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Purpose: Adaptive optics scanning laser ophthalmoscope (AOSLO) capillary perfu-
sion images can possess large variations in contrast, intensity, and background signal,
thereby limiting the use of global or adaptive thresholding techniques for automatic
segmentation. We sought to develop an automated approach to segment perfused
capillaries in AOSLO images.

Methods: 12,979 image patches were extracted from manually segmented AOSLO
montages from 14 eyes and used to train a convolutional neural network (CNN)
that classified pixels as capillaries, large vessels, background, or image canvas. 1764
patches were extracted from AOSLO montages of four separate subjects, and were
segmented manually by two raters (ground truth) and automatically by the CNN, an
Otsu’s approach, and a Frangi approach. A modified Dice coefficient was created to
account for slight spatial differences between the same manually and CNN-segmented
capillaries.

Results: CNN capillary segmentation had an accuracy (0.94), a Dice coefficient (0.67),
and a modified Dice coefficient (0.90) that were significantly higher than other
automated approaches (P < 0.05). There were no significant differences in capillary
density and mean segment length between manual ground-truth and CNN segmen-
tations (P > 0.05).

Conclusions: Close agreement between the CNN and manual segmentations enables
robust and objective quantification of perfused capillary metrics. The developed CNN is
time and computationally efficient, and distinguishes capillaries from areas containing
diffuse background signal and larger underlying vessels.

Translational Relevance: This automatic segmentation algorithm greatly increases the
efficiency of quantifying AOSLO capillary perfusion images.

Introduction

Changes in vascular structure and perfusion are
known to contribute to several systemic, retinal, and
optic nerve head pathologies. For example, cross-
sectional studies have reported radial peripapillary
capillary dropout in eyes of patients with primary
open-angle glaucoma1–3 and Alzheimer’s disease,4,5

while changes in capillary morphology have been
observed near the fovea in diabetic patients.6,7 With the
advent of optical coherence tomography angiography
(OCTA)8 and adaptive optics scanning laser ophthal-
moscope (AOSLO) imaging techniques,9–11 it is now
possible to non-invasively image perfused vasculature,
including the smallest of capillaries within the retina
and surrounding the optic nerve head. Quantifica-
tion of perfused retinal capillaries may prove valuable
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for developing sensitive biomarkers to earlier diagnose
and monitor the progression of ocular and systemic
diseases.4,5,12–14

The quantification of capillary parameters typically
requires a segmented, binary image. Although manual
segmentation of the capillaries in grayscale AOSLO or
OCTA images can be performed, such a procedure is
largely subjective and requires many hours for comple-
tion by a skilled observer. Therefore, automated
methods are desirable to facilitate objective and
time-efficient image analyses. Different global and
adaptive thresholding algorithms have been explored
for automated segmentation of vasculature in fundus
images and, more recently, in OCTA images, includ-
ing Otsu’s method15–17 and multi-scale vesselness
filters (e.g., Frangi filter).22–25 However, translation
of these thresholding algorithms to grayscale AOSLO
perfusion images for the purposes of automatically
segmenting retinal vasculature has proven challeng-
ing, primarily due to the large variations in contrast,
brightness, and background signal that can typically
manifest in AOSLO perfusion images. Machine
learning techniques, such as convolutional neural
networks (CNNs), have been developed for fundus26–28
and OCTA29 images. However, there is a lack of
development in comparable techniques for AOSLO
images.

The purpose of this work was to design an
automated algorithm that can segment the radial
peripapillary capillary network in grayscale AOSLO
perfusion images with high repeatability. We devel-
oped a CNN that distinguishes capillaries from major
vasculature and background signal. The network
was trained on grayscale AOSLO perfusion images
acquired in healthy human eyes, in healthy non-human
primate eyes, and in non-human primate eyes with
laser-induced experimental glaucoma. The algorithm’s
performance was evaluated by computing its accuracy
and Dice similarity coefficient, with manually marked
images serving as the ground truth, and was compared
with the same measures obtained using traditional
segmentation techniques. Capillary metrics were also
calculated for images following manual, CNN, and
traditional segmentations and were compared among
the approaches.

Methods

All human subject research procedures were
approved by the University of Houston’s institu-
tional review board and adhered to the tenets of
the Declaration of Helsinki. Informed consent was

obtained from each human subject prior to performing
any experimental procedures. All animal care experi-
mental procedures were approved by the University of
Houston’s Institutional Animal Care andUseCommit-
tee and adhered to the ARVO Statement for the Use
of Animals in Ophthalmic and Vision Research.

Adaptive Optics Scanning Laser
Ophthalmoscope Imaging

The pupil of each subject was dilated prior to
imaging using 2.5% phenylephrine and 1% tropi-
camide. Pupils were then centered on the optical axis
of the AOSLO using a bite bar attached to a three-
dimensional translation stage. Human subjects were
instructed to fixate on a laser pointer projected onto
a fixation target. The pointer was moved on the
target until a portion of the subject’s optic nerve head
(ONH) was within the field of view of the AOSLO.
Non-human primate (NHP) subjects (rhesus monkeys,
Macacamulatta) were anesthetizedwith 20 to 25mg/kg
ketamine and 0.8 to 0.9 mg/kg xylazine to minimize
eye movements during imaging.30 The head of each
monkeywas positioned using a headmount attached to
a three-dimensional translation stage and was steered
using the tip, tilt, and rotation capabilities of the head
mount until the monkey’s ONH was within the field
of view of the AOSLO. Monkey eyelids were held
open using a lid speculum. Imaging was performed
while monkeys wore a rigid gas-permeable contact
lens, which was used to prevent corneal dehydration
and to correct for any inherent spherical refractive
errors.31

En face reflectance videos of the most superficial
retinal nerve fiber layer (RNFL) axon bundles were
acquired using a confocal AOSLO imaging channel
(200-μm pinhole diameter) over a 2° field of view at a
rate of 25 Hz using a superluminescent diode (SLD)
light source (S-Series Broadlighter; Superlum, Carrigt-
wohill, Ireland) with a center wavelength of 840 nm
(full width at half maximum = 50 nm). The power of
the SLD at the corneal plane was 150 μW, a value that
was more than 10 times below the maximum permissi-
ble exposure for an imaging duration of 1 hour.32 When
imaging the most superficial retina near the ONH, the
confocal imaging channel yielded high-contrast images
of the RNFL axon bundles (which directly backscat-
ter light) with very limited visualization of capil-
lary structure; therefore, non-confocal, split-detector33
AOSLO videos of blood flow perfusion were collected
simultaneously with the confocal videos at the same
retinal location and depth. The split-detector channel
emphasizes local changes in the index of refraction.17
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Figure 1. Dilation of a single pixel manual trace with a uniform structuring element closely matches the diameter of perfused retinal
capillaries in AOSLO images. (a) Original grayscale image of perfused retinal capillaries near a larger vessel. (b) Single-pixel manual trace
through the center of perfused capillaries (red) and the manual tracing of a larger vessel (yellow). (c) Uniform dilation of the manual trace
with a disk (r = 5 pixels) closely matches the diameter of perfused capillaries. Scale bar: 50 μm.

Consequently, split-detector videos were used to calcu-
late perfusion images at the retinal plane of focus.34

Using DeMotion, a cross-correlation program
based on CUDA (NVIDIA Corporation, Santa Clara,
CA),35 individual frames fromAOSLO confocal videos
were subdivided into strips and registered with respect
to a pre-selected reference frame to remove eye motion
and create a stabilized video. The same offsets were
then applied to identical strips from each frame in the
corresponding split-detector video to generate stabi-
lized split-detector videos. Perfusion images of the
radial peripapillary capillaries were generated follow-
ing an approach similar to that of Chui et al.11 After
compensation for intra- and interframe eye motion,
videos were normalized to the maximum pixel value
within the entire video. To reduce noise, this result was
median filtered using a 3 × 3-pixel kernel. To limit the
influence of slower (less than 0.5 Hz) tissue reflectance
changes, the 150-to-250-frame stabilized video was
divided into 25-frame intervals. The standard error of
each pixel was computed over each 25-frame interval,
and a frame containing the standard error of each pixel
(or a standard-error frame) was generated for each
interval. After applying a 3 × 3-pixel median filter to
each standard error frame, all frames were averaged
and subsequently normalized by the maximum value.
Histogram stretching was applied so that the lower
and upper 1% of the histogram were set to 0 and 255,
respectively, in the resulting perfusion image. Multiple
images were taken along the ONH rim and manually
stitched together (Adobe Photoshop, Adobe Systems,
San Jose, CA) to generate a larger perfusion montage
(Fig. 3a).

Manual Segmentation of Perfused Capillaries

Manual tracing of perfused retinal capillaries was
performed in Adobe Photoshop using a Wacom tablet
(Wacom, Saitama, Japan). Perfused capillaries, defined
as bright tube-like structures that were no wider than
20 pixels across (∼20 μm in width), were manually
traced through the center of the capillary using a 1-
pixel line (Fig. 1b). The single-pixel-diameter trace was
dilated using a uniform structuring element (disk) with
a radius of 5 pixels to mimic the average diameter of
the capillaries in the perfusion images (Fig. 1c). Major
vasculature was manually traced with a variable pencil
size larger than 20 pixels (Fig. 1).

The manual marking resulted in images with
pixels belonging to one of four ground-truth classes
(Fig. 2b)—capillary (red), large vessel (yellow),
background (blue), and image canvas (black). Canvas
pixels result from the non-uniform perimeter of
the montage and the padding required to achieve
uniform rectangular images for processing by the
neural network. Canvas pixels have an intensity of
0, whereas AOSLO background signal pixels have
variable intensity and can be any grayscale value. One
rater (rater A) segmented all 185 AOSLO images used
for training, and two raters (rater A and rater B)
segmented 14 images used for testing CNN perfor-
mance.

Subjects and Training Dataset

The training dataset consisted of six montages
from four healthy adult human eyes (mean age,
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Figure 2. Training dataset was manually segmented into four classes. (a) Original grayscale image cropped from a larger AOSLOmontage.
(b) Multi-class image showing the four classes of ground truth: capillaries (red), large vessel (yellow), background (blue), and image canvas
(black). Scale bars: 200 μm.

Figure 3. AOSLO perfusion montage from a single subject was subdivided into patches for input into the convolutional neural network.
(a) Original grayscale AOSLOmontage overlaid on the corresponding SLO image from the same eye. (b) Example of one of the smaller image
regions (768 × 768 pixels) cropped from the larger montage in (a) denoted by the red square. Scale bar: 200 μm. (c) Example of a 128 ×
128-pixel patch extracted from the smaller image region in (b) denoted by the red square. The 185-image dataset generated 12,979 such
patches. (d) Output generated after applying a Gaussian filter with a kernel size of 3 to the patch in (c). (e) Representation of (c) according to
different pixel classes (red, capillary; yellow, large vessel; blue, background; black, image canvas), which serves as the ground truth for CNN
training.

28.4 ± 1.1 years) with no ocular pathology and a
best-corrected visual acuity of 20/20 or better, as well
as 11 montages from six healthy NHP eyes and six
montages from four NHP eyes with laser-induced
experimental glaucoma.36 Due to variability in the
amount of retina imaged within a given imaging
session, some eyes in the training dataset were imaged
more than once over a time span of at least 1 week.
After manually marking perfused vasculature, smaller

image regions were extracted from each AOSLO perfu-
sion montage and were cropped and/or padded to a
uniform 768 × 768 pixels for computation, resulting in
185 multi-class images (Fig. 3). Each 768 × 768-pixel
image was subdivided into 50% overlapping patches
of 128 × 128 pixels. We required that no more than
half of the pixels within a patch belong to the image
canvas class in order to decrease computation time.
This process yielded 12,979 patches, 75% of which



CNN for Segmenting AOSLO Perfusion Images TVST | July 2020 | Vol. 9 | No. 2 | Article 43 | 5

Table 1. Network Layer Architecture

Layer Type Maps Kernel Size

0 Input 1 map of 128 × 128 neurons —
1 Convolutional 32 maps of 128 × 128 neurons 25 × 25
2 Dropout 20% dropout rate —
3 Batch normalization — —
4 Max pooling — 4 × 4
5 Convolutional 64 maps of 64 × 64 neurons 15 × 15
6 Dropout 20% dropout rate —
7 Batch normalization — —
8 Max pooling — 4 × 4
9 Convolution 128 maps of 32 × 32 neurons 10 × 10
10 Upsampling — 4 × 4
11 Batch normalization — —
12 Convolution 64 maps of 64 × 64 neurons 15 × 15
13 Dropout 20% dropout rate —
14 Upsampling — 4 × 4
15 Batch normalization — —
16 Convolution 32 maps of 128 × 128 neurons 25 × 25
17 Dropout 20% dropout rate —
18 Batch normalization — —
19 Convolution 4 maps of 128 × 128 neurons 1 × 1
20 Fully connected softmax activation function —

were randomly selected as the training dataset and the
remaining 25% of which comprised the validation set.

Convolutional Neural Network Architecture

The CNN that we developed to segment capil-
laries from AOSLO perfusion images was built in
Python and based on U-Net, an open-source CNN
initially used to segment cells in microscopy images.37
The software and sample data described in this work
are available on GitHub (https://github.com/porter-
lab-software/AOVesselCNN). Two key steps in the U-
Net architecture are (1) contraction for optimizing
learned content and (2) a symmetric expansion for
precision localization. The network described in this
work was based on CNNs previously used to segment
vasculature in fundus images26 and OCTA images29
and was subsequently altered to optimize the model for
automatically segmenting AOSLO perfusion images.

The detailed architecture for our novel CNN is
shown in Table 1. The general pattern of includ-
ing repeating groups of convolution, dropout, batch
normalization, and pooling layers is a common feature
of CNNs.38 The CNN begins with a convolutional
layer, which convolves an input, or image, with a filter
of a specified kernel size. The convolutional response
of the filter with the input is passed to the next layer.

Dropout layers within the network prevent overfitting
of network units to the training data by randomly
removing units from the CNN. For this CNN, max-
pooling layers were used to decrease computational
demand and to increase the robustness of the network
against small image distortions.39 Max pooling takes
the maximum value from a convolutional layer over a
specified kernel and passes this response to the next
layer. Batch normalization prevents overfitting and
decreases training time by reducing internal covariate
shift through normalization of the mean and variance
statistics of the network units.40 In the second half of
the U-Net architecture structure, upsampling is used
in place of pooling to connect the coarse outputs
from the pooled convolutional layers back to the pixel
segmentation.41 The final fully connected layer uses a
softmax activation function42 to provide probability
maps for each class (capillary, large vessel, background,
image canvas), which can then be converted to binary
maps using a global threshold determined by Otsu’s
method19 to produce the final segmentation. For the
purpose of computing capillarymetrics, Otsu’s method
was applied only to the capillary class to segment those
pixels that were capillaries from those that were not
capillaries.

Our CNN contains important alterations from the
base U-Net structure. First, we have expanded on
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previous CNN designs that have classified pixels into
one of only two categories (i.e., vessel and non-vessel)
by developing a 4-pixel type classification system (i.e.,
capillary, large vessel, background, and image canvas
classes). Second, the size of the convolutional filter
kernel was changed from a fixed 3 × 3 pixels to a
varying size of 25 × 25, 15 × 15, and 10 × 10
pixels to accommodate for large vessels (defined to be
>20 pixels in diameter) and capillaries (that typically
range from 7 to 14 pixels in diameter). In addition,
a weighting function was implemented using Tensor-
Flow,43 as the proportion of background and canvas
pixels in the training set was much greater than the
number of pixels classified as capillaries or large vessels.
The weighting function more heavily weights capillary
and large vessel pixels in inverse proportion to their
percent representation in training set patches. Using
TensorFlow, a weighted categorical cross-entropy loss
functionwas implemented for the network training and
adjusted to incorporate multiple pixel classes.

Convolutional Neural Network: Training and
Testing

The networkwas trained for 250 epochswith a batch
size of 64 on a NVIDIA Volta graphics processing
unit at theUniversity of HoustonResearchComputing
Data Core (formerly the Core Facility for Advanced
Computing and Data Science) using the aforemen-
tioned training set. The testing dataset was collected in
a separate group of eyes and consisted of 1764 patches
that were extracted from 14 images (768 × 768 pixels)
acquired in one healthy human eye, two healthy NHP
eyes, and one NHP eye with laser-induced experimen-
tal glaucoma. Test images were manually segmented
by two raters (rater A and rater B). In addition, we
generated a combined testing set to serve as a manual
ground truth for evaluating CNN performance. The
combined dataset was the union of themanual segmen-
tations separately performed by rater A and rater B and
was skeletonized and re-dilated using a uniform 5-pixel
radius to better mimic true capillary diameters.

Traditional Segmentation Algorithms

In addition to performing manual and CNN
segmentations, test images of perfused vascula-
ture were automatically segmented using two tradi-
tional techniques: an Ostu’s approach and a Frangi
approach.19,25 In both approaches, a custom program
(MATLAB; The MathWorks, Inc., Natick, MA) was
developed to first apply a Gaussian filter (σ = 3) to
grayscale AOSLO images. In the Otsu’s approach,

Otsu’s method was subsequently applied to local
regions of each Gaussian filtered image using a
kernel size of 49 × 49 pixels to determine an inten-
sity threshold value and generate a binary image.
The kernel size was automatically determined by the
“imbinarize” function in MATLAB to be 1/16th of
the image dimension (768 × 768 pixels). In the Frangi
approach, a Frangi filter (σ = 1) was applied to each
Gaussian filtered perfusion image, with the output
being converted to a binary image using a global
Otsu’s method. The binary images generated using
each traditional approach were quantified using the
same method as for the images that were segmented
manually or automatically using the CNN.

Performance Evaluation: Accuracy

Capillary segmentation performance was evalu-
ated by computing the accuracy of the CNN (and
traditional) segmentation techniques with respect to
the combined testing set for the capillary class. The
numbers of pixels classified as true-positive (TP), false-
positive (FP), false-negative (FN), and true-negative
(TN) were calculated using a pixel-wise comparison
between the manual ground-truth segmentation and
the segmentation from the CNN. Pixels marked as the
capillary class by both themanual ground truth and the
CNN were labeled TP, and those that were not marked
by both the manual ground truth and the CNN were
labeled TN. Pixels marked as the capillary class by the
CNN, but not the manual ground truth, were labeled
as FP, and those marked as the capillary class by the
manual ground truth but not the CNN were labeled
FN. The accuracy44 was then calculated as

Accuracy = TP + TN
TP + TN + FP + FN

(1)

Performance Evaluation: Dice and Modified
Dice

Computing accuracy alone may not fully capture
how well the CNN segmentation matches the manual
ground-truth segmentation. For example, having a
high percentage of background pixels in a testing
set could inflate those pixels labeled TN and artifi-
cially yield a high accuracy. Sensitivity and the Dice
coefficient of the segmentation could be more robust
tools for evaluating a segmentation which contains
a high proportion of background (or negative) class
pixels, as is common in AOSLO perfusion images.45
The sensitivity46 of the segmentation, also called the
true-positive ratio, is calculated using only the pixels
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Figure 4. A modified Dice coefficient accounts for slight spatial differences between manual ground-truth and CNN segmentations of
the same capillary. (a) Example in which manual (green) and CNN (red) segmentations of the same capillary have little overlap (yellow),
yielding a very lowDice coefficient of 0.14. (b) To account for slight spatial differences in segmentations of the same capillary onmeasures of
performance, the boundaries of the ground-truth segmentation were expanded outward by 5 pixels (green lines). (c) The boundaries of the
CNN segmentation were expanded outward by 5 pixels (red lines). (d) Image showing the upper and lower boundaries of the intersection
of the two expansions from (b) and (c). The pixels within these boundaries are considered to be overlapping pixels, or true positives. (e) The
new overlapping region (yellow) was used to calculate the modified Dice coefficient (with a value of 0.93 for this image).

that are marked as positive, or capillary class, in
the manual ground-truth segmentation image. Because
sensitivity does not account for times when the CNN
segmentation erroneously marks capillaries where the
manual ground-truth segmentation does not (FPs), we
chose to use the Dice coefficient as our performance
metric. The Dice coefficient47,48 uses the incorrectly
marked pixels (FPs) as part of the evaluation and is
computed as

Dice coeflicient = 2∗TP
2∗TP + FP + FN

(2)

The Dice coefficient has the potential to be artifi-
cially low if the segmentations being compared do
not perfectly overlap when marking the same capil-
lary (Fig. 4a). To account for slight spatial differences
between segmentations of the same marked capillar-
ies, we developed a modified Dice coefficient to include
segmentations that were separated by less than the
average capillary radius (5 pixels) as TPs. The bound-
aries of the automatic segmentation and the manual
ground-truth segmentation were expanded outward by
5 pixels (Fig. 4b,c). Pixels were re-classified as TP
if the expanded CNN segmentation overlapped the
original ground-truth segmentation or if the expanded
ground-truth segmentation overlapped the original
CNN segmentation (Figs. 4d, 4e). The modified Dice
coefficient was then computed with the reclassified
pixels using Equation 2.

Capillary Metrics

A custom MATLAB program was used to calcu-
late capillary density and mean segment length for all
segmentation techniques. Capillary density has been a
commonly reported metric used to quantify perfused
capillaries from OCTA images,49,50 and is calculated
from binary images as the ratio of pixels identified as
a capillary class to the total number of image pixels.
Mean segment length (MSL) has been used as a metric
to assess the continuity of capillary segmentation
algorithms, with increasedmean segment lengths corre-
lating to improved segmentation.51 When computing
MSL, the MATLAB function “bwmorph” was used
to thin the binary image. The function then identified
endpoints and branchpoints of the capillary segments
and used these points to define the continuous pixels
making up a segment. A length was computed for each
segment in the image, and the MSL is the average of
these lengths.

Statistics

We assessed whether significant differences in capil-
lary metrics existed between different raters or between
different segmentation techniques using a one-way
ANOVA followed by a Tukey–Kramer52 post hoc
test. Determinations of whether significant differences
existed in the accuracy and performance of the differ-
ent segmentation techniques were also performed using
a one-way ANOVA followed by a Tukey–Kramer52
post hoc test. Values of P < 0.05 were considered
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to be statistically significant (SigmaPlot 13.0; Systat
Software, Inc., San Jose, CA).

Results

Table 2 shows the levels of agreement in capillary
metrics quantified following manual segmentations of
14 testing images performed by rater A, rater B, and the
union of raters A and B (i.e., ground truth). There were
no significant differences in measurements of capillary
density or MSL across raters (P > 0.05). The Dice
and modified Dice coefficients between the two manual
raters were 0.63 ± 0.06 and 0.90 ± 0.04, respectively.

Training the CNN for 250 epochs with 64 batches
per epoch on the full training dataset took 3 hours

Table 2. Mean ± SD Values of Capillary Density and
MSL Computed Following Manual Segmentation of 14
Test Images

Density (%) MSL (pixels)

Rater A 14.8 ± 2.7 72 ± 12
Rater B 14.3 ± 3.0 65 ± 10
Union of raters A and
B (ground truth)

13.9 ± 3.1 64 ± 8

for completion, and segmenting the 14 images in the
testing set took 2 minutes and 30 seconds on an
NVIDIA Volta GPU. Comparisons of manual and
CNN segmentations of representative test images are
shown in Figure 5. In general, the CNN can automati-
cally segment capillaries throughout the entire image,

Figure5. TheCNNalgorithmsuccessfully segmentsperfused retinal capillaries in areaswithhighbackground signal andover larger vessels.
Original grayscale image regions containing perfused capillaries and larger vasculature from the eyes of (a) a healthy human subject, (d)
a healthy non-human primate, and (g) a non-human primate with laser-induced experimental glaucoma. Image regions were taken from
larger AOSLOmontages as described in Figure 3. (b, e, h) Binary CNN segmentations of perfused capillaries from the corresponding grayscale
images in (a), (d), and (g). (c, f, i) Original grayscale images from (a), (d), and (g) showing CNN segmentations from (b), (e), and (h) in red and
manual ground-truth segmentations in blue. The CNN is capable of segmenting capillaries in regions with high background signal (green
arrows) and regions where capillaries traverse larger vessels (yellow arrows).
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Table 3. Comparison of Performance and Capillary Metrics Generated Following Various Manual and Automated
Segmentation Techniques

Performance Metrics (Ground Truth = Union of Raters A and B) Capillary Metrics

Accuracy Dice Coefficient Modified Dice Coefficient Density (%) MSL (pixels)

Ground truth — — — 13.9 ± 3.1 64 ± 8
Otsu’s approach 0.79 ± 0.04 0.42 ± 0.10 0.65 ± 0.11 34.7 ± 5.5b 28 ± 4c

Frangi approach 0.90 ± 0.01 0.50 ± 0.12 0.82 ± 0.10 14.1 ± 5.5 31 ± 8c

CNN 0.94 ± 0.02a 0.67 ± 0.07a 0.90 ± 0.05a 11.9 ± 3.7 62 ± 6
aIndicates a significant difference relative to other automated segmentation approaches (P < 0.05).
bIndicates a significant difference relative to all other segmentation approaches (P < 0.001).
cIndicates a significant difference relative to ground-truth segmentation (raters A and B) (P < 0.05).

including regions with high background signal and
locations where capillaries traverse larger vessels. The
accuracy of the CNN in correctly classifying a pixel
as being a capillary (relative to the ground-truth
manual marking) was 0.94 across all testing images
(Table 3). The accuracies obtained for the large vessel,
background, and canvas classes were 0.96, 0.90, and
0.99, respectively.

To compare our newly developed CNN to tradi-
tional segmentation algorithms, test images were
also segmented using an Otsu’s approach and a
Frangi approach. Figure 6 illustrates a representa-
tive grayscale perfusion image with the corresponding
manual ground-truth, traditional, and CNN segmen-
tation techniques. The result obtained following Otsu’s
approach (Fig. 6c) highlights the oversegmentation of
background features and the inability for the algorithm
to segment capillaries only. Capillaries segmented with
this algorithm have uneven edges and non-uniform
diameters. The Frangi approach (Fig. 6d) yielded capil-
laries with regular diameters and smooth edges, was
able to separately classify capillaries, and did not
segment background signal to the extent that was
observed following Otsu’s approach. However, it is
common to see gaps in segmentation along the length
of the capillary using this approach, which tends to
produce smaller values of mean segment length. Quali-
tatively, the CNN segmentation (Fig. 6e) closely resem-
bles the manual ground-truth segmentation. Capillar-
ies tend to have uniform diameters and smooth edges
and to be continuously segmented along their length
with this method.

We compared performance and capillary metrics
obtained after conducting manual segmentation,
Otsu’s approach, the Frangi approach, and CNN
segmentations on the test images (Table 3). Signif-
icant differences were found between automated
segmentation approaches (relative to manual ground-
truth segmentations) for accuracy and the Dice and

modified Dice coefficients (P < 0.05). Post hoc analysis
determined there were significant differences in the
values of accuracy, Dice coefficient, and modified Dice
coefficient between the segmentations generated by the
CNN and Otsu’s approach and those generated by the
CNN and Frangi approach (P < 0.05).

Capillary metrics computed after segmenting test
images using our newly developed CNN and tradi-
tional automated techniques were comparedwith those
calculated using the manual ground truth. Capillary
density was significantly higher when calculated using
Otsu’s approach compared to all other segmentation
approaches (P < 0.001). This result was expected,
as Otsu’s method does not distinguish between capil-
lary and large vasculature. (As shown in Supple-
mentary Table S1, Otsu’s method still yielded signifi-
cantly higher densities and lowermean segment lengths
relative to manual segmentations when segmenting
both capillaries and large vessels.) No significant
differences in capillary density were found between
manual ground-truth, Frangi, andCNN segmentations
(P > 0.05). MSL was significantly different between
segmentation approaches (P < 0.001), with post hoc
analysis identifying significant differences in MSL
betweenOtsu’s approach andmanual ground truth and
between the Frangi approach andmanual ground truth
(P< 0.05).No significant differencewas found between
manual ground truth and the CNN segmentation
(P > 0.05).

Discussion

The main purpose of this study was to develop
a method capable of automatically and accurately
segmenting perfused retinal capillaries in AOSLO
images. We designed a CNN that incorporated the
novel use of four classes in the training set to enhance
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Figure 6. CNN segmentation outperforms tradition segmentation techniques. (a) Original grayscale image containing perfused capillaries
and larger vasculature. (b) Manual ground-truth image generated by the manual segmentation of perfused capillaries only. (c) Resultant
image generated after applying Otsu’s approach to the original grayscale image in (a). In addition to segmenting capillaries, this approach
also segments major vasculature and background. (d) Application of the Frangi approach to the original grayscale image in (a) resulted
in a binary image that excluded major vasculature but tended to leave small gaps along the length of individual capillaries, thereby
reducing the metric of mean segment length. (e) CNN segmentation tends to exclude major vasculature and background signal while
also maintaining continuity along the segmented capillaries. (f ) Color-coded overlay of the CNN segmentation (red) from (e) with the
segmentation following Otsu’s approach (blue) from (c), where areas of common segmentation are shown inwhite. (g) Color-coded overlay
of the CNN segmentation (red) from (e) with the segmentation following the Frangi approach (green) from (d), where areas of common
segmentation are shown inwhite.

the segmentation and quantification of perfused radial
peripapillary capillaries relative to traditional segmen-
tation techniques, particularly in areas with high
background signal and large perfused vasculature.
There were no statistical differences between metrics of
capillary density and MSL calculated from segmenta-
tions performed by two independent manual raters or
the union of the two raters. Capillary metrics quanti-
fied from the CNN segmentation were not statisti-
cally different from those quantified following manual
ground-truth segmentation. Overall, the CNN dramat-
ically decreased processing time while providing amore

objective approach to the segmentation of perfused
retinal capillaries.

Our newly developed CNN outperforms two tradi-
tional segmentation techniques (Otsu’s and Frangi
approaches) and closely mimics manual segmenta-
tions. Although commonly used to segment perfused
capillaries in OCTA images,20,21 the Otsu’s approach
employed in this study does not distinguish smaller
diameter capillaries from larger diameter, major vascu-
lature. In addition, Otsu’s approach is a pixel intensity-
based method for segmentation that can result in the
inclusion of large regions of background signal, all of
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which can result in artificially high values for capillary
density. The Frangi approach for automated segmen-
tation yielded capillary densities that were similar to
those in manual ground-truth segmentations, largely
because Frangi filters were originally developed to
segment bright tube-shaped objects and can be tuned
to include specific spatial frequencies (such as exclud-
ing lower spatial frequencies that are more character-
istic of larger vessels).25 Despite their similar capil-
lary density and relatively high performance values, the
Frangi approach also resulted in segmentations that
included gaps along the length of individual capillaries,
yielding low values of mean segment length relative to
manual ground-truth segmentations. The newly devel-
oped CNN more accurately separated capillaries from
larger vasculature and was more continuous in its
segmentation of individual capillaries. Consequently,
the CNN yielded high performance metrics and gener-
ated values of capillary density andMSL that were not
significantly different from the manual ground-truth
segmented values.

The separation of the training dataset into four
different classes (capillaries, large vessel, image
background, image canvas) is an exciting improve-
ment on existing CNNs that have been used for
vascular segmentation. Previous CNNs developed
for and applied to fundus images have not differen-
tiated between smaller or larger vessels,26–28 likely
due to the fact that fundus images do not possess
the resolution necessary to visualize capillaries. A
more recent CNN designed to segment capillaries in
OCTA images was trained on images centered on the
fovea (surrounding the foveal avascular zone),29 where
smaller vasculature is more prominent. In contrast, the
peripapillary retina surrounding the optic nerve head
contains significant major vasculature that ideally
needs to be differentiated from smaller vasculature
to better understand capillary perfusion. Hence, we
trained our CNN on images acquired near the optic
nerve head where the superficial retina contains a
large range of vessel diameters (from major arterioles
and venules to the smallest of radial peripapillary
capillaries) using classes that successfully separated
perfused capillaries from larger vasculature in our test
images.

A variety of kernel sizes were explored for the
pooling (and corresponding upsampling) layers and
convolutional layers when developing the CNN. Our
use of variable convolutional layer kernel sizes was
motivated by a previously reported CNN that used a
4 × 4 kernel size for the pooling layers but variable
convolutional layer kernel sizes to enhance the ability
of the algorithm to segment vasculature with different
diameters in OCTA images.25 During development, it

was found that the values of capillary metrics output
by our CNN depended on the type of convolutional
layer kernel size (variable versus fixed) and the kernel
size of the pooling layers. As shown in Supplemen-
tary Figures S1d and S1e, the use of a 4 × 4 kernel
size for the pooling layer (relative to a 2 × 2 kernel
size) provided a segmentation with increased smooth-
ing, uniformity in vessel width, and connectivity of
capillaries, regardless of the type of convolutional
layer kernel size. A 2 × 2 kernel size for the pooling
layer yielded higher resolution segmentations that were
also more fragmented and dependent on the type of
convolutional layer kernel size (Supplementary Figures
S1b, S1c). These qualitative observations are supported
quantitatively in Supplementary Table S2. Capillary
metrics were similar to values obtained from manual
ground-truth segmentations when using a 4 × 4 kernel
size for the pooling layers and a variable or a fixed 3 ×
3 kernel size for the convolutional layers (see Supple-
mentary Figures S1d and S1e, respectively). However,
when using a 2 × 2 kernel size for the pooling layers,
a fixed, 3 × 3 convolutional layer kernel size (Supple-
mentary Figure S1b) yielded values of MSL that
were significantly different from ground truth, whereas
those obtained using the variable convolutional layer
kernel size (Supplementary Figure S1c) were not.
The publicly available code on GitHub is configured
for variable convolutional layer kernel sizes, as these
maintained the mean segment length regardless of
the pooling kernel sizes we explored (Supplementary
Table S2).

The newly developed CNN objectively segments
perfusion images and reduces potential variability in
capillary metrics that could result from differences
in manual markings performed by different raters.
We found no statistical difference in the values of
mean capillary density or mean segment length that
were calculated between the manual segmentations
performed by two independent raters on the testing
images. Therefore, the markings performed by a single
rater (rater A) were used as ground truth for the
training dataset. Rather than choosing the markings
made by rater A or rater B as the ground truth for
the testing dataset, we adopted a more restrictive
criterion—namely, the union of the manual segmen-
tations performed by the two raters. In addition, the
performance of the CNN segmentation is directly
dependent on the ground-truth segmentation method
used in the training dataset. An alternative approach
to the one used in this work to generate ground-truth
segmentations for training could be to have multiple
raters segment images and use only the common
segmentation as the ground-truth training set.
However, such an approach could be time inefficient
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and may result in capillary segmentations that are
more fragmented, potentially hindering subsequent
analyses seeking to quantify mean segment length on
test images of perfused capillaries.

When combined with high-performance computing
resources, the CNN detailed in this work decreased the
time required to segment one complete montage (as
illustrated in Fig. 3a), from 6 hours when performed
manually by an expert rater to approximately 2 to
3 minutes. In general, high-performance computing
resources can be leveraged to increase the efficiency
and speed with which the network can be trained;
however, less computational power is requiredwhen the
trained network weights have been determined, allow-
ing researchers to efficiently use the trained CNN on
most computing systems.

Additional enhancements to the described CNN
could be considered to increase its general performance
and utility across a wide range of conditions, particu-
larly for applications in which accurate segmentation
and quantification of perfused capillaries are impor-
tant for drawing conclusions about disease pathology.
For example, even though our CNN was trained on a
dataset that included images from healthy eyes and eyes
with varying severities of laser-induced experimental
glaucoma, the training dataset could be refined by
adding images taken in eyes with other diseases (such
as diabetic retinopathy). A potential benefit to includ-
ing more diseased eyes is that image quality tends to be
worse in pathological cases than in healthy eyes. There-
fore, the CNN segmentation may benefit from includ-
ing a larger number of images that are challenging to
segment in the training set. Also, our training dataset
consisted of images acquired near the optic nerve head,
where both capillaries and major vessels are abundant.
AOSLO perfusion images acquired near the fovea,
where capillaries are very abundant, could increase the
number of capillaries in the training dataset (relative
to the amount of major vasculature) and potentially
improve segmentation performance. In addition, future
work could be conducted to better understand the
performance of this algorithm when applied to capil-
lary perfusion images acquired from different AOSLO
systems and laboratories.

In conclusion, the architecture for the CNN
presented in this work can be used to accurately,
objectively, and quickly segment perfused capillar-
ies from high-resolution images obtained using an
AOSLO. The close agreement between the CNN and
manual segmentation enables the robust quantification
of perfused capillary metrics. This automated segmen-
tation technique could be applied to evaluate changes
in capillary metrics over time in retinal and optic nerve
head diseases.
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