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Proteomics technique opens new frontiers in mobilome research
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ABSTRACT

A large proportion of the genome of most eukaryotic organisms consists of highly repetitive mobile
genetic elements. The sum of these elements is called the “mobilome,” which in eukaryotes is made up
mostly of transposons. Transposable elements contribute to disease, evolution, and normal physiology
by mediating genetic rearrangement, and through the “domestication” of transposon proteins for
cellular functions. Although ‘omics studies of mobilome genomes and transcriptomes are common,
technical challenges have hampered high-throughput global proteomics analyses of transposons. In a
recent paper, we overcame these technical hurdles using a technique called “proteomics informed by
transcriptomics” (PIT), and thus published the first unbiased global mobilome-derived proteome for any
organism (using cell lines derived from the mosquito Aedes aegypti). In this commentary, we describe our
methods in more detail, and summarise our major findings. We also use new genome sequencing data
to show that, in many cases, the specific genomic element expressing a given protein can be identified
using PIT. This proteomic technique therefore represents an important technological advance that will
open new avenues of research into the role that proteins derived from transposons and other repetitive
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and sequence diverse genetic elements, such as endogenous retroviruses, play in health and disease.

Mobile genetic elements are DNA sequences that can
move within and between genomes. In eukaryotes, trans-
posons make up the majority of such elements, compris-
ing between 5% (yeast; Saccharomyces cerevisiae) and
77% (frog; Rana esulenta) of an organism’s genome.'
The sum of an organism’s transposable elements is
referred to as its mobilome. We recently reported the
first high-throughput global profiling of an organism’s
mobilome-derived proteome.” In this commentary, we
provide a more focused description of our transposon
proteomics method, and discuss which aspects of trans-
poson biology are best studied proteomically. While our
emphasis here is on transposons, our technique is
equally useful for studying endogenous retroviruses and
other repetitive and/or sequence-diverse elements that
are not fully represented in reference genome databases.

Why study the transposon proteome?

The fact that transposable elements constitute such a
large proportion of most eukaryotic genomes makes

their study important for fully understanding an
organism’s biology. The most widely known activity
of transposons is their ability to transpose and insert
themselves into new positions within the genome.
class I elements replicate via a “copy and paste” mech-
anism in which an RNA transcript derived from the
genomic transposon sequence acts as a template for
cDNA (cDNA) production by a transposon-encoded
reverse transcriptase.”” This cDNA copy integrates
elsewhere in the genome through the action of a trans-
poson-encoded integrase to create new copies of the
element.** class II elements do not replicate via an
RNA intermediate.>® Instead, “cut and paste” DNA
transposons use transposase enzymes to excise and
insert themselves elsewhere within the genome, with
copies generated through DNA repair mechanisms,
and during S phase if the donor, but not the acceptor,
site has been replicated before transposition.>®
Non-RNA-mediated “copy and paste” transposition
mechanisms also exist.>® Transposons express several
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proteins during transposition, including enzymes and
structural proteins.”> Some transposable elements do
not encode their own proteins, hijacking the machin-
ery of other elements instead; these include short
interspersed nuclear elements (SINEs) and miniature
inverted repeat transposable elements (MITEs).”
These non-autonomous elements are not detectable
proteomically and will not be discussed further.
Individual transposons tend to lose their ability to
transpose over time, both through host defense mech-
anisms and through the acquisition of inactivating
mutations.” ">

Transposition is biologically interesting because the
insertion of transposons into host gene coding
sequences or regulatory elements can generate new
phenotypes. Exons or entire genes may be copied, dis-
rupted or shuffled, new introns created, epigenetic
modifications altered, and gene expression modu-
lated.>'>'* Large-scale chromosomal rearrangements
also occur.’® Transposon activity is therefore both a

6,13,14 and a

driver in the evolution of new functions,
contributing factor in diseases such as cancer and
hereditary disorders.>">""”

Defining the transpositionally active mobilome is
challenging. Genomic studies only reveal whether a
transposable element was recently active in general
terms, evidenced by new genomic insertions in off-
spring compared to parents, or by insertion site varia-
tion between individuals or species in which elements
have been active since the last common ancestor.”
Transposition in specific cells or tissues under varying
conditions however is difficult to capture. On the
other hand, RNA sequencing can detect transposon
RNA in individual samples, but also picks up RNA-
mediated host defenses against mobile elements that
are not indicative of transposition.'®° Reporter assays
measuring the transposition of specific elements are
useful for targeted studies, but do not provide a com-
plete picture of the active mobilome and do not iden-
tify which genomic copies of an element are active. In
contrast to these approaches, proteomics has the
potential to provide a complete picture of mobilome
activity by identifying all protein-producing transpo-
sons in a sample, many of which will be in the process
of active transposition.

In addition to transposition-mediated effects, it has
become evident that transposons can be “domesti-
cated” and their genetic material co-opted for new
cellular functions."**' At least 50-100 plant and

mammalian proteins are known to originate from
transposons." For example, transposase-derived genes
contribute to V(D)J recombination during B- and
T-cell receptor maturation, and the DNA-binding
domains of several transcription factors and proteins
involved in chromosome segregation also originate
from transposases."® Meanwhile, proteins derived
from the structural gag and env proteins of long-
terminal repeat (LTR) retrotransposons (class I) and
endogenous retroviruses have been linked to placental
development, cell proliferation, apoptosis, and antivi-
ral defenses."*' >

Transposon-derived cellular genes can be distin-
guished from non-domesticated transposable elements
by their lack of functional transposition sequences,
lack of inactivating mutations, evolution under purify-
ing selection, and single-copy coding sequences that
are maintained at orthologous loci across species.'
Especially those with known functions should in prin-
ciple be annotated in reference genomes. However,
identifying domesticated transposons, particularly
recently domesticated ones, can be challenging in
genomes containing many related and recently active
transposable elements.® Domesticated transposon-
derived proteins have so far been identified either
serendipitously in molecular studies of cellular and
disease mechanisms, or through bioinformatic
genome analyses that provide no evidence for protein
production and often focus on just one type of trans-
poson protein. Here too, unbiased proteomic experi-
can help identify unrecognised cellular
functions derived from mobile genetic elements by
surveying the complete repertoire of transposons that
demonstrably produce protein. Protein function may
also be hinted at from protein expression dynamics in
different contexts (e.g. cancerous versus non-cancer-

ments

ous cells).

Proteomics therefore has several advantages over
genomics and transcriptomics in measuring global
mobilome activity, and can make valuable contribu-
tions to all investigations into the numerous aspects of
normal physiology and disease processes in which
transposons and transposon-derived proteins play a
role. The major limitation of proteomics is that it can-
not definitively prove active transposition, even if all
proteins from a single element are detected. On the
other hand, detection of only a single protein from a
given element may not discount active transposition,
due to experimental limits of protein detection and



the potential contribution of proteins from other
transposons to transposition. Nevertheless, proteo-
mics provides a valuable springboard into mechanistic
follow-on studies, and adds the capability of detecting
transposition-independent protein expression from
mobile genetic elements.
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Why is defining the transposon proteome technically
challenging?

In typical global proteomic workflows, protein isolated
from an experimental sample is separated by gel elec-
trophoresis, tryptically digested, and analyzed by
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liquid chromatography coupled with tandem mass
spectrometry (LC-MS/MS) to produce a set of spectra
that correspond to the detected peptides (Fig. 1A).
Peptides, and ultimately proteins, are identified by
comparing these spectra to spectra bioinformatically
predicted from protein annotation in reference
genomes (Fig. 1A). From obtaining good DNA
sequence coverage of transposons present in the
genome, to bioinformatically relating detected pepti-
des back to individual transposable elements, there are
several hurdles that make mobilome proteomics chal-
lenging technically.

(1) Coverage of highly repetitive elements is fre-
quently incomplete in genomes sequenced using
Sanger and Illumina platforms, because short reads
often do not span the full length of large transpo-
sons.”* (2) High quality genome annotation of trans-
posable elements is often lacking, partly because their
highly repetitive and sequence-diverse nature compli-
cates their identification, and partly because automat-
ing transposon annotation is difficult.***® (3) To
facilitate gene annotation, repetitive sequences are
purposefully masked in genome assemblies,”” meaning
reference genomes cannot be used for predicting
transposon proteins, peptides, and spectra in proteo-
mic workflows. (4) Dedicated repetitive element data-
bases such as Repbase (girinst.org)®”® and Tefam
(tefam.biochem.vt.edu) do exist, but mostly list
consensus sequences of phylogenetically related ele-
may diverge
considerably from this consensus.”’ (5) Reference
genomes may not accurately reflect the mobilome of a
given experimental sample, because transposon
sequences and insertion sites can vary substantially
between populations, individuals, and tissues.”**>! (6)
Large copy numbers (up to one million copies for the

ments.”**”  Individual transposons

most common transposon family (Alu) in humans)®**

make bioinformatically assigning detected peptides to
a specific genomic copy of an element virtually impos-
sible (Fig. 1Ci; but see later).

These specific challenges are exacerbated by the
generally poor assembly and annotation quality of
many genome sequences, and the large and diverse
array of bioinformatic tools used to identify repetitive
elements, which complicate comparisons between
genomes.”* Performing proteomics on endogenous
retroviruses and other sequence-diverse non-anno-
tated genetic elements poses similar challenges.

“Proteomics informed by transcriptomics” captures
the total mobilome-derived proteome, and identifies
specific elements expressing protein

We recently performed the first high-throughput
global proteomic analysis of an organism’s transposon
proteome in a cell line derived from the mosquito
Aedes aegypti.” Several previous studies had proteomi-
cally analyzed a subset of protein spots excised after
2D gel electrophoresis, but had focused on only a lim-
ited selection of transposon proteins (e.g., transpo-
sase).>>*° The method we used, “proteomics informed
by transcriptomics” (PIT),*"** solves the aforemen-
tioned problems afflicting mobilome proteomics by
circumventing the requirement for genome annota-
tion and instead identifying peptides based on
matched RNA-Seq data (Fig. 1B). In PIT, the experi-
mental sample is split; protein is extracted from one
part and processed for LC-MS/MS as usual, while
RNA is isolated from the rest and used for RNA-Seq.
RNA sequencing reads are assembled into transcripts
de novo (without the use of a reference genome) using
one of several bioinformatic transcriptome assembly
programmes, and translated in silico to predict pro-
teins, peptides, and spectra that are ultimately used to

Figure 1. (see previous page) PIT is a superior proteomic method for detecting proteins derived from mobile genetic elements. (A)
‘Standard’ workflow for global proteomic analysis. Purified proteins are separated by gel electrophoresis, tryptically digested into
<20-residue peptides, and analyzed by LC-MS/MS. Detected peptides are identified from their respective spectra using predicted pro-
teins, peptides, and spectra ultimately derived from genome annotation and/or transposons reference databases. (B) PIT workflow.
Experimental samples are split into protein (processed as described in A) and RNA; the latter is subjected to RNA sequencing. Short
RNA-Seq reads are bioinformatically assembled into transcripts de novo (without referring to a reference genome),* and proteins, pepti-
des, and spectra are predicted from these transcripts to produce a bespoke reference database for identifying peptides. In A & B, solid
arrows indicate ‘wet’ experiments; dashed arrows indicate ‘dry’ (bioinformatic) analyses. (C) Bioinformatic identification of transposable
elements expressing protein, in this case ‘transposon A’ (LTR retrotransposon used for illustration purposes). (i) Short peptides detected
by LC-MS/MS often match multiple transposons sharing short stretches of perfect amino acid conservation, and individual elements
deviate from the database consensus, complicating the assignment of peptides to their correct transposon. (i) In PIT, detected peptides
perfectly match their experimentally verified transcripts, allowing protein-producing mobile genetic elements to be accurately identi-
fied. When combined with a perfectly matched genome sequence, the precise genomic location of protein-producing transposons can
also be determined (see Fig. 2).



determine which proteins were detected by LC-MS/
MS (Fig. 1B).*"** The result is a bespoke reference
database exquisitely matched to the proteome of the
experimental sample, which is limited only by RNA
sequencing depth.*> PIT therefore solves the com-
bined problems of incomplete repetitive element
sequence coverage, identification, and annotation in
genomes, as well as the potentially poor fit of experi-
mental data to reference databases.

In our study, we identified transposon proteins by
BLASTing the in silico translation of detected peptide-
associated transcripts against the Tefam and Repbase
reference databases.” Using the full-length amino acid
sequence is important, because the short (<20 resi-
due) peptides detected by LC-MS/MS could map to
multiple transposons, while increased sequence cover-
age allows specific elements to be detected confidently
(Fig. 1C). Although nucleotide BLAST could in theory
be performed instead, protein BLAST is preferable
because it reduces divergence from the consensus by
excluding synonymous sequence differences. In this
way, we identified a total of 136 transposon proteins
in our sample with high confidence.” It is important
to tailor the thresholds for transposon protein identifi-
cation to each species and reference database, as we
observed differences in a side-by-side comparison of
the Tefam and Repbase databases.” Only 15 of the 136
identified transposon proteins closely matched the Ae.
aegypti transposon reference database,” confirming
the aforementioned technical challenges to transposon
proteomics posed by incomplete transposon identifi-
cation, the inclusion of only consensus sequences in
databases, and potential differences between a given
experimental system and the reference genome.

Importantly, we also validated PIT’s ability to make
biologically relevant observations about mobile
genetic elements.” For example, non-LTR retrotrans-
posons (class I) encode 2 ORFs, with ORF1 often
truncated and not transcribed.” This was reflected in
our PIT data, with fewer proteins detected for ORF1
than ORF2 for non-LTR retrotransposons.” Another
interesting finding was the overabundance of proteins
detected from LTR retrotransposons compared to
other elements,” despite the fact that non-LTR retro-
transposons are more abundant in Ae. aegypti.43
Although this result must be interpreted with caution,
as our proof-of-principle study included just one data
point from a cell line that may not reflect the in vivo
situation, our results are in agreement with the
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enrichment of LTR retrotransposon-derived small
RNAs, known to correlate with transposon activity,**
in the related insect Drosophila melanogaster.*> Since
LTR retrotransposons specifically are implicated in
223 we postulated
that this mosquito may differentially allow LTR retro-
transposons to remain active while suppressing other
elements. If this result is corroborated, investigating
the mechanisms by which the organism achieves dif-

antiviral defenses in Ae. aegypti,

ferential transposon silencing, and copes with the
potential deleterious consequences of heightened LTR
retrotransposon activity, would be highly interesting.
Although a discordance between genomic abundance
and transposition activity has previously been
observed in genomic studies,’® we are the first to
describe this at the protein level,> which may reflect
not only transposition but also other (possibly cellu-
lar) functions of transposon proteins.

After publishing our study, the genome for the Ae.
aegypti cell line we used (Aag2) was sequenced and
made available at vectorbase.org.*>*” We wanted to test
whether combining our PIT data with a matched
genome sequence would allow us to pinpoint precisely
which genomic copies of an element express protein.
We therefore BLASTed (blast.ncbi.nlm.nih.gov) the full
experimentally determined sequence of our 17 detected
transposon transcripts that were associated with at least
2 peptides against the Aag2 cell genome (with repeats
unmasked). In principle, each detected RNA transcript
sequence should match the genomic DNA sequence at
the locus from which it derives with 100% sequence
identity across the full transcript length (100% query
coverage). In practice, many of the thousands of geno-
mic copies of a transposable element may be almost
identical to each other and the transcript. Furthermore,
sequencing errors and differences between our Aag2
cell clone and the published reference sequence may
reduce the observed sequence identity. For our pur-
poses, we considered transcripts exhibiting at least 99%
nucleic acid sequence identity over 99% query coverage
to be an “exact match.” Using these criteria, we were
able to identify the exact genomic transposon sequence
expressing protein for 5 elements (Fig. 2A). By cross-
referencing the Aag2 contig containing the protein-
expressing transposon with the Ae. aegypti reference
genome (Liverpool strain version L3,* vectorbase.org),
and a physical chromosome map for Ae. aegypti,*® we
were also able to identify the physical chromosomal
location of the identified elements (Fig. 2B).
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Figure 2. PIT can identify the specific unique genomic copy of an element that is expressing protein. (A) Number of genomic transposon
sequences that precisely match PIT transcripts associated with 2 or more peptides. Transcripts with only one genomic match (purple
bars) can be mapped to their exact source. Numbers (x axis) correspond to PIT hit IDs from our associated paper.? (B) Physical chromo-
some map for Ae. aegypti*®; protein-expressing transposons for which the genomic source could be identified are annotated.

However, it is not always possible to map protein-
expressing transposons in this way. For example, 5
transposon transcripts matched multiple almost iden-
tical genomic transposon sequences and could thus
not be accurately located to a single source (Fig. 2A).
Identical insertions contained within larger repeat
regions are also expected to complicate this kind of
analysis. Finally, several transcripts had no close
match in the reference genome (Fig. 2A), either due to
incomplete sequence coverage of repetitive elements,**
or because these elements differ between our clone of
the cell line and the sequenced clone. Due to mobi-
lome divergence, it was not possible to accurately
directly map protein-expressing transposons using the
main Ae. aegypti reference genome (Liverpool strain
version L3,% vectorbase.org; data not shown),
highlighting the need for perfectly matched genome,
transcriptome, and proteome data for this kind of
analysis.

We therefore provide proof-of-principle that PIT
can not only characterize the global profile of the
mobilome-derived proteome, but also that detected
transposon proteins can be matched to their precise
genomic source. It should be noted however that,
overall, our proteomic approach is likely facilitated by
the fact that mosquitoes encode a large diversity of
mobile genetic elements, each with a relatively low
copy number compared to mammals.** Using PIT
(and other approaches) to characterize the mobilome-

derived proteome may be more challenging in humans
and (almost all) other placental mammals, where the
major active protein-producing transposable element

is the highly abundant non-LTR retrotransposon L1.**

Concluding remarks and future prospects

Our PIT pipeline allows interrogation of the mobi-
lome-derived proteome in a global and unbiased way
for the first time, opening up exciting new opportuni-
ties for defining the total contribution of transposon-
derived proteins to cellular function, as well as for
characterizing transposon activity in different con-
texts. Importantly, global transposon proteome profil-
ing will allow the field to move away from targeted
studies and the serendipitous discovery of transposon
protein functions in health and disease, and toward
holistic experiments that give a complete picture of
the positive and negative impacts of the mobilome on
its host organism. Combining transcriptomic and
proteomic data with matched genomic information
provides a powerful toolkit for dissecting the contribu-
tion of individual transposons, out of the thousands of
genomic copies of an element, to the overall global
activity of the mobilome. Inherently, our methods are
equally valuable for studying endogenous retroviruses
and other repetitive and/or divergent genetic elements
that may or may not be accurately represented in ref-
erence genomes. The tools we have developed



therefore open exciting new avenues of research into
the dynamic role these mobile DNA sequences play in
cellular function, disease, and the evolution of new
phenotypes, while also capturing their changing activ-
ity during invasion and eventual silencing, inactiva-
tion, and domestication in new hosts.
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