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The novel Coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spread all over 
the world, causing a dramatic shift in circumstances that resulted in a massive pandemic, affecting 
the world’s well-being and stability. It is an RNA virus that can infect both humans as well as 
animals. Diagnosis of the virus as soon as possible could contain and avoid a serious COVID-19 
outbreak. Current pharmaceutical techniques and diagnostic methods tests such as Reverse Transcription-
Polymerase Chain Reaction (RT-PCR) and Serology tests are time-consuming, expensive, and require 
a well-equipped laboratory for analysis, making them restrictive and inaccessible to everyone. Deep 
Learning has grown in popularity in recent years, and it now plays a crucial role in Image Classification, 
which also involves Medical Imaging. Using chest CT scans, this study explores the problem statement 
automation of differentiating COVID-19 contaminated individuals from healthy individuals. Convolutional 
Neural Networks (CNNs) can be trained to detect patterns in computed tomography scans (CT scans). 
Hence, different CNN models were used in the current study to identify variations in chest CT 
scans, with accuracies ranging from 91% to 98%. The Multiclass Classification method is used to build 
these architectures. This study also proposes a new approach for classifying CT images that use two 
binary classifications combined to work together, achieving 98.38% accuracy. All of these architectures’ 
performances are compared using different classification metrics.

© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

There are lots of viruses in the corona family that may be found 
in animals such as camels, bats, and pigs. Out of these numerous 
coronaviruses seven are threatening to humans. The SARS-Cov-2
was initially transmitted from bats which caused severe acute res-
piratory disease and emerged as the largest pandemic in the world 
[9]. As a result of this pandemic, researchers at several R&D lab-
oratories are actively engaged in timely detection, proper analysis 
of the virus, and vaccination for treatment. After entering the res-
piratory tract of a human, novel coronavirus causes respiratory de-
terioration and may even lead to pneumonia. COVID infected lungs 
were found to produce “Ground-Glass Opacity (GGO)” patches and 
to be filled with mucus fluid [32]. Various symptoms make it more 

* Corresponding author.
E-mail addresses: sanskarhasija19@cse.iiitp.ac.in (S. Hasija), 

akashpeddaputha19@cse.iiitp.ac.in (P. Akash), bhargavmaganti19@cse.iiitp.ac.in
(M. Bhargav Hemanth), ankitkumar19@cse.iiitp.ac.in (A. Kumar), 
sanjeevsharma@iiitp.ac.in (S. Sharma).
https://doi.org/10.1016/j.neuri.2022.100069
2772-5286/© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open acc
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
difficult to diagnose the disease in the first place and the limited 
availability of test kits and the disposable nature of these kits make 
it harder to perform PCR tests. Another drawback is the rise in the 
number of True Negative or False Negative values results, which 
together shows that an alternative diagnostic technique should be 
used. CT scans are found to be providing better results in the cur-
rent scenario and they are 5 times cheaper than PCR tests [21].

Deep Learning (DL) may be a subset of Machine Learning (ML) 
which successively may be a subset of Artificial Intelligence (AI). 
Deep Learning is a type of ML inspired by the structure of the 
Human Brain which in Deep Learning is called an Artificial Neu-
ral Network. It learns features and tasks directly from data (Data 
can be of any form viz., Image, text, or sound). It is an end-to-
end learning as the task is to learn directly from data. Traditional 
Neural Networks contain 2 or 3 hidden layers whereas the latest 
networks are as deep as 150 layers.

Chest X-Ray [14,20,6] and CT scans provide promising results 
but they are usually interpreted by expert radiologists. As several 
patients visit radiologists every day and the diagnosis process takes 
a great deal of time, discrepancies can rise dramatically which de-
ess article under the CC BY-NC-ND license 
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picts the need for Computer-Aided Diagnostic (CAD) to decrease 
false negatives and also save time and money. Moreover, auto-
mated DL-based CAD tools are considered to work exceptionally 
well in pulmonary disease detection [17].

Convolutional Neural Network (CNN) is a Deep Learning Neural 
Network that has turned out to be performing remarkably in the 
analysis of documents, classification of various images, detection 
of the pose, and action. It also performs impressively in the area 
of medical imaging [28,25]. So, CNN models can be used to make 
better predictions on images [5,3].

The dataset used in this study comprises three distinct sets of 
CT slices: normal, pneumonia, and COVID-19. Most of the previ-
ous research proposed multiclass classifiers, but the current study 
proposed a new approach that focuses on building a model that 
works in two phases. The first phase is to divide the CT slices 
into two categories: COVID-19 and NON-COVID, with Normal and 
Pneumonia CT slices falling into the NON-COVID-19 group. If the 
first phase’s output is COVID-19, the process stops there; other-
wise, the output goes on to the next phase. The output of the first 
step would be the input to the second stage, and the possible out-
comes are Normal and Pneumonia.

The main objectives of this study are:

• To demonstrate the performance of various models, including 
AlexNet, ResNet152-V2, MobileNet-V2, and VGG-19, as well as 
to suggest a new approach to data classification.

• Design a model to differentiate CT scans into three different 
classes i.e., Normal, Pneumonia, COVID in two phases.

• Augmentation of data for better results on the validation set 
of data on the above models.

• Computing and analyzing various classification metrics such as 
sensitivity, positive predictive value, F1 score, specificity, and 
model accuracy.

The rest of the paper is structured as follows: Section 2 ad-
dresses the problem’s associated work. Section 3 goes through 
the methodology, which includes database collection, preprocess-
ing, deep learning model design, and parameter setup. Section 4
delves into the experimental findings and interpretation. At last, 
we will be concluding the work in Section 5.

2. Related work

The key advantage of AI-based platforms is that they speed up 
the diagnosis and treatment of COVID-19 disease [15]. CNN has a 
wide range of applications, including object detection and image 
classification, as well as medical imaging. Alexnet, ZFNet, and VG-
GNet are a few well-known CNN models for image classification 
that perform well in real-world situations [35,16,26]. Predictions 
obtained from trained models based on laboratory results might 
be used to detect COVID-19 infection and assist health profes-
sionals in properly allocating resources [4]. Gunraj proposed two 
models (COVID-Net CT & COVID-Net CT-2) [11,10] using COVIDx 
CT-2A data set and achieved 97.9% and 98.1% accuracy respectively 
and set benchmark results while training a model with such a 
large data set. Anomalies or ROI in the CT scan were visualized us-
ing Gradient-weighted Class Activation Mapping (Grad-CAM) [23]. 
The test results reveal that the predictive models suggested by [4]
definitively diagnose patients with COVID-19 disease with an accu-
racy of 86.66%, F1-score of 91.89%, the precision of 86.75%, recall of 
99.42%, and AUC of 62.50%. Toğaçar et al. [29], which is a combina-
tion of MobileNetV2 and SqueezeNet, reached a 99.27% accuracy.

The Social Mimic optimization method was used to process 
the feature sets generated by the models. Following that, Sup-
port Vector Machines were used to blend and classify effective 
2

features (SVM). The experimental results demonstrated that the 
model suggested by [27] can reliably distinguish COVID-19 pa-
tients from others, with an AUC of 0.99 and recall (sensitivity) 
of 0.93. Furthermore, with an AUC of 0.95 and a recall (sensitiv-
ity) of 0.96, this model was capable of distinguishing COVID-19 
infected patients from bacteria pneumonia-infected patients. Ya-
dav and Jadhav [34] used pneumonia data, Support Vector Machine 
(SVM) as a classification method, and InceptionV3, VGG-16 models 
as a deep learning approach to execute a classification algorithm. 
Their study’s dataset was categorized into 3 classes: normal, bac-
terial pneumonia, and viral pneumonias. Data Augmentation was 
also used to enhance the contrast, brightness, and zoom presets 
of each image in the dataset. The best classification achievement 
was 96.6%. Haque and Abdelgawad [12] suggested a combination 
of ResNet, VGG-16, and VGG-19 model for COVID detection, which 
attained an accuracy of 98.3% after being trained with 1356 im-
ages. Panwar et al. [22]s proposed an algorithm that helps models 
detect COVID faster, and implementing the algorithm on VGG-16 
yielded an overall accuracy of 88.10% and COVID prediction accu-
racy of 97.62%.

3. Materials and methods

3.1. Data collection and modeling

COVIDx CT [11] is a fully accessible benchmark data set com-
prising 1,94,922 CT slices from 3,745 patients derived from publicly 
– accessible databases. Our model is trained, tested, and validated 
using this data set. This data set was made available on ‘Kaggle’ on 
September 13, 2020. COVIDx CT is licensed under a CC BY-NC-SA 
4.0 license, which is consistent with the licensing of its constituent 
datasets.

COVIDx CT is available in two versions:
‘A’ and ‘B.’ Cases with a confirmed diagnosis make up the ‘A’ 

variant. CT slices containing anomalies in NON-COVID-19 pneu-
monia and COVID-19 cases were detected either a) manually by 
radiologists or b) manually by non-radiologists. The ’B’ variant in-
cludes the entire ’A’ variant as well as some cases that are believed 
to be properly diagnosed but cannot be confirmed. This data set 
provides 1,43,778 images for training the model (which has 82,286 
images of covid +ve scans, 25,496 images of pneumonia scans, and 
35,996 images of normal scans), 25,658 images for testing (6,018 
covid +ve scans, 7,395 images of pneumonia scans, 12,245 im-
ages of normal scans) and 25,486 validation data (6,244 images of 
covid +ve scans, 7,400 images of pneumonia scans, 11,842 images 
of normal scans).

Fig. 1a and 1b are bar graphs representing image distribution 
among train, test & validation data set for phase-1 and phase-2 re-
spectively. To create a Deep Learning model, data plays an integral 
role, and proper data training is essential to accomplish greater ac-
curacy. Our model is trained, tested, and validated using this data 
set. Since the proposed model consists of two stages, the data is 
also divided into two parts. The data for the training phase-1 is di-
vided into NON-COVID and COVID categories, with the NON-COVID 
class comprising both Normal and Pneumonia CT slices. The total 
number of NON-COVID images used in this study is 61,599 (25,515 
Pneumonia CT slices and 36,084 Normal CT slices) with 50,000 im-
ages of COVID CT slices chosen at random to preserve data balance. 
In the second training phase, the data was split into Normal and 
Pneumonia categories with the same number of images used as 
above. The image’s original dimensions were 512 × 512, and they 
include bounding boxes that serve as the Region of Interest (ROI). 
The images were reduced to the ROI and then resized to a shape 
of 128 × 128.

Fig. 2 depicts sample CT-Scan images of all three classes i.e. 
Normal, COVID-19, Pneumonia respectively. To meet the require-
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Fig. 1. Image Distribution for Phase-1 and Phase-2.

Fig. 2. Example CT-scan images from the training dataset of all 3 classes.

Fig. 3. Pre-Processed Images for Training Phases.
ments needed by various models, the images were further prepro-
cessed by passing them through the model-specific preprocessing 
function provided by the Keras library. Fig. 3a and 3b represents 
pre-processed images for Phase-1 and Phase-2 training, respec-
tively. The data was then augmented with various parameters like 
rotation range, shear range, height shift range, width shift range, 
zoom range, and horizontal flip etc.

3.2. CNN architecture

Convolutional Neural Networks are designed efficiently and 
adaptively by integrating spatial feature hierarchies via backpropa-
gation using numerous key components such as convolution layers, 
pooling layers, and fully connected layers (FCC). They have become 
prominent in a variety of computer vision applications and are at-
tracting interest in a multitude of disciplines, including radiology 
3

[36]. Therefore, CNNs are used while building both the phases of 
the proposed model. The phase-1 model and phase-2 model are 
two sequential CNNs suggested. Phase-1 model is used to clas-
sify the data into 2 categories either Covid or NON-COVID. After 
the phase-1, NON-COVID images can be classified into categories 
of either normal or pneumonia by phase-2 model (Fig. 4). So, both 
phase-1 and phase 2 do binary classification of data. Figs. 5 and 6
represent the Phase-1 and Phase-2 versions, respectively.

Phase-1 is made up of five components:

1. Grouping of NON-COVID data
2. Input layers
3. Densenet-201 base model
4. Fully Connected Layers with dropout
5. The Output Layer
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Fig. 4. Flowchart depecting workflow of the Model.
The images from the normal and pneumonia classes were com-
bined and labeled as NON-COVID image sets. The model’s input 
layer received both NON-COVID and COVID-19 images. The input 
layer was then connected to the DenseNet-201 model which was 
imported from Keras library using Trans205 fer Learning technique 
[31]], which was used as the base model and was pre-trained on 
the ImageNet dataset [8]].

DenseNet-201 was also connected to a Global Average Pooling 
layer (GAP) [18]. A Global Average Pooling layer was used over 
Flatten because flatten essentially re-arranges the elements of a 
multi-dimensional object to make it one-dimensional, while Global 
average pooling employs a parser window that passes across the 
object and pools the data by averaging it. GAP acts as a link be-
tween CNN layers and FCC layers by flattening the output and 
passing it as a 1-D array to the next layers. The subsequent layer 
was a dense layer with 64 characteristics that was accompanied by 
a dropout layer with a 20% probability. In the Dense Layer, ReLu ac-
tivation was used because ReLu activation function is much faster 
which makes a massive improvement in neural network training 
and prediction time. The dropout layers aid in reducing training 
data overfitting. The final layer is a sigmoid layer that provides two 
predicted probabilities of the two classes that add up to one. The 
final layer determines whether an image is a positive or negative 
image. The total number of trainable parameters in the phase-1 
sequential model was 18,215,937.

Since Phase 2 did not include any image grouping for a specific 
class, it has four components. Four Components of Phase-2:

1. Input layers
2. Inception V3 base model
3. Fully Connected Layers with dropout
4. The Output Layer

The two-image classes were Normal and Pneumonia. These 
classes were both given in the input layers. The input layer was 
also connected to the InceptionV3 model, which served as the 
base model and was pre-trained on the ImageNet dataset. The 
InceptionV3 base model was further connected to the Global Av-
erage Pooling layer. The following layer was a dense layer with 
128 features, which was followed by a dropout layer with a 30% 
probability. In the Dense Layer, ReLu activation was used. The 
dropout layers lessen training data from overfitting. The final layer 
is a sigmoid layer that provides two predicted probabilities of the 
two classes that add up to one. The final layer predicts whether 
an image is positive or negative for Pneumonia. The total num-
ber of trainable parameters in the phase 2 sequential model was 
22,030,753. In contrast to the proposed model, which had two bi-
nary classifications, the ResNet152V2, MobileNetV2, AlexNet, and 
4

VGG-19 models were designed with multiclass classification, which 
categorized the output into three categories – Normal, Pneumonia, 
and COVID-19. The respective model’s ImageNet weights were used 
to train these models. As illustrated in the Fig. 7.

3.3. Implementation (parameter selection)

Since the model was constructed in two phases, hyperparam-
eters were chosen accordingly. For phase-1, the data was divided 
into two categories: NON-COVID and COVID, with 50,000 images 
chosen at random from the COVID category to ensure data balance. 
The data was divided into batches of size 32. The total number of 
epochs was 70. For the first 40 epochs, the learning rate was set to 
0.0001 and then raised by 10 times for the subsequent epochs. 
We utilized cropping box jitter, rotation, horizontal and vertical 
shear, horizontal flip, and intensity shift and scaling to augment 
the data for better results. Except for the data augmentation, all 
of the hyperparameters remained unchanged for the second phase. 
The proposed model was designed, trained, and evaluated using 
the TensorFlow [1] machine learning library on the online cloud 
workspace FloydHub.

4. Experimental results and analysis

4.1. Results

Various classification metrics such as Accuracy, Precision (Posi-
tive Predictive Value), F1-Score, Sensitivity (Recall), and Specificity 
are used to compare the performance of various models trained in 
the study. They paint a good picture of these model’s efficiencies.

The metrics used in this work can be defined like this:
Table 1 illustrates that VGG-19, AlexNet, MobileNet-V2, and 

ResNet152V2 achieved decent accuracy scores of 92.25%, 95.05%, 
97.59%, and 97.52%, respectively, while the proposed model achiev-
ed 98.38% accuracy. Since the proposed classifier is trained in 
two stages, the first phase, in which DenseNet-201 architecture is 
used to classify NON-COVID and COVID CT slices, the accuracy was 
98.39%, and the second phase, in which InceptionV3 architecture is 
used to classify Normal and Pneumonia CT slices, achieved 99.98% 
accuracy. Other classification metrics are computed based on the 
potential outcomes of test data gathered by Confusion Matrix. It 
represents the number of counts from expected and actual values. 
The outcome of any classification problem may be either positive 
or negative. The confusion matrix has four primary outputs: True 
Positive (TP), True Negative (TN), False Positive (FP), and False Neg-
ative (FN). Cases in which the model predicted correct outcomes 
are denoted by TP, while cases in which the model predicted neg-
ative outcomes correctly are denoted by TN. FP denotes instances 
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Fig. 5. Flowchart depicting the workflow of Phase-1.

Fig. 6. Flowchart depicting the workflow of Phase-2.

Fig. 7. Flowchart depecting workflow for Models.
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Table 1
Accuracies of Various Models.

Model No. of parameters Accuracy (%)

VGG19 20,025,923 92.25
AlexNet 3,750,723 95.05
ResNet152 V2 58,194,051 97.52
MobileNetV2 2,227,715 97.59
Proposed Model 40,246,690 98.38

Table 2
PPV Values of Different Models.

Model Positive Predictive Value (PPV) (%)

Normal Pneumonia COVID

VGG19 95.95 90.54 84.55
AlexNet 95.97 95.29 92.88
ResNet152 V2 98.10 98.79 94.62
MobileNetV2 98.00 96.43 98.20
Proposed Model 98.99 99.56 95.62

Table 3
Sensitivity Values of Different Models.

Model Sensitivity (%)

Normal Pneumonia COVID-19

VGG19 93.94 91.89 86.70
AlexNet 97.92 95.96 88.50
ResNet152 V2 99.05 96.65 95.43
MobileNetV2 99.24 98.98 92.81
Proposed Model 99.40 97.50 97.42

where the model predicts positive but the outcomes are actually 
negative, while FN denotes instances where the model detects neg-
ative but the outcomes are actually positive.

Since the confusion matrix obtained from the two phases is 
2 × 2, certain calculations were performed to adjust the results 
to a 3 × 3 confusion matrix from which all the parameters are 
evaluated. The false positives in the confusion matrix that were 
predicted as COVID-19 but had an actual label in the NON-COVID 
category were put in the final confusion matrix [Fig. 11] based on 
their actual label, which may be normal or pneumonia.

All of the true negatives and false negatives shown in the con-
fusion matrix of Fig. 10 were fed into the phase-2 trained model, 
which was used to identify NON-COVID images as normal or pneu-
monia. The true negatives in the first row and first column of the 
confusion matrix had true labels of normal and pneumonia, while 
the false negatives present in the second row and first column had 
true labels of COVID-19 and were false predictions of the phase-1 
model.

These incorrect predictions had to be passed on to the phase-
2 model in order to determine whether the false prediction was 
pneumonia or normal in the NON-COVID group. Fig. 10 depicts the 
final result of these false predictions in the form of a 3 × 3 con-
fusion matrix. Figs. 8 and 9 depicts the final output of the true 
negatives that were also transferred separately in a different 2 × 2
confusion matrix.

Positive Predictive Value (PPV) is the ratio of true positive pre-
dictions to the total actual positive values. Accuracy is defined as 
the proportion of accurate predictions made to actual predictions 
made. The major difference between Accuracy and PPV (Precision) 
is that precision reflects how measurable calculations are, while 
accuracy portrays how accurate a calculation is to a known or ap-
proved value. The Sensitivity or Recall of a prediction indicates 
how many of the actual predictions are correctly classified. It is 
also called True Positive Rate. High sensitivity implies few false 
negatives, resulting in missed patients with COVID-19 infections, 
while high PPV implies few false positives, adding an additional 
6

Fig. 8. Confusion Matrix – Phase-1.

Fig. 9. Confusion Matrix – Phase-2.

Fig. 10. False Negatives Confusion Matrix.

strain to the health care system, which has been strained due to 
the current pandemic. According to Tables 2 and 3, the proposed 
model has high COVID-19 sensitivity as compared to other models, 
(97.42%) and MobileNetV2 has a higher PPV value followed by the 
proposed model (98.20% and 95.62%).

Accuracy =
(

TP + TN

TP + TN + FP + FN

)

PPV =
(

TP

TP + FP

)

Sensitivity =
(

TP

TP + FN

)
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Fig. 11. Final Confusion Matrix.

Table 4
Specificity Values.

Model Specificity (%)

Normal Pneumonia COVID-19

VGG19 96.31 96.06 95.35
AlexNet 96.45 98.03 97.80
ResNet150 V2 98.31 99.49 98.37
MobileNetV2 98.23 98.52 99.44
Proposed Model 99.10 99.81 98.68

Table 5
F1-Score Values.

Model F1 – Score (%)

Normal Pneumonia COVID-19

VGG19 94.94 91.21 85.61
AlexNet 96.94 95.63 90.64
ResNet152 V2 98.57 97.71 95.02
MobileNetV2 98.62 97.69 95.43
Proposed Model 99.19 98.52 96.57

The ratio of true negatives to the total number of negatives is 
known as Specificity. It is also known as the True Negative Rate. 
It represents the cases in which the model expected a negative 
outcome when it was actually a negative outcome. The F1-Score 
is a blend of precision and sensitivity, with equal weightage for 
both metrics. It is the harmonic mean of precision and sensitiv-
ity (Recall). It is used to measure the model’s relative efficiency. 
As compared to other models, the proposed model has a higher 
COVID-19 f1-score (96.57%). The MobileNetV2 model has consid-
erably higher specificity than the proposed model. (99.44% and 
98.68%) (From Tables 4 and 5).

Specificity =
(

TN

TN + FP

)

F 1 score = 2 ×
(

PPV × Sensitivity

PPV + Sensitivity

)

It is clear that the proposed model outperforms many other 
CNN models, with an accuracy of 98.38% and sensitivity of 97.42% 
trained on the COVIDx-CT-2 dataset containing 1,94,922 images. 
These results can help to explain the potential utility of the pro-
posed model for COVID detection automation.

Figs. 12–15 illustrate the Confusion Matrices of other models 
trained on the same data but using multi class classification.

Figs. 16 and 18 depict accuracy plots, while Figs. 17 and 19
depict loss plots of phase-1 and phase-2 respectively, all of which 
are plotted against the number of epochs.
7

Fig. 12. Confusion Matrix – AlexNet.

Fig. 13. Confusion Matrix – VGG-19.

Fig. 14. Confusion Matrix – ResNet V2.

5. Conclusion

The significant proportion of proposed Deep Learning models 
for COVID detection were either binary classification or multiclass 
classification [4,10,27,34,19,37,7,13], [2], [33,24,30], but the pro-
posed model was designed using two binary classifications. The 
use of two binary classifications rather than a single multiclass 
classification in our proposed model assisted us in minimizing 
false predictions of Pneumonia classes that were being classified 
to COVID images and vice versa. This reduction was achieved by 
classifying pneumonia and normal images as NON-COVID and then 
predicting an image as COVID positive or COVID negative in phase 
1 and similarly predicting Pneumonia positive or Pneumonia nega-
tive in phase 2, resulting in improved accuracy. Improved accuracy 
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Fig. 15. Confusion Matrix – MobileNet V2.

Fig. 16. Phase-1; Accuracy vs Epochs.

Fig. 17. Phase-1; Loss vs Epochs.

Fig. 18. Phase-2; Accuracy vs Epochs.

Fig. 19. Phase-2; Loss vs Epochs.

implies that the model is quite effective. It also has high sensi-
tivity and F1-scores, which means less false negatives, which is 
crucial for infection control because a COVID positive patient who 
is falsely diagnosed COVID negative will spread the infection sig-
nificantly. This model can be very beneficial at this time because 
prediction takes much less time than the RT-PCR test and is there-
fore, far more cost effective, assuming that accuracy and sensitivity 
are not compromised. However, this model can only be used for 
research purposes and is not yet ready for production. Although 
the model is far more accurate and performs exceptionally well, 
it should not be relied on blindly; patients should seek confir-
mation from a trained clinician or radiologist. This work could be 
improved, and many researchers could find it useful in their work.

Human and animal rights

The authors declare that the work described has not involved 
experimentation on humans or animals.

Informed consent and patient details

The authors declare that this report does not contain any per-
sonal information that could lead to the identification of the pa-
tient(s) and/or volunteers.

Funding

This work did not receive any grant from funding agencies in 
the public, commercial, or not-for-profit sectors.

CRediT authorship contribution statement

Sanskar Hasija: Conceptualization, Methodology, Software, Val-
idation. Peddaputha Akash: Data curation, Formal analysis, Inves-
tigation, Writing – original draft. Maganti Bhargav Hemanth: Soft-
ware, Writing – original draft. Ankit Kumar: Data curation, Writing 
– original draft. Sanjeev Sharma: Conceptualization, Methodology, 
Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial or personal relationships that could be viewed as influencing 
the work reported in this paper.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. 
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. 
Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, 
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. 
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, 
8

http://refhub.elsevier.com/S2772-5286(22)00031-0/bib9C1006E7BE96BE6284EDC334207329D7s1
http://refhub.elsevier.com/S2772-5286(22)00031-0/bib9C1006E7BE96BE6284EDC334207329D7s1
http://refhub.elsevier.com/S2772-5286(22)00031-0/bib9C1006E7BE96BE6284EDC334207329D7s1
http://refhub.elsevier.com/S2772-5286(22)00031-0/bib9C1006E7BE96BE6284EDC334207329D7s1
http://refhub.elsevier.com/S2772-5286(22)00031-0/bib9C1006E7BE96BE6284EDC334207329D7s1


S. Hasija, P. Akash, M. Bhargav Hemanth et al. Neuroscience Informatics 2 (2022) 100069
M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, Tensorflow: Large-scale machine 
learning on heterogeneous distributed systems, arXiv:1603 .04467, 2016.

[2] A. Abbasian Ardakani, A. Kanafi, U.R. Acharya, N. Khadem, A. Mohammadi, Ap-
plication of deep learning technique to manage Covid-19 in routine clinical 
practice using ct images: results of 10 convolutional neural networks, Comput. 
Biol. Med. 121 (2020), https://doi .org /10 .1016 /j .compbiomed .2020 .103795.

[3] R.H. Abiyev, M.K.S. Ma’aitah, Deep convolutional neural networks for chest dis-
eases detection, J. Healthc. Eng. 2018 (2018).

[4] T.B. Alakus, I. Turkoglu, Comparison of deep learning approaches to pre-
dict Covid-19 infection, Chaos Solitons Fractals 140 (2020) 110120, https://
doi .org /10 .1016 /j .chaos .2020 .110120.

[5] J.G.A. Barbedo, G.B. Castro, A study on CNN-based detection of psyllids in sticky 
traps using multiple image data sources, AI 1 (2020) 198–208.

[6] T.B. Chandra, K. Verma, B.K. Singh, D. Jain, S.S. Netam, Coronavirus disease 
(Covid-19) detection in chest x-ray images using majority voting-based clas-
sifier ensemble, Expert Syst. Appl. 165 (2021) 113909.

[7] M.E.H. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M.A. Kadir, Z.B. Mah-
bub, K.R. Islam, M.S. Khan, A. Iqbal, N.A. Emadi, M.B.I. Reaz, M.T. Islam, Can 
AI help in screening viral and Covid-19 pneumonia?, IEEE Access 8 (2020) 
132665–132676, https://doi .org /10 .1109 /ACCESS .2020 .3010287.

[8] J. Deng, W. Dong, R. Socher, L. Li, K. Li, L. Fei-Fei, Imagenet: a large-scale hi-
erarchical image database, in: 2009 IEEE Conference on Computer Vision and 
Pattern Recognition, 2009, pp. 248–255.

[9] Y. Fan, K. Zhao, Z.L. Shi, P. Zhou, Bat coronaviruses in China, Viruses 11 (2019) 
210.

[10] H. Gunraj, A. Sabri, D. Koff, A. Wong, Covid-net CT-2: enhanced deep neural 
networks for detection of Covid-19 from chest CT images through bigger, more 
diverse learning, arXiv:2101.07433, 2021.

[11] H. Gunraj, L. Wang, A. Wong, Covidnet-ct: a tailored deep convolutional neural 
network design for detection of Covid-19 cases from chest CT images, Front. 
Med. 7 (2020) 1025, https://doi .org /10 .3389 /fmed .2020 .608525, https://www.
frontiersin .org /article /10 .3389 /fmed .2020 .608525.

[12] K.F. Haque, A. Abdelgawad, A deep learning approach to detect Covid-19 pa-
tients from chest x-ray images, AI 1 (2020) 418–435.

[13] A.U. Ibrahim, M. Ozsoz, S. Serte, F. Al-Turjman, P.S. Yakoi, Pneumonia classi-
fication using deep learning from chest x-ray images during Covid-19, Cogn. 
Comput. (2021) 1–13.
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