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Single-domain antibodies (sdAbs) have substantially expanded the possibilities of 
advanced cellular imaging such as live-cell or super-resolution microscopy to visualize 
cellular antigens and their dynamics. In addition to their unique properties including 
small size, high stability, and solubility in many environments, sdAbs can be efficiently 
functionalized according to the needs of the respective imaging approach. Genetically 
encoded intrabodies fused to fluorescent proteins (chromobodies) have become 
versatile tools to study dynamics of endogenous proteins in living cells. Additionally, 
sdAbs conjugated to organic dyes were shown to label cellular structures with high 
density and minimal fluorophore displacement making them highly attractive probes for 
super-resolution microscopy. Here, we review recent advances of the chromobody tech-
nology to visualize localization and dynamics of cellular targets and the application of 
chromobody-based cell models for compound screening. Acknowledging the emerging 
importance of super-resolution microscopy in cell biology, we further discuss advantages 
and challenges of sdAbs for this technology.

Keywords: nanobodies, intrabodies, chromobodies, cytoskeleton, live-cell imaging, high-content imaging, super-
resolution microscopy

Reflecting the importance of cellular imaging, microscopic technologies ranging from wide-field 
to super-resolution microscopy are applied in nearly every cell-biological laboratory. Along with 
recent developments such as high-content live-cell imaging or super-resolution microscopy, there 
is a concomitant need for advanced labeling strategies to visualize cellular components in physi-
ologically meaningful states. Here, we review recent progress in the development of camelid-derived 
single-domain antibodies (sdAbs) for live-cell imaging and super-resolution microscopy.

sdAbs FOR Live-CeLL iMAGinG

Antigen staining with conventional antibodies is still the most popular approach to image native 
cellular antigens, but due to chemical fixation of the cells it is not suitable to monitor dynamic 
processes. For visualization in living cells, proteins can be fused either to self-labeling enzymes 
(SNAP-, Halo-, or CLIP-tag) or fluorescent proteins (FP) (1–5). However, addition of such large 
protein tags (~20–25 kDa) to the N- or the C-terminus may affect the expression level, activity, 
and localization, and for some targets, it was shown that expression of the corresponding fusion 
protein affects cellular morphology or function (6–8). To avoid genetic modification, intracellularly 
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FiGURe 1 | (A) Schematic representation of a chromobody derived from a single-domain antibody of Camelidae. (B) Illustration of intracellular antigen binding of 
chromobodies followed by introduction and expression of DNA-encoded chromobody expression constructs. (C) Representative images of endogenous cellular 
structures visualized by recently developed chromobodies directed against lamin A, ACTB, vimentin, proliferating cellular antigen (PCNA), and β-catenin in living 
cells.
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functional binding molecules (intrabodies) have been developed 
to visualize endogenous targets. While some intrabodies are 
based on non-antibody scaffolds like peptides, monobodies, or 
designed ankyrin repeat proteins (9–12), most intrabodies are 
derived from immunoglobulins (IgGs) comprising a variable 
heavy (VH) and variable light domain, artificially linked to form 
a single-chain variable fragment (scFv) (13–15). Due to their 
compact structure, small size, high stability, and solubility, sdAb 
fragments (VHHs, nanobodies) from camelids (16) provide ben-
eficial properties for intracellular applications (11, 17). However, 
only nanobodies which retain a binding-compatible conforma-
tion in the absence of the conserved disulfide bond connecting 
frameworks 1 and 3 are functionally expressed in live cells, as 
disulfide bridges are not formed in the reducing environment of 
the cytoplasm. Such binders have to be selected experimentally, 
whereas nanobodies comprising additional disulfide bonds, e.g., 
to stabilize complementarity-determining regions forming the 
paratope can be excluded a priori based on their DNA sequence. 
Nowadays, numerous protocols and synthetic libraries are avail-
able which facilitate the selection of intracellular nanobodies 
(18–24). For visualization of endogenous antigens, nanobodies 
were genetically fused to fluorescent proteins and introduced as 
DNA-encoded expression constructs in living cells. Reflecting 
their chimeric structure these constructs were termed “chromo-
bodies” (25) (Figures 1A,B).

In an initial study, a red fluorescent chromobody directed 
against GFP was generated. Fluorescence co-localization analysis 
of living cells expressing the GFP-chromobody in combination 
with different GFP-labeled marker proteins (components of the 
cytoskeleton, nuclear lamina, or chromatin) revealed a high 

overlap of the fluorescence intensities of antigen and chromo-
body. Besides functional expression in the cytoplasm, the GFP 
chromobody was shown to enter the nucleus, where it traces 
dynamic changes of cellular antigens (e.g., H2B-GFP) throughout 
different stages of the cell cycle (25). Since its first description, the 
GFP-chromobody has been widely used for multiple functional 
and imaging applications ranging from targeted relocalization 
(26–28), induced proteasomal degradation (29, 30), to high-
throughput translocation assays (31) of GFP-tagged proteins. 
While the GFP-chromobody became a unique tool to study 
GFP-tagged proteins in many facets, numerous chromobodies 
directed against native proteins have been generated during the 
last decade.

CHROMOBODieS TO viSUALiZe  
THe CYTOSKeLeTOn

Chromobodies that visualize, but do not disturb the cytoskeleton 
network, are highly desirable for live-cell imaging as many of 
the cytoskeletal proteins become only partially integrated into 
native structures when administered as FP fusions (7, 32–34). 
To date, numerous chromobodies targeting proteins involved 
in the formation of the nuclear lamina, actin, and intermedi-
ate filaments have been described. A lamin-chromobody was 
identified and stably introduced in human cell lines (Figure 1C) 
(35). Fluorescent recovery after photobleaching (FRAP) analysis 
showed that the lamin-chromobody binds very transiently, 
which does not interfere with the functional redistribution of the 
nuclear lamina (25). Live-cell imaging of the chromobody signal 
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revealed the typical nuclear rim structure and monitors its disin-
tegration during mitosis or upon compound-mediated induction 
of apoptosis (36). For in vivo labeling of the actin cytoskeleton, an 
actin-chromobody with a similar highly transient binding mode 
was generated (Figure 1C) (37). Originally selected against mam-
malian ACTB, it also recognizes F-actin in parasites, zebrafish, 
or plant cells (37–40). Not disturbing actin dynamics by steric 
hindrances or stabilizing effects, the actin-chromobody provides 
distinct benefits over other labeling approaches such as lifeact-
GFP (10) or SiR-Act (41). Thus, the actin-chromobody was used 
to track the movement of Golgi bodies along actin filaments in 
tobacco leaf cells. Compared to lifeact-GFP, a more complex 
movement pattern of the organelles was detectable, indicating 
that the transiently binding chromobody has only a minor effect 
on actin dynamics in those plant cells (40). In a recently published 
report, Periz et al., used the actin-chromobody to visualize actin 
for the first time in Toxoplasma gondii. Previous attempts with 
other labeling approaches have failed due to the fast turnover of 
F-actin in those parasites. Since the actin-chromobody prefer-
entially labels filamentous actin the dynamics of the extensive 
actin network that connects parasites within the parasitophorous 
vacuole becomes visible and the exchange of vesicles between 
individual parasites could be monitored (38). In another approach 
the actin-chromobody was directed to the nucleus of mammalian 
cells. Following the chromobody signal in stably expressing 
NIH3T3 cells a fast formation of actin fibers within the nucleus 
in response to cellular treatment with soluble fibronectin was 
observed by time-lapse imaging (42). Moreover, the generation 
of an actin-chromobody expressing zebrafish established the first 
application of chromobodies in a vertebrate. Embryos ubiqui-
tously expressed the actin-chromobody were raised to adulthood 
demonstrating that this intrabody does not interfere with normal 
animal development. Live imaging of whole zebrafish at various 
developmental stages revealed distribution and dynamics of 
actin in different cell types including embryonic muscle fibers, 
migrating primordial cells, epidermal cells, macrophages, or 
xanthophores and provides novel insights into processes such as 
wound healing or neuronal development (37).

Addressing another cytoskeletal target, we recently have 
generated a vimentin-specific chromobody (VB6-chromobody) 
to label major intermediate filaments in vivo (Figure 1C) (43). In 
addition to its role as an essential component of the cytoskeletal 
network, vimentin is a biomarker of epithelial–mesenchymal 
transition (EMT), a highly dynamic process involved in the initia-
tion of metastasis and cancer progression. Thus, a lung cancer cell 
model stably expressing the VB6-chromobody was established 
and dynamic changes of endogenous vimentin were monitored. 
Upon treatment with TGF-β as an inductor of EMT, the chromo-
body signal revealed the incremental formation of vimentin fibers 
over time, starting from the nucleus toward the cellular periphery 
while upon RNAi-mediated vimentin depletion we observed an 
increasingly diffusible distribution of the chromobody in live 
cells. Based on these findings, we established a phenotypic readout 
for high-throughput live-cell imaging and quantified dose- and 
time-dependent effects of vimentin-modulating compounds as 
novel potential inhibitors of EMT (43, 44). In summary, to date, 
numerous cytoskeleton-specific chromobodies are available. They 

provide a promising approach for labeling these components in 
living cells and can be implemented in phenotypic screening 
approaches using 2D- or 3D-chromobody cell models (36, 44) 
or whole organism (37). However, no intracellularly functional 
tubulin-chromobody was reported so far, which would ideally 
complement this set of cytoskeletal probes.

CHROMOBODieS viSUALiZinG  
nUCLeAR COMPOnenTS

Chromobodies directed against nuclear factors have also found 
their way into live-cell imaging. Visualizing the dynamic appear-
ance of distinct nuclear foci, formed by the native proliferating 
cell nuclear antigen (PCNA), a PCNA chromobody allows a 
detailed time-lapse analysis of S phase progression and quantita-
tive live imaging of endogenous DNA replication in human cells 
(Figure  1C) (45). The potential of the PCNA chromobody to 
monitor the cell cycle using real-time high-throughput imaging 
was recently combined with an enzymatic determination of dead 
cell protease activity in corresponding cell culture supernatants. 
By this cell cycle modulators derived from a compound library 
which show low cellular toxicity were identified (46). In a similar 
setting, a PARP1 chromobody was used to visualize recruitment 
of endogenous PARP1 to DNA-damaged sites. The possibility to 
trace the characteristic relocalization of PARP1 from nucleoli 
to nucleoplasm following the chromobody signal constitutes a 
novel cell-based screening for rRNA transcription inhibitors or 
DNA-damaging agents using a translocation-specific, real-time 
imaging approach (47). Addressing the heterodimer formed by 
H2A–H2B histones, a chromobody (chromatibody) was devel-
oped for chromatin labeling of a wide variety of cell lines ranging 
from yeast to human. Although this chromobody shows a high 
affinity, its expression does not affect normal cell cycle progres-
sion. Moreover, similar to the actin-chromobody, introduction of 
the H2A–H2B chromobody in a transgenic Drosophila model has 
no influence on normal development underlining the functional-
ity of chromobodies for non-invasive imaging of native targets in 
whole organisms (48).

All previously described chromobodies address structurally 
defined antigens (fibers, spots, etc.). A more challenging approach 
is to probe soluble cellular components. Recently, a chromobody 
specific for the Wnt signaling component β-catenin in its hypo-
phosphorylated state was developed and stably introduced into 
HeLa cells. This chromobody cell line was used to monitor cyto-
plasmic accumulation and nuclear translocation of endogenous 
β-catenin in response to compound treatment (Figure 1C). This 
study additionally describes a previously unappreciated depend-
ency of the chromobody level on the amount of its antigen and 
demonstrates that the chromobody signal can be utilized to trace 
quantitative changes of cellular β-catenin levels in real time (49).

Finally, a conformation-specific chromobody which visual-
izes GPCR trafficking from the plasma membrane to endosomes 
should be highlighted. Starting from a nanobody selectively rec-
ognizing the activated β2-adrenoceptor (β2-AR) (50), Irannejad 
et al. generated a GFP fusion of this binder (Nb80-GFP). Upon 
activation of β2-AR with isoprenaline, this chromobody was 
rapidly recruited from a diffuse fraction to the plasma membrane. 
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Continued time-lapse imaging showed a displacement of the 
chromobody when β-arrestin binds to internalized β2-AR and 
relocalization of the chromobody signal to β2-AR-containing 
endocytic vesicles further revealed a restoration of target binding 
once endosomes became uncoated (51). This study impressively 
demonstrates the potential of chromobody-based probes to 
visualize dynamic conformational changes of signaling proteins 
with high spatiotemporal resolution in living cells.

The aforementioned examples provide a rather short overview 
of recent advances of the chromobody technology. For the sake of 
brevity, many other chromobodies and applications thereof, e.g., 
to visualize viral morphogenesis (52), actin-binding proteins (19) 
or to manipulate native targets and structures (53, 54) in living 
cells are only mentioned briefly here.

Like for any other molecular probe applied for live-cell imag-
ing, influence of chromobody expression has to be carefully 
evaluated. Especially, impact on antigen mobility or displacement 
of natural interaction partners has to be considered. This can be 
addressed, e.g., by selecting transiently binding chromobodies, 
detectable by FRAP analysis (23, 25, 37, 43), or chromobodies 
addressing inert epitopes, which can further be analyzed by 
intracellular immune-precipitations to monitor interactors 
co-precipitating with the antigen (49). Stable chromobody cell 
lines further requires detailed evaluation of, e.g. morphology, 
proliferation, and signaling pathways the target is involved in 
(43). To date, most chromobodies visualizes proteins present 
in considerable amounts in the cell. Introduced as genetically-
encoded constructs their expression is only partially adjustable 
and signal of bound chromobodies is affected by the diffuse signal 
derived from non-bound ones. Gross et al. recently described an 
elegant approach to adjust the level of an intrabody by fusing 
it to a DNA-binding KRAB domain which induces a dynamic 
feedback mechanism transcriptionally repressing the generation 
of non-target-bound intrabody (9). Another option is to generate 
destabilized chromobodies. By adding a destruction motif such 
as PEST domains (55) or introducing distinct point mutations 
in the framework regions (56), the cellular turnover of chromo-
bodies can be increased. Since we and others have observed that 
chromobodies are stabilized upon antigen binding (49, 56), such 
modifications might be suitable to improve the detection of low 
abundant components within living cells.

In summary, chromobodies are versatile probes to monitor 
expression and dynamics of endogenous proteins in vivo. Their 
ability to visualize antigens without affecting their function 
makes them ideally suited for real-time imaging of cellular 
processes and redistribution assays. To combine in cellulo imag-
ing with functional studies, chromobodies which interfere with 
distinct protein functions or interactions can be selected. Such 
intrabodies would offer new perspectives for target identification, 
validation, and visualization in living cells.

sdAbs FOR SUPeR-ReSOLUTiOn 
iMAGinG

With structured illumination microscopy (SIM) (57), stimulated 
emission depletion microscopy (STED) (58) and single-molecule 

localization techniques such as photoactivation localization 
microscopy (59) or stochastic optical reconstruction microscopy 
(STORM) (60), highly advanced methods are now available to 
image biological samples at resolutions below the diffraction limit 
of light (61, 62). In parallel, novel labeling strategies and improved 
affinity probes for SRM are developed (63–65). However, to date 
SRM-compatible fluorophores are most commonly delivered by 
expression of (photoactivatable) FPs or indirect labeling using 
secondary antibodies conjugated to organic dyes. Antibodies 
as relatively large molecules (150 kDa, 10–15 nm) can interfere 
with the achievable resolution as they displace the fluorophore 
from the target and introduce a so-called “linkage error” (66). 
Obviously, the 10 times smaller nanobodies (15 kDa, 2–4 nm) 
are predestined to overcome these issues as they have better 
access to intracellular antigens and can be easily conjugated to 
fluorophores either by chemical coupling or enzymatic labeling 
(67). Despite their clear advantages for the field, nanobodies are 
still at an early stage as novel labeling probes for super-resolution 
microscopy.

The first nanobody applied for super-resolution was the GFP 
nanobody in SIM studies (68). SIM requires very photostable 
labeling and GFP fusions often suffer from massive photobleach-
ing during extended image acquisition. Upon binding to the 
high-affinity GFP nanobody (25) coupled to green fluorescent 
organic dye fluorescent intensities of individual GFP fusions 
can now be “boosted,” to restore and increase the signal in the 
green channel. Combining SIM with ATTO488-conjugated 
GFP nanobodies, Guizetti et  al. regain fluorescence of GFP-
labeled components of endosomal sorting complex required for 
transport-III and obtained insights in the organization of the 
intracellular cortical constriction zone at the nanoscale (68). 
For single-molecule localization microscopy (SMLM), Ries 
et al chemically coupled the GFP and RFP nanobody developed 
by ChromoTek to AlexaFluor 647 (AF647) and AlexaFluor 700. 
They stated that nanobody-mediated targeting of organic dyes 
to FP fusions combines molecular specificity of genetic tagging 
with high photon yield of organic dyes and minimal linkage 
error. By staining of tubulin-YFP in Ptk2 cells with the GFP 
nanobody, they achieved a high-density labeling of microtu-
bules with a full width half maximum of ~30 nm for individual 
filaments, which is in accordance with the reported microtubule 
diameter of ~25 nm. Additionally, they showed that the small 
GFP nanobody is able to penetrate the permeabilized cell wall 
of intact yeast cells without generating spheroblasts. Thus, 
they were able to perform STORM imaging of multiple endog-
enous GFP fusions derived from a haploid genomic library of  
S. cerevisiae (69).

Due to its applicability for nanoscopy of widely available 
GFP fusions, the GFP nanobody becomes a very popular tool 
for SMLM. Recently, the GFP nanobody was used to explore 
the structural background of information transmission in the 
nervous system. For localization microscopy of nanoclusters in 
the pre- and postsynaptic neurons the endogenous postsynap-
tic scaffolding protein PSD-95 was replaced by a GFP-tagged 
knockdown rescue variant of PSD-95 and labeled with the GFP 
nanobody conjugated at a 1:1 ratio with ATTO647. This provided 
a detailed insight in distributions of proteins mediating vesicle 
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priming in the presynaptic active zone in relation to postsynaptic 
membranes marked by PSD-95 (70).

While GFP- or RFP nanobodies are highly suitable for SRM of 
FP fusions in fixed and also live-cells when coupled to quantum 
dots (71), this strategy relies on the correct expression of FP 
fusions and does not cope with problems arising from overex-
pression, mislocalization or dysfunction (6, 8). Thus, nanobodies 
directed against smaller and inert peptide tags could be advanta-
geous. With the BC2 nanobody, we recently reported the first 
peptide-binding nanobody which is suitable for cellular imaging 
(72). Upon chemical conjugation to organic dyes we visualized 
BC2-tagged proteins in various cellular compartments including 
the cytoplasm or the nucleus using wide-field or confocal micros-
copy (72). Further adaption of the BC2 nanobody to generate a 

SRM-compatible labeling probe is currently under development 
in our group.

To avoid any interferences derived from the addition of pro-
tein- or peptide tags, nanobodies targeting native proteins would 
be ideally suited for SRM. Considering that only a very few sci-
entific groups or companies are currently developing nanobodies 
for SRM, only three examples of target-specific nanobodies can 
be mentioned here. Pleiner et al. have generated a set of nanobod-
ies addressing various components of the nuclear pore complex 
(NPCs) of Xenopus laevis. For stoichiometric dye conjugation, 
they exchanged individual amino residues within the framework 
regions with single cysteines and performed maleimide coupling 
of AF647. They stated, that in comparison to NHS-mediated labe-
ling, the site-specific conjugation leads to a better signal-to-noise 

FiGURe 2 | Illustration of the nanobody-based labeling strategy for stochastic optical reconstruction microscopy (STORM) of the native vimentin network.  
(A) Schematical depiction of the bivalent VB6 (bivVB6)-Nb-labeled vimentin network. The boxed regions outline the organization of individual vimentin molecules into 
larger fibers and highlight the detection of dimeric vimentin with the fluorescently labeled bivalent VB6-Nb (bivVB6-NbAF647). (B) Representative STORM image of a 
HeLa cell, stained with the bivVB6-NbAF647. Scale bar, 5 µm.
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(bivVB6) nanobody also detects native vimentin structures 
when it is applied as a dye-conjugated labeling probe (43), we 
further evaluated this bivalent nanobody format for SRM. Thus, 
we performed site-directed conjugation of VB6-Nb with AF647. 
STORM images impressively show a high resolution of the vimen-
tin network in mammalian cells indicating that the bivVB6-Nb 
nanobody is also suitable for SRM (Figure 2, own work).

In summary, nanobodies in combination with site-specific and 
quantitative fluorescent labeling will be crucial for SRM aiming at 

detailed structural analysis or determination of absolute protein 
copy numbers. Although only a limited number of nanobodies 
are available for SRM, the presented examples excelled in SRM 
and well-defined cellular structures such as the vimentin network, 
NPCs, or microtubules labeled with nanobodies have now become 
benchmarks for many new advancements of SRM. In contrast to 
conventional poly- or monoclonal antibodies, nanobodies are 
reliably producible in high yields with a standard quality. Thus, 
it is conceivable that they will help to avoid current uncertainties 
regarding antigen labeling and facilitate the reproducibility of 
results between laboratories and publications. In combination 
with other approaches developed to deliver bright organic dyes 
to defined cellular structures such as point accumulation for 
imaging in nanoscale topography (75), bicyclic peptides (76), or 
aptamers (77), nanobodies perfectly complement the portfolio of 
new and reliable labeling probes for super-resolution imaging.
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