CAM) impairs islet

cell organization and insulin secretion [17] and cad-

herin-mediated adhesion of ß cells promotes their func-

tion [18]. Signals transmitted by E-cadherin play an

important role in islet development, ß-cell aggregation,

viability, and function [18-20]. Gap junctions between ß

cells allow to share small metabolites and cytoplasmic

ions, such as calcium, which is essential for synchro-

nized insulin release in response to glucose stimulation

[21].

In addition to cell-to-cell contacts, islet cell connec-

tions with their environment are also of great impor-

tance. Islets are well-vascularized mini-organs, receiving

10% to 15% of the total pancreatic blood flow, with a

vessel density five times greater than the exocrine part

of the gland [22]. Endocrine cells are in close contact

with a highly developed fenestrated capillary network

allowing rapid responses to achieve optimal control of

blood glucose levels. Endothelial and islet cell commu-

nications have mutual effects. Secretion of vascular

endothelial growth factor (VEGF-A) and angiopoietin-1

(Ang-1) by islet cells promotes the development of a

functional fenestrated capillary network [23]. On the

other hand, release of growth factors, such as hepato-

cyte growth factor (HGF), by ECs, stimulates insulin

biosynthesis and secretion [24]. In addition to their

essential role in angiogenesis, intra-islet ECs synthetize

ECM components, necessary for ß-cell proliferation,

differentiation, function, and survival [25,26]. Islets are

separated from the exocrine part of the pancreas by a

peripheral capsule composed of fibroblasts and collagen
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fibers, entrapped between two basement membranes

(BM) located beneath the exocrine and endocrine

epithelium (peri-islet) [15]. The peri-islet invaginates

into islets along vascular channels to form a perivascu-

lar BM. Major components of the intra-islet perivascu-

lar BM are laminins, collagen IV, and fibronectin [25].

The importance of ß cell-ECM interaction has been

intensively studied. The lack of vascular BM signifi-

cantly impairs ß-cell proliferation and insulin gene

expression. Collagen IV binding to its receptor, the

a1ß1 integrin, on ß cells not only augments insulin

secretion [27], but also contributes to ß-cell differentia-

tion and survival [28]. Signals transmitted through the

a6ß1 integrin also play a major role in the regulation

of ß-cell survival [29]. Laminin-332 is expressed in

human islets, and its interaction with the integrin ß1

sub-unit was shown to be essential for normal ß-cell

function in vitro [30,31]. In addition, the vascular BM

modulates cell behavior by acting as a source of growth

factors and by trapping cytokines and others soluble

signal molecules, necessary for maintaining ß-cell phe-

notype and proliferation [32].

The peri-islet BM is mainly composed of laminin and

collagen IV and, to a lesser extent, of fibronectin, colla-

gen I, III, V, and VI [33,34]. Apart from functional sup-

port, the peri-islet BM is essential for regulation of ß-

cell survival as suggested by the improved viability and

in vitro function of incompletely isolated “mantled

islets” [35,36]. Of note, the isolation process not only

disconnects islets from their peripheral BM, but also dis-

rupts the intra-islet BM by the loss of intra-islet EC after

isolation [37,38]. Altogether, isolated islets are subjected

to anoikis, an integrin-mediated death signal resulting

from the disruption of interaction between integrins and

ECM proteins. This phenomenon is responsible for sig-

nificant islet cell death in culture [39].

Organoids: building blocks for bioartificial
organ construction

Organoids are defined as 3D cell aggregates designed

with the aim to reproduce in vitro the morphology and

intrinsic function of organs in vivo. Organogenesis

occurs as a result of programmed cell-to-cell contacts

and close intercellular communications [40]. In order to

mimic this physiological condition, organoids have been

initially generated from human embryonic stem cells

(hESC) or adult mesenchymal stem cells (MSCs) and

used as building blocks for tissue engineering and

assembly into bioartificial organs. Numerous different

methods have been developed to generate functional

organoids, applying principles of cell self-assembly [41].

Most of these approaches can be separated into

microfluidic and nonmicrofluidic techniques. The

microfluidic “organ-on-a-chip” method is defined by

the application of a continuous, pressure-controlled,

perfusion to the cells and has demonstrated good results

in terms of cell aggregation and viability [42]. However,

while this approach represents a valuable system for

high-throughput in vitro analyses, it is not designed for

scaling up. Nonmicrofluidic methods include the hang-

ing drop technique [43], cell self-aggregation technique

[44], and the use of microwell culture plates [45]. These

methods can be adapted for large-scale production of

Figure 1 Limitations of clinical islet transplantation. The isolation process is responsible for the loss and disruption of the ECM, vasculature,

and innervation of the islets. In addition to the inflammatory and immune attacks, this process results in the loss of an important proportion of

the islet mass. IBMIR: instant blood mediated inflammatory reaction.
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organoids, like for example, the automated hanging

drop method [46]. The different techniques of organoid

generation are summarized in Fig. 2.

Over the last decade, the field of organoid science has

developed considerably, notably for anti-cancer drug

development [47,48] and in regenerative medicine [7].

The regenerative capacities of organoids can be further

improved by modulating their cellular composition.

Indeed, the combination of multiple cell types into

organoids can better reproduce cellular interactions of

complex tissues such as the liver, in which the aggrega-

tion of hepatocytes, stellate cells, and fibroblasts allows

to improve viability, and function compared to mono-

cellular cultures [49]. It was demonstrated in studies

where 3D aggregates were created using adipose stem

cells [50], tumor cells [51], insulin-secreting cells [52],

intestinal stem cells, and others that organoids express

the hypoxia inducible factor 1-a (HIF1-a) in response

to decreased oxygen diffusion to their core, which stim-

ulates secretion of angiogenic and anti-apoptotic factors.

In addition, cellular 3D aggregates have shown the abil-

ity to express higher levels of stromal cell-derived factor

1 (SDF-1), in comparison to monolayer cultures. SDF-1

is a hypoxia-induced chemokine that recruits ECs for

microvasculature development. Finally, combining ECs

or endothelial progenitor cells with other cell types

allows the development of tubular and vessel-like struc-

tures sprouting within the organoids in vitro [53]. In

addition to ECs, other supporting cells, such as MSCs,

or other cells expressing anti-inflammatory mediators

can also be incorporated into the organoids [54,55].

Pseudo-islet: the pancreatic endocrine organoid

As described above, islets of Langerhans are 3D clusters

composed of several cell types. Islets can be easily disso-

ciated into single cells and reaggregated. This allows to

control their size and cell composition by manipulating

cell number and types. Newly generated organoids are

commonly named pseudo-islets (PIs). In addition to

primary dissociated islet cells, other cell sources can be

used to generate PIs, such as ß-cell lines (e.g., MIN6

[56]), hESC [57], pancreatic stem cells [58], induced

pluripotent stem cells (iPSC) [59], and other cell types

using transdifferentiation such as insulin-secreting cells

derived from other endocrine cell types (alpha cells)

[60] or liver cells, for instance [61] (Fig. 3).

PIs can be generated by self-aggregation in nonadher-

ent petri dishes [62] or in bioreactors with rotational

culture [63]. However, these techniques demonstrate a

high heterogeneity in term of PIs sizes and morphology.

Isolated human islets are not uniform in size, usually

ranging 50–500 µm in diameter [64]. Larger islets are

more prone to develop core necrosis after transplanta-

tion, until revascularization occurs [65]. Moreover,

transplantation of large islets through the portal vein

Figure 2 The different methods used for organoid generation. The upper panel of the figure describes graphically the different techniques;

the lower panel describes the pros and cons of the different available methods using microfluidic or nonmicrofluidic techniques.
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can elicit inflammatory reaction due to embolization of

larger vessels causing liver damage. To avoid this, large-

scale generation of homogeneous, size-controlled PIs

can be achieved by using the hanging drop method or

microwell culture plates. PIs have also demonstrated

improved viability and function, both in vitro and

in vivo, compared to native islets [66,67], an observa-

tion attributed to the relatively small size of PIs. These

findings are in line with previous reports on better

in vitro performance of smaller PIs [68]. Interestingly,

once transplanted, morphology and cellular arrange-

ment of PIs changed to display a cell arrangement simi-

lar to that of native islets [69]. One step further, PIs

can serve as elements for bioartificial pancreas construc-

tion, implantable in extra-hepatic sites, thus avoiding

the proinflammatory microenvironment found within

the liver [70–72].
Generation of uniform PIs from dissociated single islet

cells has proven to be a very effective model for gene ther-

apy experiments, allowing, for example, homogenous len-

tivirus transfection of the entire PI or gene modulation

using shRNA (short hairpin RNA) [73]. Finally, ß-cell

lines, usually cultivated and studied in monolayers, can

be a useful cell source for PI generation and in vitro for

functional studies and drug screening [74].

Validation criteria of newly formed pseudo-
islets

Generation of PIs can be considered as a novel and

valuable strategy for the treatment of T1D. Therefore, it

is extremely important to develop a standardized

validation system. In our opinion, PIs should meet at

least three important criteria:

1. Morphology: PIs should be small (< 150 µm diame-

ter) and uniform in size and shape. They should also

respond to the definition of spheroids in the literature:

“three-dimensional, compact, round shaped cell aggre-

gates that do not disassemble easily and that can be

easily manipulated” [42,66,75,76].

2. Function: PIs should be able to secrete insulin in

response to glucose and other secretagogues, regardless

of the insulin-secreting cell source. This can be assessed

in vitro by static or perifusion secretion tests or, at the

single PI level, by a reverse hemolytic plaque assay [77].

3. Viability: PIs must exhibit and maintain cell viability

over prolonged periods of time (“a lifetime”). Viability

should be assessed before implantation by standardized

assays. Unfortunately, there is currently no method

available to measure islet or organoid longevity.

4. Nontumorigenicity: PIs must demonstrate the

absence of risk of uncontrolled cell proliferation, espe-

cially if gene therapy techniques or stem cell-derived

cells are used in their construction.

Improved pseudo-islets: the benefits of adding
supporting cells into organoids

As mentioned above, organoid generation offers the

possibility to combine several types of cells able to pro-

vide supporting functions (Fig. 4). Several groups have

used this approach, and a large variety of cell types have

been assessed to this end. For instance, ECs were used

to improve islet function and revascularization [78,79].

Figure 3 Sources of insulin-secreting cells for organoid generation.
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Adding cholinergic neurons to islet cells demonstrated

an increased islet function and re-innervation in vitro

[80]. Jun et al. co-cultured islet cells with hepatocytes

and, interestingly, albumin and insulin secretion were

both increased in those hybrid organoids, in compar-

ison to monocellular organoids made of hepatocyte or

islet cells, respectively [81].

The inflammatory and immunologic response against

transplanted islets is detrimental for long-term graft

function. Immediately after intraportal infusion of islets,

an inflammatory cascade is activated, causing the

destruction of a significant proportion of the islet mass.

Multicellular spheroids combining islet cells with cells

expressing anti-inflammatory and/or immunomodula-

tory factors could be protected from these phenomena.

MSCs have been the main cell types used for this pur-

pose [82]. Co-culturing them with islets has enhanced

revascularization, function, and engraftment thanks to

their angiogenic properties [83,84]. In addition, MSCs

have differentiation capacity, which make them an

interesting cell source for tissue regeneration. Over the

last decades, MSCs have been used intensively, especially

for inflammatory and degenerative disorders. However,

MSCs harvesting is an invasive procedure, their num-

bers and properties decrease with donor’s age, and they

have a potential for tumorigenicity [85,86]. Amniotic

epithelial cells (AECs) are an alternative source of cells

with similar properties [87]. These cells are derived

from the amniotic membrane and are involved in the

modulation of materno-fetal tolerance during pregnancy

[88]. AECs have several advantages as a perennial

source of active cells for organoid generation: They are

easily accessible, inexpensive, and cause no ethical issue,

since placentas are discarded after delivery; importantly,

they have no tumorigenicity potential [89]. They have

similar, or even more pronounced, angiogenic, antifi-

brotic, anti-inflammatory and immunomodulatory than

MSCs [90]. Immune-modulatory abilities of AECs are

mostly mediated by the expression and secretion of the

nonclassical class I MHC antigens HLA-G and HLA-E

that play an important part in materno-fetal tolerance

[91]. We have recently reported on the effect of com-

bining AECs with islets or dissociated islet cells. Shield-

ing of whole islets with AECs markedly improved their

secretory function in vitro and accelerated their revascu-

larization in vivo [92]. Similar results have been

Figure 4 Supporting cells improving organoid function and engraftment.
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obtained in vitro and in vivo with insulin-secreting orga-

noids, composed of dissociated islet cells and AECs

[93]. Moreover, our studies have shown that AECs have

a cytoprotective effect on islet cells under hypoxic con-

ditions, mediated by HIF-1a. In addition to our

promising results, others have demonstrated the ability

of AECs to dampen the immune response against islets

in both an allogenic model in vitro [94] and a xeno-

geneic model in vivo [95].

Taken together, these observations suggest that the

inclusion of AECs inside insulin-producing organoids

has translational potential as a therapy for T1D.

Assembling organoids into a bioartificial
pancreas

As developed in this review, organoids can be used as

individual units, without the need to seed them onto a

scaffold. They can be generated either from an allogenic

or a xenogenic source, or even recipient-derived, as

described in Fig. 5. Once generated, regardless of their

origin, insulin-producing organoids can be used as

building blocks, assembled and incorporated into a scaf-

fold, to construct a bioartificial pancreas. Over the past

decades, a broad variety of naturally derived and syn-

thetic polymers, collagen gels, with or without pores, and

decellularized biological matrices have been proposed for

scaffold construction [96–99]. While synthetic materials

can be manufactured with consistent composition and

can be easily fine-tuned according to needs [97], biologi-

cal scaffolds are biocompatible, and can recreate the

microenvironment of the islets due to the similar com-

position of the ECM. The major challenge with both syn-

thetic and biological materials is providing sufficient

immune protection and adequate vascularization to the

islet graft. Ideally, cell-based tissue-engineered constructs

should be able to simultaneously allow adequate nutrient

delivery to the graft, with low-density cell loading, and

be adaptable for scaling up from rodent to human

dimensions [97,100]. Fig. 6 summarizes the main classes

of biomaterials used in scaffold production together with

their common advantages and disadvantages.

Figure 5 Perspectives for islet transplantation with the potential to develop either donor- or recipient-derived organoids, or xenogeneic-derived

organoids. The lower panel describes the potential to incorporate those improved organoids in a scaffold, offering the possibility to explore

new implantation sites.
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Challenges and perspectives of insulin-
secreting organoids

One of the challenges of ß-cell replacement is the insulin-

secreting cell source. The high number of human islets

needed per recipient in IT, together with the scarcity of

available organs, is the main reason why this therapy can-

not be proposed to more diabetic patients. Among alter-

native sources, xeno-derived primary islet cells have been

intensively studied and have even been transplanted into

humans without immunosuppression. Despite the persis-

tence of a detectable C-peptide, none of the trials demon-

strated significant graft function [101,102].

Beta-cell lines are useful mainly for in vitro investiga-

tion but uncontrollable proliferation characteristics limit

their translation to clinical practice. Human embryonic

stem cells (HESCs) have been successfully differentiated

into pancreatic endodermal cells (PEC) and have shown

great potential for offering an unlimited source of insu-

lin-secreting cells [103,104]. However, PECs take several

weeks to mature after transplantation. Recently, ViaCyte

performed clinical trials using PECs encapsulated in the

Encaptra� Drug Delivery System [105]. However, for-

eign body reaction hasbeen reported as a limiting factor

for the engraftment of encapsulated cells [106].

iPSCs represent another valuable cell source. They can

be obtained from the recipient and transplanted without

risk of allorejection. However, the transplanted material

would still face autoimmune destruction and the person-

alized production of a sufficient number of iPSCs is a

significant challenge in terms of logistics and costs [107].

In addition, hESC and iPSC are associated with a poten-

tial risk of teratogenicity that is not well characterized

yet, and calls for caution with their use in humans.

We previously highlighted the importance of intercel-

lular communications within the islet and the complex-

ity of this micro-organ. It may therefore be crucial to

re-establish those connections when engineering orga-

noids. Beta cells generated from hESCs, iPSCs, or trans-

differentiation processes are certainly promising cells

sources for insulin-secreting tissue. However, it is

important to take other islet cell types, especially a and

d cells, into consideration when generating organoids. It

has been demonstrated that the cross talk between dif-

ferent types of islet cells generates inhibitory and stimu-

latory signals affecting blood glucose homeostasis [108].

With the rapid development of genome editing, the

CRISP-Cas9 or other systems have been used to “hu-

manize” xeno-derived islets [109], to transfect nonislet

cells with glucose-related promoters to express insulin

[110], or to modulate immunity [111].

Another challenge of organoid generation for T1D

treatment is managing the large-scale production in order

to obtain the functional mass of tissue required to

Figure 6 Scaffold generation. The first table shows the types of material available for scaffold generation, divided into synthetic and biological

origins, with their advantages and disadvantages. The second table describes, according to scaffold sizes, the type of scaffolds, their advan-

tages and disadvantages, the immunomodulation potentials and the possible sites of transplantation. PEG = polyethylene glycol, PDMS = poly-

dimethylsiloxane, PTFE = polytetrafluoroethylene, ECM = extracellular matrix, MSC = mesenchymal stem cell, and hAEC = human amniotic

epithelial cell.
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establish proper metabolic control in one individual, and

further, to make this therapy accessible to as many

patients as possible. Of all the methods enumerated in

this review, the automated hanging drop technique and

the use of microwell-containing culture plates seem to be

the most versatile and fit for the necessary upscaling [45].

Automated methods in combination with the use of 3D

printing will most likely shape the future of tissue engi-

neering. A key aspect will be the cell sources used for the

development of PIs. The use of patient-derived insulin-

secreting cells (autologous) is very interesting for

immunologic reasons. This personalized medicine

approach, in which the cell product is tailored to each

individual patient as he needs it, is very attractive, but

implies substantial costs and logistics.

On the other hand, deriving such constructs from

hESCs, adult stem cells or from xenogenic origins would

allow the continuous production of an off-the-shelf, uni-

versal cell product, which could be engineered in a limited

number of dedicated, centralized facilities. The direction

that ß-cell replacement will take in the future remains

open, but the field has reached a stimulating point, where

many opportunities are close to hand, with clear pro-

spects of a breakthrough for cell-based therapies for T1D.

Conclusion

Organoid generation, with the possibility of incorporat-

ing supporting cells to an insulin-producing construct,

represents a valuable strategy to overcome the hurdles

faced by islet transplantation. By improving viability,

function, and engraftment, the amount of islets required

per recipient will be lowered, thus reducing the number

of donors needed to achieve full glycemic control. Alto-

gether, and in combination with the development of

automated methods for industrial organoid generation,

islet transplantation could become accessible as a ther-

apy on a much larger scale. Furthermore, these advances

will most likely open the path toward new transplanta-

tion sites, allowing to move away from the hostile liver

microenvironment currently used.

Allorejection and auto-immunity recurrence are

major issues in the development of islet transplantation.

The need for systemic immunosuppression, which puts

patients at risk of infection and neoplasia, makes this

therapy available only to selected T1D patients with sev-

ere disease. The modulation of the immune system,

using cells such as MSCs or AECs, or utilizing gene

therapy approaches, would potentially allow the reduc-

tion or even the elimination of the need for immuno-

suppressive drugs.

Finally, the use of induced pluripotent stem cells as a

substrate for insulin-producing organoids could resolve

the issue of organ shortage [112]. Ultimately, insulin-

producing organoids, constructed with the approaches

described in this review, could be used as building

blocks for the bioengineering of a larger structure, and

represent the first and major step toward the creation of

a bioartificial pancreas.
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