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Abstract: Recently, remote sensing satellites have become increasingly important in the Earth ob-
servation field as their temporal, spatial, and spectral resolutions have improved. Subsequently,
the quantitative evaluation of remote sensing satellites has received considerable attention. The
quantitative evaluation method is conventionally based on simulation, but it has a speed-accuracy
trade-off. In this paper, a real-time evaluation model architecture for remote sensing satellite clusters
is proposed. Firstly, a multi-physical field coupling simulation model of the satellite cluster to observe
moving targets is established. Aside from considering the repercussions of on-board resource con-
straints, it also considers the consequences of the imaging’s uncertainty effects on observation results.
Secondly, a moving target observation indicator system is developed, which reflects the satellite
cluster’s actual effectiveness in orbit. Meanwhile, an indicator screening method using correlation
analysis is proposed to improve the independence of the indicator system. Thirdly, a neural network
is designed and trained for stakeholders to realize a rapid evaluation. Different network structures
and parameters are comprehensively studied to determine the optimized neural network model.
Finally, based on the experiments carried out, the proposed neural network evaluation model can
generate real-time, high-quality evaluation results. Hence, the validity of our proposed approach
is substantiated.

Keywords: remote sensing satellite cluster; moving targets; effectiveness evaluation; simulation;
neural network

1. Introduction

Remote sensing satellites obtain information from the Earth’s surface through optical
or microwave payloads [1]. They are widely used in many fields, including agriculture,
forestry, ocean, meteorology, and military [2]. With the growing emphasis on space and
the ongoing growth of science and technology, the number of remote sensing satellites
has expanded significantly in recent years. Meanwhile, the temporal, spatial, and spectral
resolutions of satellites have also been gradually enhanced [3]. Satellite clusters, such
as Planet Labs, Gaofen, and Jilin-1, are formed as a result of these advancements [4,5].
Remote sensing satellite clusters regularly consist of numerous wide-swath satellites and
high-resolution satellites. They cooperate to complete census and detailed survey tasks
for various targets. Nevertheless, constructing such satellite clusters is costly due to the
several processes involved, including the design, manufacture, testing, launching, and
management. Consequently, the effectiveness of satellite clusters has to be evaluated
accurately for better decision making [6]. With the emerging drawbacks of qualitative
evaluation methods, quantitative evaluation methods have received considerable attention
in recent years [7,8].

The four main branches of the current quantitative effectiveness evaluation methods
are the analytical method, experimental statistical method, multi-index synthesis method,
and simulation method [9]. Although the analytical method is simple and efficient, it
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has difficulty in solving certain complex evaluation problems. Zhao [10] studied the
effectiveness equivalence algorithm of the weapon system and proposed an approximate
analytical expression of the weight coefficient. Next, despite the high reliability of the
experimental statistical method, it requires real data, which is normally scarce and difficult
to obtain. Xiong [11] used more than ten years of in-orbit data to evaluate NASA EOS
Terra and Aqua MODIS on-orbit performance. The multi-index synthesis method has a
good hierarchy and a wide range of applications. However, the weights of indices are
usually affected by subjectiveness. Zheng [12] evaluated three typical remote sensing
tasks using the analytic hierarchical process (AHP). Chen [13] constructed an evaluation
indicator system to describe the target feature detection ability of satellites, where the
weight parameters are obtained from the expert evaluation. Liu [14] utilized the AHP
and the availability dependability capability (ADC) model to evaluate the comprehensive
effectiveness of the earth observation satellite cluster. While the simulation method can
consider more factors of complex systems and environments, it also requires the model
to be highly accurate. Zhang [4] built a satellite observation effectiveness evaluation
model based on the availability capacity profitability (ACP) framework. Tang [15] used the
Satellite Tool Kit (STK) and C++ to build a nanosatellite constellation model and evaluated
its military effectiveness. As one of the four branches mentioned above, the simulation
method can compute the evaluation results presented in various conditions, solving the
evaluation problem of the complex remote sensing satellite cluster effectiveness with good
applicability [9].

The main challenge of using the simulation method to evaluate the remote sensing
satellite cluster is the lack of model accuracy [9]. The satellite cluster is a complex and
highly comprehensive system. Multiple physical fields, including mechanics, electricity,
thermodynamics, optical, and magnetism, are coupled [16,17]. The remote sensing satellite
clusters are usually used to observe three typical targets, which are point targets, regional
targets, and moving targets [18]. Establishing the observation scene of the moving targets is
more complex than the others, since additional aspects must be considered. Moving targets
have time sensitivity and position uncertainty, requiring multi-satellite cooperation to
discover, identify, confirm, and track them sequentially. The uncertainty of the observation
results is mostly driven by factors, including resolution, light, cloud, and climate [18].
The traditional simulation evaluation modeling only considers a few factors, which are
the satellite orbit, attitude, and optical payload visible model [4,9]. Nonetheless, apart
from lacking resource constraint models, such as the power and computer storage, it also
does not consider the impact of imaging quality on the mission status. Hence, to describe
the complex coupling relationships of a remote sensing satellite cluster, a high-fidelity
simulation model must be established [19].

Regarding the construction of indicator systems, most remote sensing satellite eval-
uation indicators only consider the time resolution (e.g., the revisit time and coverage
time) and spatial resolution (e.g., the Ground Sampling Distance (GSD) and percentage of
area coverage) [9,12]. Even though the aforementioned indicators can reflect the satellite’s
availability to observe the target under ideal conditions, they are not capable of reflecting
the effectiveness of the satellite’s actual mission process. Moreover, the establishment of
an indicator system is generally proposed by experts, where each indicator in distinct
systems might be inevitably correlated, thereby defying the principle of hierarchy and
independence [20].

Furthermore, a high-fidelity simulation evaluation model requires heavy computation,
especially when the cluster contains numerous satellites [21]. As a consequence, the time-
consuming simulation limits the iteration speed of the design stage and the decision-
making speed of the use stage [22]. A common approach to overcoming this problem is to
establish a machine learning model. Machine learning technology has lately been applied
to the theoretical studies of aerospace missions [23], including aircraft design [20,22],
mission planning [1,24], and attitude control [25,26]. In those cases, machine learning has
demonstrated its capability of learning complicated functions and responding quickly.
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In this paper, by applying machine learning to the effectiveness evaluation of remote
sensing satellite clusters on moving targets, a real-time evaluation model architecture is
proposed. Firstly, we establish a multi-physical field coupling simulation model of the
satellite cluster, which considers the repercussions of multiple satellite resource constraints
and the uncertainty of imaging quality on the observation results. Secondly, we develop an
indicator system to evaluate the effectiveness of satellite cluster observations on moving
targets. A set of independent indicators is then filtered out through correlation analysis.
Thirdly, neural networks are trained with high-fidelity simulation evaluation data. Neural
networks of different hidden layers, neurons, and activation functions are trained to
determine the optimized model, which can output effectiveness evaluation results in
real time.

The remainder of the paper is organized as follows. In Section 2, the architecture of the
real-time effectiveness evaluation model is presented. In Section 3, the high-fidelity model
construction method is explained. In Section 4, the construction and screening process
of the evaluation indicator system is provided. In Section 5, the neural network training
method is presented. In Section 6, the experiments and results are described. In Section 7,
we discuss the validity of the method proposed and conclude the paper.

2. Architecture of the Real-Time Satellite Cluster Effectiveness Evaluation Model

The scene of the satellite cluster observing the moving targets is illustrated in Figure 1.
A satellite cluster may include different satellites, such as wide-swath satellites and high-
resolution satellites. A variety of satellites in the satellite cluster collaborate to conduct the
census and comprehensive investigation of the target. Wide-swath satellites are utilized to
search for and discover targets in a specified area. High-resolution satellites are intended
for identification, confirmation, and status tracking of discovered targets.
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Figure 1. The scene of the satellite cluster observing the moving targets.

To evaluate the moving target’s observation effectiveness of the remote sensing satellite
cluster, a real-time evaluation model architecture is designed, as shown in Figure 2.

The multi-physical field coupling simulation model of remote sensing satellite clusters
is described in Section 3. The model is defined as

Y = fSimulation(XAll , t), (1)

where Y is the simulation result data and t is the simulation time. XAll consists of simulation
condition parameters, which can be expressed as

XAll =
[
XADCS, XPOWER, XTTC&DT , XPAYLOAD, XSpace, XTarget

]T . (2)
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The simulation condition parameters XAll mainly consist of six parts, which are
attitude determination and control subsystem (ADCS) parameters XADCS, the power sub-
system (POWER) parameters XPOWER, the telemetry/telecommand and data transmission
subsystem (TTC&DT) parameters XTTC&DT , the payload subsystem parameters XPAYLOAD,
the task environmental parameters XSpace, and the target parameters XTarget, respectively.

The moving target observation effectiveness indicator system of the satellite cluster is
established in Section 4, which can be expressed as

Z = [z1, . . . zi, . . . zn]
T . (3)

The effectiveness evaluation model based on the simulation result data can be ex-
pressed as

ZSimulation = [z1,Simulation, . . . zi,Simulation, . . . zn,Simulation]
T = fSCEE−Simulation(Y). (4)

In Section 5, the neural network evaluation model is trained, which can be expressed as

ZLearning =
[
z1,Learning, . . . zi,Learning, . . . zi,Learning

]T
= f Stakeholders,i

SCEE−Learning(XStakeholders,i), (5)

where XStakeholders,i ∈ XAll contains the factors with which the ith stakeholder is concerned.
f Stakeholders,i
SCEE−Learning is the corresponding neural network evaluation model. For different stake-

holders, such as the designers, manufacturers, and users, XStakeholders,i contains different
elements. On the one hand, the primary concern of the designers and manufacturers is
the composition and structure of the remote sensing satellite cluster. On the other hand,
the fundamental interest of the users is to what extent different task environments and
target parameters impact the overall system efficiency.

With the rapid forward propagation process of the neural network, the calculation of
the satellite cluster effectiveness indicators can be greatly accelerated. The neural network
model error of the ith indicator can be expressed as

errori =

∣∣∣∣ zi,learning − zi,simulation

zi,simulation

∣∣∣∣. (6)

3. Establishing the Multi-Physical Field Coupling Model of the Remote Sensing
Satellite Cluster

In this section, the function fsimulation of calculating Y according to XAll and t is
established. The function is realized via a numerical simulation based on the high-fidelity
model, which should be the multi-physical field coupled. The multi-physical coupling
relationship is illustrated in Figure 3.
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The forces and moments of celestial bodies, such as Earth, the Sun, and the Moon,
are coupled with the satellites’ orbits and attitudes. The ADCS controls the satellite’s
position and attitude. They have coupling relationships with the solar array attitude of the
POWER, the communication link of the TTC&DT, and the range of the payload’s field of
view. Sunlight and the solar array within the POWER are coupled. The remaining battery
capacity of POWER is mutually coupled with the power consumed by other subsystems.
TTC&DT is coupled with other subsystems by sending and receiving commands and data.
The payload’s coverage capability is coupled with the satellite’s orbit and attitude. At the
same time, it is also bound by resources, such as power, storage, and data transmission.
The payload imaging quality is affected by factors, such as resolution, climate environ-
ment, cloudiness level, and lighting conditions, which in turn affect the target detection
probability.

The typical simulation evaluation modeling only considers a few factors, which are the
satellite orbit, attitude, and optical payload visible model. Nonetheless, apart from lacking
resource constraint models, such as the power and computer storage, it also does not
consider the impact of imaging quality on the mission status. On the basis of the existing
models, this paper established three supplement models, which are (1) the power subsystem
model, (2) the optical payload’s target detection probability model, and (3) the satellite
cluster mission allocation model that considers the entire satellite’s resource constraints.

3.1. The Power Subsystem Model

The power subsystem model includes the device power consumption model, the solar
array power supply model, and the battery charge and discharge model.

(1) The device power consumption model.
The total power consumption PDevice is calculated as follows:

PDevice =
NDevice

∑
i=1

Si
DevicePDi , (7)
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where i is the ith device, i ∈ N+, and 1 ≤ i ≤ NDevice. NDevice is denoted as the total
number of devices. The state variable Si

Device is set to 1 when the device consumes electrical
energy, or else it is set to 0. PDevice is the power that the ith device consumes.

The on–off state of the devices on board are defined as SDevice =
{

S1
Device, · · · , Si

Device, · · · ,
SN

Device
}

, and it can be obtained by

SDevice = fDS
(
XPowerManage, XTC, J(≥ E0)

)
, (8)

where XTC is the power management command from the Earth station, and XPowerManage is
the management command from the on-board computer.

Denote t as the current time and ∆t as the simulation time step. The power manage-
ment command of t + ∆t can be obtained from

XPowerManage(t + ∆t) = fPM
(
SDevice(t), PDevice(t), PWing(t), CBattery(t)

)
. (9)

The power consumption PDi of each device is coupled with other subsystems, and it
can be expressed as

PDi = fDP

(
XDi , XCoupling

Device_i , J(≥ E0)
)

, (10)

where XDi is the state parameter of the ith device itself and XCoupling
Device_i represents the state

parameter affected by other subsystems, including the temperature, data transmission load,
and data processing load.

(2) The solar array power-supply model.
The output power of the solar array is calculated as follows:

PWing = CShadowXWingS0 ACη cos θSW(βP∆T + 1), (11)

where CShadow represents whether the satellite is in the Earth’s shadow, XWing is the com-
prehensive coefficient of the solar array, S0 is the solar constant, AC is the area of the solar
array, η is the photoelectric conversion efficiency of the solar array, θSW is the angle between
the normal direction of the solar panel and the direction of sunlight, βP is the solar array
power temperature coefficient, and ∆T is the difference between the standard temperature
and the current working temperature of the solar array.

CShadow is calculated according to the sun vector RSun, the satellite position vector
RSate, and the angle θSS between the two vectors; the formulas are as follows:

θSS = arccos
(

RSun ·RSate

|RSun| · |RSate|

)
, (12)

CShadow ==

{
1, i f θSS > π

2 and |RSate| · sin θSS < Re
0, else

. (13)

θSW can be obtained from the solar vector RSun and the normal vector W of the solar
panel, which can be expressed as

θSW = arccos
(

RSun ·W
|RSun| · |W|

)
. (14)

The temperature difference ∆T is

∆T = TW − TO, (15)

where TW is the current working temperature and TO is the standard temperature of the
solar array.

(3) The battery charge and discharge model.
When the output power of the solar array exceeds the sum of total device power

consumption and battery charge power, the regulator consumes the surplus power. The
surplus power can be calculated by

PLoss =

{
PWing − PDevice − PMaxCharge , PWing − PDevice > PMaxCharge
0 , else

, (16)
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where PMaxCharge is the maximum charging power of the battery and PLoss is the power
consumed by the regulator.

The battery is charged only if the output power of the solar array is greater than that of
the on-board devices and the current battery capacity is below its maximum value, in which
case PBattery > 0. On the contrary, the battery is discharged if the electric power of the solar
array is less than that of the on-board devices and the current battery capacity is above its
minimum value, in which case PBattery < 0. The battery power is defined as

PBattery =

{
PWing − PDevice − PLoss, CMinBattery < CBattery < CMaxBattery
0 , else

, (17)

where CMinBattery is the minimum capacity of the battery and CMaxBattery is the maximum
capacity.

The battery capacity of t + ∆t can be expressed as

CBattery(t + ∆t) =
{

CBattery(t) + ∆t · kCharge · PBattery(t), PBattery > 0
CBattery(t) + ∆t · kDischarge · PBattery(t), PBattery < 0

, (18)

where kCharge is the battery charging coefficient and kDischarge is the battery discharge
coefficient.

3.2. The Optical Payload Model

The optical payload model consists of two parts: the optical coverage model and the
target detection probability model. The coverage state SCover

i,j
can be obtained from the

optical coverage model [9], where i is the target number and j is the task number of the ith
target. The target detection probability is affected by factors, including the satellite imaging
resolution, target size, light condition, cloud level, and visibility level. The detailed model
is described as follows:

The resolution of the satellite optical payload is

GSD =
d
f
|Rsti|, (19)

where d is the pixel size, f is the focal length, and Rsti is the vector of position difference
from satellite to the target in the inertial frame.

The 2-D criterion (number cycles) N is generated by

N =
dt

GSD
, (20)

dt =
√

LtWt, (21)

where dt is the feature size of the target, Lt is the length of the target, and Wt is the width of
the target.

The target static detection probability is defined as [27]

PStastic = P(N) =
(N/N50)

2.7+0.7(N/N50)

1 + (N/N50)
2.7+0.7(N/N50)

, (22)

where N50 is the number of cycles corresponding to a 50% detection probability. The N50
is set to 0.75, 3, 6, 1.5 for the discovery, identification, confirmation, and tracking tasks,
respectively.

The solar altitude angle is calculated as

H =

∣∣∣∣∣arccos

(
RSun ·RTarget

|RSun| ·
∣∣RTarget

∣∣
)∣∣∣∣∣. (23)

The light factor is defined as
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fs =


1 , H ≥ 30◦

0.04(H − 5) , 5◦ ≤ H ≤ 30◦

0 , H ≤ 5◦
. (24)

The cloud factor is generated by [28]

fc = 1− (Nc − 1)2

81
, (25)

where Nc is the cloud level, Nc ∈ N+, 1 ≤ Nc ≤ 10.
The visibility factor is generated by [28]

fv = e−
(Nv−1)4

1024 , (26)

where Nv is the visibility level, Nv ∈ N+, 1 ≤ Nv ≤ 10.
The target discovery probability can be derived from the product of static detection

probability and the other three factors; it can be expressed as

Pi,j = PStastic fs fc fv, (27)

where i is the target number and j is the task number of the ith target.
According to the target detection probability, it is possible to succeed and fail in a

single observation mission. Thus, the simulation results may be different, given the same
simulation condition. The task status is defined as follows:

STask
i,j =

{
1, i f SCover

i,j
= 1 and Pi,j ≥ random(0, 1)

0, else
. (28)

Finally, the status and the end time of each task are recorded, including the following
items:

(1) The time series of discovery tasks is recorded as TDiscovery
i,j , where 1 ≤ j ≤ NDiscovery

i .

NDiscovery
i is the total discovery task number of the ith target.

(2) The time series of identification and confirmation tasks is recorded as T Identi f ication
i,j ,

where 1 ≤ j ≤ N Identi f ication
i . N Identi f ication

i is the total confirmation task number of the
ith target.

(3) The time series of successful tracking tasks is recorded as
[

TTrackingStart
i,j , TTrackingEnd

i,j

]
,

where 1 ≤ j ≤ NTracking
i . NTracking

i is the total tracking task number of the ith target.
(4) The time series of losing the targets is recorded as TLost

i,k , where 1 ≤ k ≤ NLost
i .

NLost
i is the total lost counts of the ith target. The TLost

i,k is recorded when the simulation
starts or the tasks of the target i fail twice in a row.

3.3. The Satellite Cluster Mission Allocation Model

The moving target observation mission can be divided into four tasks, which are
discovery, identification, confirmation, and tracking. The discovery task refers to the
scanning and discovery of regional targets when the potential area of the target is known,
but the specific location is not. The identification and confirmation tasks refer to the
identification of the target type and model when the approximate target location has
been found. The tracking task refers to the continuous tracking of the target when the
specific model of the target has been confirmed. The discovery task is generally completed
by satellites with a low resolution and a wide field of view. As for the identification,
confirmation, and tracking tasks, they are typically accomplished by satellites with a high
resolution but a narrow field of view.

(1) High-resolution satellites mission allocation model.
The mission allocation steps for the identification, confirmation, and tracking tasks

are designed as Figure 4, where i is the target index and 1 ≤ i ≤ NTarget, NTarget is the total
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number of the targets. j is the satellite index and 1 ≤ j ≤ NSate, NSate is the total number
of satellites.
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Step 1: obtain the planning current time t and planning period ∆tPlan, then catalog the
discovered targets.

Target = {Target1, . . . Targeti, . . . Targetn}, (29)

where Targeti represents the set of the ith target’s state information, which comprises the
target index; the latest observation state; the latest observation time; the latest identified
type and model; and the latest positioning longitude, latitude, speed, and course angle.

Step 2: within a planning cycle ∆tPlan, the positions of the targets are determined by
their latest observed position and speed.

Step 3: the observation time window of all satellites for all targets during the planning
period ∆tPlan is calculated. The observation time window of satellite j on target i is defined
as [TWindowStart

i,j , TWindowEnd
i,j ] [1].

Step 4: the mission profit for each target is presented as

Pro f iti =


1, DiscoveryState
0.8, Identi f icationState
0.5, Con f irmState
k(t− ti), TrackingState

, (30)

where t is the current time, ti is the last observed time of the ith target, and k is the time
coefficient. The value of k is set to 0.001.
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Step 5: the total observation cost of each satellite to the observable target is calculated,
including the time cost, power consumption cost, and storage consumption cost.

The time cost is
cti,j = TWindowStart

i,j − t. (31)

The power consumption cost is

cpi,j =
(

PImaging + k · PDT
)
·
(

TWindowEnd
i,j − TWindowStart

i,j

)
+ PManeuver ·

(
TManeuverEnd

i,j − TManeuverStart
i,j

)
, (32)

where PImaging, PDT , PManeuver are the average powers of the whole satellite during the
imaging process, the data transmission process, and the attitude maneuver process, respec-
tively. k is the comprehensive coefficient denoting the ratio of remote sensing payload data
rate to the data transmission rate. TManeuverStart

i,j and TManeuverEnd
i,j are the start and end times

of the attitude maneuver, respectively, which can be achieved according to the start time
of the time window, the expected angle of the attitude maneuver, the maximum angular
velocity and angular acceleration of the satellite attitude maneuver, and the stabilization
time of the attitude maneuver [1].

The storage consumption cost is defined as

cmi,j = MEMj ·
(

TWindowEnd
i,j − TWindowStart

i,j

)
, (33)

where MEMj is the remote sensing payload data rate.
The total observation cost is the product of the above three costs, which is expressed as

ci,j = cti,j · cpi,j · cmi,j . (34)

Step 6: allocate the missions to the satellites. The most profitable mission among the
remaining missions is chosen and allocated to the satellite that has the lowest cost to fulfill
that mission while satisfying the constraints of attitude maneuver, fixed storage, or power
supply. The mission’s allocation process loops until all the missions are completed.

(2) Wide-swath satellites mission allocation model.
The allocation process of the discovery stage is similar to that of the identification,

confirmation, and tracking stages mentioned above, with two main differences.
The first difference is the target cataloging. As shown in Figure 5, the potential

emergence area of the target is meshed by a 1◦ × 1◦ grid of longitude and latitude, and
the center of each grid is regarded as a “target”. The square boundaries of the potential
area are determined by the following method. The target is located at the left boundary of
the potential area at time t0. Meanwhile, the right boundary of the potential area can be
calculated according to the maximum speed of 30 knots (15.43 m/s) away from the area’s
left boundary.
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The second difference is the observation profit of the grid target. The profit is calculated
as follows:

Pro f it = t− ti, (35)

where t is the current time and ti is the last observed time of the ith grid.
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4. The Effectiveness Evaluation Indicator System

In this section, we propose an evaluation indicator system of moving target observation
performance to judge the effectiveness of satellite cluster observation tasks. The evaluation
indicator system is screened through correlation analysis to form an independent indicator
set. The following describes the methods for developing and filtering the effectiveness
evaluation indicator system.

4.1. The Construction of the Evaluation Indicator System

The moving target observation effectiveness indicator system considers three abilities:
search and discovery, identification and confirmation, and continuous tracking. The details
of the effectiveness evaluation indicator system are shown in Figure 6.
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The concept definition and mathematical description of the effectiveness indicators
are as follows:

Denote i as the target index and 1 ≤ i ≤ NTarget, NTarget as the total number of targets,
TTotal as the total simulation time, and TOrbit as the orbit period of the satellite cluster.

1. The search and discovery ability.

The target discovery probability PDiscovery is defined as the average probability that
the targets are rediscovered within a single orbit period from the moment they are lost. The
discovery response time TDiscovery is defined as the average time taken to rediscover a lost
target. The calculation procedures are as follows:

Search and obtain the time TDiscovery
i,j immediately after TLost

i,k . The time combination is

recorded as
[

TLost
i,k , TDiscovery

i,k

]
. The total number of discovery tasks NDiscovery found within

a single orbit period is generated by

NDiscovery =
Ntarget

∑
i=1

NLost
i , TDiscovery

i,k − TLost
i,k ≤ TOrbit, (36)

where k is the kth loss of the ith target. NLost
i is the total lost number of the ith target and

1 ≤ k ≤ NLost
i .

PDiscovery is computed by

PDiscovery =
NDiscovrey

NTarget

∑
i=1

NLost
i

. (37)

TDiscovery is computed by
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TDiscovery =

NTarget

∑
i=1

NLost
i
∑

k=1

(
TDiscovery

i,k − TLost
i,k

)
NTarget

∑
i=1

NLost
i

. (38)

2. The identification and confirmation ability.

The target identification probability PIdenti f ication is defined as the average probability
of identifying and confirming targets within a single orbit period since targets are discov-
ered. The identification response time TIdenti f ication is defined as the average time taken
from target discovery to identification. The calculation procedures are as follows:

Search and obtain the time T Identi f ication
i,j immediately after the time TDiscovery

i,j . The

time combination is recorded as
[

TDiscovery
i,j , T Identi f ication

i,j

]
. The total number of successful

confirmation tasks within a single orbit period since targets are detected is produced by

NIdenti f ication =

NTarget

∑
i=1

NDiscovery
i , T Identi f ication

i,j − TDiscovery
i,j ≤ TOrbit, (39)

where j means the jth discovery of the ith target. NDiscovery
i is the total discovery number of

the ith target and 1 ≤ j ≤ NDiscovery
i .

PIdenti f ication is computed by

PIdenti f ication =
NIdenti f ication

NTarget

∑
i=1

NDiscovery
i

. (40)

TIdenti f ication is computed by

TIdenti f ication =

NTarget

∑
i=1

NDetection
i

∑
k=1

(
T Identi f ication

i,j − TDiscovery
i,j

)
Ntarget

∑
i=1

NDiscovery
i

. (41)

3. The continuous tracking ability.

The tracking time percentage ATracking is defined as the average ratio of total target
tracking time to the total runtime.

ATracking =

NTarget

∑
i=1

NTracking
i

∑
j=1

(
TTrackingEnd

i,j − TTrackingStart
i,j

)
NTarget · TTotal

, (42)

where j means the jth tracking tasks of the ith target. NTracking
i is the total tracking number

of the ith target and 1 ≤ j ≤ NTracking
i .

The average tracking interval TTracking is defined as the average interval between two
consecutive tracking tasks.

TTracking =

NTarget

∑
i=1

NTracking
i −1

∑
j=1

(
TTrackingStart

i,j+1 − TTrackingEnd
i,j

)
NTarget

∑
i=1

NTracking
i

. (43)
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4.2. Evaluation Indicator Screening

The correlation of the indicator system Z = [z1, . . . , zn]
T is analyzed, and the indicators

with strong correlations are then screened and eliminated. This results in an indicator
system that satisfies the principles of hierarchy and independence. The steps for evaluation
indicator screening are as follows:

Step 1: calculate the correlation coefficients between the parameters and build the
coefficient matrix as

A =
[
aij
]

n×n =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . .
an1 an2 . . . ann

, (44)

where aij is the correlation coefficient of the indicators i and j, note that the value of the
main diagonal is 1.

Step 2: screen out the highly correlated indicators. If aij > 0.5, then indicators i and j
are considered as highly correlated.

Step 3: calculate the sum of the linear correlation coefficients of indicators i and j with
the other indicators.

Ci =
n

∑
k=1
|aik| k 6= i and k 6= j, (45)

Cj =
n

∑
k=1

∣∣∣ajk

∣∣∣ k 6= i and k 6= j. (46)

Step 4: compare the values of Ci and Cj. Remove the indicator with the larger value
and keep the indicator with the smaller value.

Step 5: continue Steps 2 to 4, until the indicator system is screened and formed.

5. Neural Network Evaluation Model Training

The refining of simulation model granularity enhances the simulation accuracy, but
diminishes the simulation efficiency. Hence, it is challenging to meet the efficiency re-
quirement of both the iterative optimization at the designer end and the real-time decision
making at the user end. To provide a solution to this problem, a backpropagation (BP)
neural network model is designed and trained for user stakeholders to realize the rapid
evaluation of satellite cluster effectiveness. This section introduces sample generation and
neural network training in detail.

5.1. Sample Creation

Each sample has an input and an output. The sample input is defined as

X = [t0, Long, Lat, Nc, Nv, NTarget]
T , (47)

where t0 is the task start time, Long and Lat are the longitude and latitude for the center
of the initial area, Nc is the cloud level, Nv is the visibility level, and NTarget is the total
target number.

The sample output is the effectiveness indicator, which can be expressed as follows

Z = [z1, . . . , zn]
T . (48)

A single-time simulation has high uncertainty resulting from the uncertainty of the
random target initial parameters and the existence of the detection probability. Therefore,
in order to generate reliable samples, each simulation case is performed multiple times to
obtain the statistical value of the effectiveness indicators.

Denote NSample as the total sample number and NCondition as the designated simula-
tion times of a single sample. The complete sample set S = [S1, . . . , Sn]

T is generated
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after NSample × NCondition times of simulation. Si is the matrix corresponding to the ith
effectiveness indicator of the sample set, which has NSample rows and seven columns.

5.2. Network Training

The neural network training process is divided into three different stages, which are
the sample set division, network training, and performance testing, as shown in Figure 7.
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= ⋅
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Figure 7. The training process of the neural network.

To begin, the sample sets Si are first normalized to [−1, 1] and then split into a training
set STrain

i and a test set STest
i . Denote σ ∈ [0, 1] as the fraction of the sample training set.

STrain
i has σ · NSample rows whilst STest

i has (1− σ) · NSample rows.
Next, deep neural networks are trained in two steps, starting with the search for the

best activation function, followed by the selection of the optimal network parameters. In
the first step, a single hidden layer neural network traverses a set of activation functions to
find several optimal activation functions. Those activation functions are softmax, tansig,
logsig, elliotsig, poslin, purelin, radbas, satlin, satlins, and tribas. In the second step,
a multi-hidden-layer neural network is implemented to determine the best combination of
network structures and parameters. The neural network traverses the various combinations
of network structures and parameters, including the number of hidden layers, the number
of neurons in each layer, and the activation functions found in the first step.

Finally, the neural networks are tested on the training set and test set. Denote ZTrain
i

and ZTest
i as the outputs of the neural network in the training and test set, respectively. The

mean squared error (MSE) of the ith effectiveness indicator can be expressed as

MSETrain
i =

1
σ · NSample

·
σ·NSample

∑
j=1

(
ZTrain

i,j − ẐTrain
i,j

)2
. (49)

The average error of the training and test sets is defined as

eTrain
i =

1
σ · NSample

·
σ·NSample

∑
j=1

errorTrain
i,j , (50)

eTest
i =

1
(1− σ) · NSample

·
(1−σ)·NSample

∑
j=1

errorTest
i,j . (51)

6. Experiments and Results

In this section, the ship target observation scene is selected for the experiments. Firstly,
we compared the proposed model with the model mentioned in the reference [6,9]. This
is to investigate the influence of the high-fidelity model on the effectiveness evaluation
results. Secondly, we used the proposed evaluation indicator system to calculate the
effectiveness of the satellite cluster. Additionally, we employed the correlation analysis to
filter the evaluation indicator system. The resulting indicator set was highly hierarchical
and independent. Finally, we trained neural networks for effectiveness evaluation. To find
the optimal network structure and parameters, numerous combinations of them traversed
the neural network. As a result, the neural networks can output the effectiveness indicators
instantaneously.
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6.1. The Comparison of Different Simulation Model Granularities

The remote sensing satellite cluster is designed according to the Walker Constellation
of solar synchronous orbit, which is composed of wide-swath satellites and high-resolution
satellites. Each orbital plane of the cluster contains ten satellites with an interval phase
of 36◦. The wide-swath satellites lie in the first and sixth positions of each orbital plane,
whereas the high-resolution satellites lie in the other eight positions. The satellite cluster
configuration is shown in Figure 8.
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Figure 8. The satellite cluster configuration.

The key parameters of the satellite cluster are shown in Table 1.

Table 1. Parameters of the satellite cluster.

Category Parameter Value

Orbit parameter

Satellite number 100
Orbital plane number 10

Phase factor 1
Orbit altitude (km) 650

Eccentricity 0
Inclination (◦) 98

Attitude parameter

Maximum maneuver angle (◦) ±45
Maximum maneuver angular velocity (◦/s) 1

Maximum maneuver angular acceleration (◦/s2) 0.1
Attitude stabilization time (s) 10

Power parameter

Solar array output current (A) 15
Average power in normal mode (W) 200

Average power in attitude maneuver mode (W) 450
Average power in imaging mode (W) 400

Average power in data transmission mode (W) 270

Payload parameter

Payload type Optical
Imaging width of wide-swath satellites (km) 113.74

Ground resolution of wide-swath satellites (m) 9.48
Imaging width of high-resolution satellites (km) 22.69

Ground resolution of high-resolution satellites (m) 1.89
Payload data rate (Gbps) 22.69

Solid-state memory capacity (GB) 500
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The mission area for this experiment is restricted to the Pacific, from 130◦ E 10◦ N to
150◦ E 30◦ N. The ships are initialized within a random region of 2◦ × 2◦. The positions,
velocities, and course angles are also arbitrarily selected. The ship size used here is
155.3 m × 20.4 m. The simulation starts at 0:00 a.m. on one day in 2021 and lasts for 21,600 s.
The randomly generated environmental parameters used for the model comparison are
shown in Table 2.

Table 2. Environmental parameters for the model comparison.

Parameter Symbol Value Range

Simulation start time (day) t0 1
Longitude of initial area center (◦) Long 139.26
Latitude of initial area center (◦) Lat 16.44

Cloud level Nc 4
Visibility level Nv 4
Target number NTarget 10

The initial information of ten arbitrary ships is presented in Table 3.

Table 3. The initial information of ten arbitrary ships.

Target ID Position Velocity (m/s) Course Angle (◦)

1 139.98◦ E, 17.83◦ N 3.34 36.49
2 139.53◦ E, 17.08◦ N 6.82 254.03
3 139.74◦ E, 16.33◦ N 6.79 160.27
4 140.25◦ E, 16.67◦ N 6.59 255.95
5 138.31◦ E, 17.63◦ N 1.97 314.51
6 140.00◦ E, 17.54◦ N 1.39 350.93
7 138.86◦ E, 17.62◦ N 8.42 44.62
8 139.84◦ E, 17.37◦ N 3.75 68.55
9 139.66◦ E, 17.40◦ N 3.88 182.86
10 139.32◦ E, 17.91◦ N 2.44 55.22

We built three simulation models of different granularity according to refs. [6,9],
and our granularity, respectively, in which each is labeled as granularity 1, granularity 2,
and granularity 3. Their model elements are presented in Table 4. Granularity 1 only
considers the satellite’s orbit, attitude, and optical payload’s coverage model. On top
of granularity 1, granularity 2 not only includes a data transmission model, but also
considers the impact of weather uncertainty. As compared with the first two granularities,
additionally, granularity 3 takes into consideration the constraints of the satellite power
subsystem, as well as the influence of resolution, climatic conditions, and cloudiness level
on the imaging detection probability.

Table 4. Comparison of the three different simulation model granularities.

Granularity ID Orbit Attitude Power Data Transmission Payload Coverage Detection Probability

1
√ √ √

2
√ √ √ √

Partially
3

√ √ √ √ √ √

The simulation process of satellite cluster observing the moving target is shown in
Figure 9. The wide-swath satellites and the high-resolution satellites completed the task of
discovering, identifying, confirming, and tracking the ship in turn.
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Figure 9. Moving targets’ observation missions.

The calculated effectiveness evaluation indicators of the three model granularities
are presented in Table 5 and Figure 10a. The effectiveness values for granularity 1 and
granularity 2 are higher than the proposed granularity 3. By comparing granularity 1 to
granularity 3, it can be observed that the T Identi f ication and TTracking errors of granularity 1
are above 75%, and its error of ATracking is 7 times larger. As for granularity 2, even though
its error, when compared to granularity 1, is lower than that of granularity 3, it still contains
a large error, where the error of T Identi f ication is 37% and ATracking is 64%. The main reason
behind the errors is that the coarse-grained model ignores the power constraint and lacks
the imaging detection probability model, causing the model to differ significantly from the
true model. Therefore, the calculated indicators are more impractical and falsely higher,
which cannot be achieved by the actual satellite during operation. The limitations of
coarse-grained models and the necessity of fine-grained models in effectiveness evaluation
problems are proven.
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Table 5. Evaluation results of the three different granularities.

Granularity ID PDiscovery TDiscovery (s) PIdentification TIdentification (s) ATracking TTracking (s)

1 100.00% 2453.20 100.00% 574.90 16.89% 691.02
2 91.50% 2720.13 92.15% 1711.13 3.14% 2697.77
3 90.50% 2958.47 79.43% 2719.96 1.92% 3072.04

The improvement of the model fidelity leads to a decrement in computational effi-
ciency. The simulations of the three model granularities were executed on a computer
with Windows 10 and Intel i7-9700 @ 3.0 GHz CPU. The time taken to perform a single
simulation under the three granularities was recorded, as shown in Figure 10b. From the
statistical data, it is noticeable that the time consumed by granularity 3 is 1.67 times longer
than granularity 1 and 1.21 times longer than granularity 2.

6.2. Sample Creation

A large quantity of sample data is required for both screening the indicator system
and training the neural network. In accordance with the stakeholders’ requirements, data
points are randomly scattered taking the mission and environmental parameters as the
sample input. The range of the sample input task parameters is shown in Table 6.

Table 6. The range of the sample input task parameters.

Parameter Symbol Value Range

Simulation start time (day) t0 [1, 365]
Longitude of initial area center (◦) Long [130, 150]
Latitude of initial area center (◦) Lat [10–30]

Cloud level Nc [1–6]
Visibility level Nv [1–6]
Target number NTarget [5–20]

We randomly generated 1000 samples as the inputs. For each sample, a set of
20 random simulation parameter combinations were created. The parameters included
the position, velocity between 0 and 10 m/s, and course angle between 0◦ and 360◦. After
1000 × 20 = 20,000 simulations, 1000 samples were produced. Subsequently, the effective-
ness indicator calculations were carried out on the samples. The first ten samples are shown
in Table 7.

Table 7. The input and output of the first ten samples.

Sample
ID

Sample Input Sample Output

t0
(Day)

Long
(◦)

Lat
(◦) Nc Nv NTarget PDiscovery TDiscovery (s) PIdentification TIdentification (s) ATracking TTracking (s)

1 293 139.31 17.14 2 6 10 71.67% 4449.52 58.18% 4212.33 0.86% 3731.66
2 296 141.87 24.55 1 3 11 52.27% 6100.98 63.36% 2390.60 2.32% 2508.34
3 355 134.53 18.91 3 2 8 100.00% 5562.00 83.18% 1842.85 1.68% 3070.28
4 284 132.30 21.73 5 5 17 63.73% 6325.37 42.28% 3463.24 0.46% 4046.58
5 319 148.87 14.88 5 4 20 84.58% 3592.70 51.87% 3382.25 0.79% 4615.19
6 355 137.12 22.54 3 1 6 93.05% 5599.29 100.00% 1491.61 2.09% 3026.74
7 163 142.18 14.39 1 2 7 100.00% 5388.48 100.00% 777.75 2.54% 3027.65
8 141 137.75 20.09 4 6 15 28.89% 7854.62 43.04% 3196.58 0.65% 2904.51
9 128 145.41 19.13 1 4 10 95.00% 3522.58 81.77% 2095.00 1.69% 3697.10

10 237 139.67 17.64 6 3 12 0.00% 8956.60 57.84% 1831.08 1.02% 2522.32

6.3. Evaluation Indicator Screening

The initial evaluation indicator system of the moving target observation is

Z = [z1, . . . , zn]
T= [PDiscovery, TDiscovery, PIdenti f ication, T Identi f ication, ATracking, TTracking]

T . (52)
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We computed the correlation coefficients between the indicators. The correlation
matrix A is presented below.

A =



1 −0.8059 0.3061 0.0346 0.3439 0.2159
−0.8059 1 −0.2010 −0.2326 −0.3792 −0.4441
0.3061 −0.2010 1 −0.6342 −0.1377 −0.0857
0.0346 −0.2326 −0.6342 1 −0.3775 0.2925
0.3439 −0.3792 −0.1377 −0.3775 1 −0.3685
0.2159 −0.4441 −0.0857 0.2925 −0.3685 1


The correlation coefficient of the discovery probability PDiscovery and discovery re-

sponse time TDiscovery is −0.8059, indicating a strong linear correlation between these
two indicators. The sum of the correlation coefficient between PDiscovery with the other
indicators is

C1 = 0.3061 + 0.0346 + 0.3439 + 0.2159 = 0.9005

The sum of the correlation coefficient between TDiscovery with the other indicators is

C2 = 0.2010 + 0.2326 + 0.3792 + 0.4441 = 1.2569

From a comparison of C1 and C2, the discovery response time TDiscovery, which has a
higher value, is removed.

Likewise, the correlation coefficient of the identification probability PIdenti f ication and
identification response time T Identi f ication is 0.6342, which means that these 2 indicators are
strongly correlated. The sum of the correlation coefficient between PIdenti f ication with the
other indicators is

C3 = 0.3061 + 0.1377 + 0.0857 = 0.5295

The sum of the correlation coefficient between T Identi f ication with the other indicators
is

C4 = 0.0346 + 0.3775 + 0.2925 = 0.7046

From a comparison of C3 and C4, the identification response time TDiscovery is deleted.
As a result, the evaluation indicator system contains four indicators, which are the

discovery probability PDiscovery, identification probability PIdenti f ication, tracking time per-
centage ATracking, and average tracking interval TTracking.

6.4. Neural Network Training

A total of 1000 samples were randomly shuffled and divided into a training set of
800 samples and a test set of 200 samples. A single hidden layer network structure was used
in the traversal of activation functions mentioned in Section 5.2. Additionally, the neuron
number of the layer ranged from 20 to 100. After training, the ten optimal networks are
shown in Table 8.

Table 8. The training result of the activation function traversal.

Network
ID

PDiscovery PIdentification ATracking TTracking

Activation
Function

Neuron
Number

Activation
Function

Neuron
Number

Activation
Function

Neuron
Number

Activation
Function

Neuron
Number

1 softmax 40 softmax 20 softmax 80 softmax 20
2 elliotsig 20 softmax 40 softmax 40 tansig 40
3 satlin 40 softmax 80 softmax 100 softmax 60
4 poslin 20 softmax 100 softmax 60 logsig 20
5 softmax 80 logsig 20 satlins 20 satlins 20
6 purelin 80 logsig 40 softmax 20 logsig 60
7 purelin 40 softmax 60 logsig 40 softmax 40
8 purelin 60 satlin 20 purelin 20 softmax 100
9 logsig 40 tansig 60 purelin 40 elliotsig 20

10 purelin 20 satlins 20 purelin 60 poslin 20
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The five best activation functions were found, which are softmax, poslin, satlin, tansig,
and logsig. Then, the multi-layer network structure and parameters were tested, including
the number of hidden layers (2/3/4), the number of neurons in each layer (20–200), and
the five best activation functions. The best neural network of each effectiveness indicator is
summarized in Table 9.

Table 9. The best neural network of each effectiveness indicator.

Network Hidden Layer
Number Activation Function Neuron Number MSE

PDiscovery 3 [softmax, softmax softmax] [100, 100, 100] 0.0240
PIdenti f ication 2 [softmax, softmax] [160, 160] 0.0027

ATracking 4 [softmax, softmax, softmax, softmax] [200, 200, 200, 200] 0.0091
TTracking 4 [softmax, softmax, softmax, softmax] [60, 60, 60, 60] 0.0017

The training and test results are illustrated in Figures 11–14. The first panel demon-
strates the training convergence process of the best neural network. It is obvious that
only the neural network for discovery probability has an MSE value of above 0.02, while
the MSE values for the other three neural networks are all below 0.01, demonstrating the
efficacy of neural network training. The second panel shows the evaluation accuracy of the
ten optimal neural networks compared to the simulation evaluation samples. The third
panel indicates the performance of the networks on the test set. The results show that the
majority of the errors are below 10% and the maximum error is below 20%. Therefore, the
validity and generalization ability of the proposed neural network model are verified.
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The time consumption of the effectiveness evaluation generated by the simulation
method and the neural network model is shown in Figure 15. The average time consump-
tion of a single simulation sample obtained through 20 simulations is 0.404 × 20 = 8.074 h.
By comparison, the network can output the evaluation indicators in real time.
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7. Discussion and Conclusions

Remote sensing satellite clusters are usually comprised of wide-swath satellites and
high-resolution satellites. They are playing an increasingly important role in the remote
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sensing field owing to their ability to complete census and detailed survey tasks for various
targets. Due to the high cost of development and operation, remote sensing satellite
clusters require quantitative effectiveness evaluation to support decision making in their
entire life cycle. The effectiveness evaluation is usually based on simulation, but there is a
conflict between accuracy and speed. Thus, the main goal of this paper was to present an
architecture to achieve real-time high-quality effectiveness evaluation of remote sensing
satellite clusters. The significant advantages of the architecture are as follows:

1. The simulation model in the architecture is a multi-physical field coupled. Apart
from considering the repercussion of on-board resource constraints, it also considers
the consequence of imaging’s uncertainty on the observation results. As compared
with our proposed model granularity, the traditional coarse-grained model has a
maximum error of more than 60%, which proves the effectiveness of the proposed
model’s granularity.

2. A moving target observation effectiveness indicator system of the satellite clusters is
established. In comparison with the current indicator system that contains accessibility
indicators, such as coverage and resolutions, our proposed indicators can better reflect
the effectiveness of the operation process. Moreover, we screened the indicator system
through model-based quantitative analysis. This not only reduces the redundancy of
the indicator system developed by the domain experts, but also increases the indicator
system’s hierarchy and independence.

3. The neural network model can be trained in the architecture to evaluate the effective-
ness with real-time computation. The architecture supports the finding of the best
network structure and parameters, including the number of hidden layers, as well
as the number of neurons and activation function in each layer. The result indicates
that the neural network model not only achieves high accuracy on the training set, but
also generalizes well on the test set. The conflict between the accuracy and speed is
therefore resolved.

Our suggested method is not merely applicable to the effectiveness evaluation of
remote sensing satellite clusters, but also single satellites and other types of satellites. Yet,
our method has no obvious advantage over the coarse-grained model when only low
accuracy is required. A coarse-grained model is more advantageous as it already has high
computational efficiency. On the contrary, the sample creation method that we mentioned
demands high computational resources.

Future research will be undertaken in two aspects, which are increasing the sample size
and sample quality. This could be useful in reducing the computational resources needed
in neural network training and enhancing the accuracy of the neural network. Regarding
the sample size issue, due to the limitation of computing resources, only 1000 samples are
created to be applied in our network training process. The error of networks might be
reduced if more training samples are generated. In the future, the simulation model can be
further optimized to acquire as many samples as possible with the same computational
resources. For example, the relationship between effectiveness and model granularity can
be thoroughly investigated, so as to refine the granularity of the important parts and reduce
the granularity of the less important ones. In terms of sample quality, the noise in the
samples will cause errors in the network evaluation results. It is a worthwhile research
direction in the future to improve the training effect by preprocessing the samples.
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