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Recognition of pathogen-derived nucleic acids by pattern-recognition receptors (PRRs) is
essential for eliciting antiviral immune responses by inducing the production of type I
interferons (IFNs) and proinflammatory cytokines. Such responses are a prerequisite for
mounting innate and pathogen-specific adaptive immune responses. However, host cells
also use nucleic acids as carriers of genetic information, and the aberrant recognition of
self-nucleic acids by PRRs is associated with the onset of autoimmune or
autoinflammatory diseases. In this review, we describe the mechanisms of nucleic acid
sensing by PRRs, including Toll-like receptors, RIG-I-like receptors, and DNA sensor
molecules, and their signaling pathways as well as the disorders caused by uncontrolled
or unnecessary activation of these PRRs.

Keywords: Toll-like receptor, RIG-I-like receptor, cGAMP synthase, nucleic acid sensing, autoimmune disease,
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INTRODUCTION

The innate immune system is not only the first line of host defense against invading pathogens but is
also essential for the biological responses of the host against various harmful stimuli. Furthermore,
its activation subsequently contributes to the activation of the adaptive immune system, which
eliminates pathogens to restore host homeostasis. The initiation of immune responses occurs via
germline-encoded pattern-recognition receptors (PRRs), which recognize widely conserved features
in pathogens, termed pathogen-associated molecular patterns (PAMPs), as well as “danger signals”,
host components released in response to cell or tissue injury, termed damage-associated molecular
patterns (DAMPs). PRRs include Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), Nod-like
receptors (NLRs), C-type lectin receptors (CLRs) and the cytosolic DNA sensor proteins. When
PRRs are activated, they activate their corresponding downstream signaling cascades leading to the
induction of innate immune and inflammatory responses through the production of
proinflammatory cytokines, type I interferons (IFNs), and other key molecules such as major
histocompatibility (MHC) proteins and costimulatory molecules by macrophages, dendritic cells
(DCs), neutrophils, and other nonprofessional immune cells (1). Although PRRs are indispensable
for host defense to combat invading pathogens and maintain homeostasis, consequential
inflammation by aberrant PRRs signaling is likely to be harmful to the organism.

Among a wide variety of PAMPs, nucleic acids derived from pathogens are recognized by TLRs,
RLRs, and cytosolic DNA sensors, which provoke antiviral and inflammatory responses mediated by
org January 2021 | Volume 11 | Article 6258331
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type I IFNs and proinflammatory cytokines, respectively.
However, nucleic acids derived from host cells are also
recognized by PRRs under certain conditions, which contributes
to autoimmunity and autoinflammation (2). Indeed, accumulating
evidence suggests that the excessive activation or dysregulation of
nucleic acid-sensing systems is responsible for the pathogenesis of
many autoimmune and autoinflammatory diseases and cancers.
This review focuses on nucleic acid-sensing receptors, their
corresponding ligands, downstream signaling pathways,
discrimination between self- and non-self-derived nucleic acids,
and related diseases.
NUCLEIC ACID-SENSING TLRS

The TLR family recognizes a wide variety of PAMPs, ranging from
lipids and lipoproteins to nucleic acids derived from microbial
Frontiers in Immunology | www.frontiersin.org 2
pathogens. Among TLRs, TLR3, TLR7, TLR8, TLR9, and TLR13
are predominantly localized to endosomes and recognize nucleic
acids (Figure 1). TLR3 recognizes double-stranded (ds) RNA,
TLR7 and TLR8 recognize single-stranded (ss) RNA, TLR9
recognizes unmethylated CpG DNA, and murine TLR13
recognizes bacterial 23S rRNA to activate downstream signaling
pathways that induce inflammatory responses (3–6). Their
localization in intracellular compartments is essential for proper
ligand recognition, discrimination between self- and non-self-
derived nucleic acids, and the activation of downstream
signaling pathways. All these TLRs are synthesized in the
endoplasmic reticulum (ER), transported to the Golgi apparatus,
and eventually recruited to intracellular compartments such as
endosomes; however, mechanisms related to their transport from
the ER to endosomes varies between individual TLRs. TLR9
requires the adaptor protein-2 (AP-2) complex to mediate its
endocytosis from the cell surface to endosomes, whereas TLR7
FIGURE 1 | Localization, intracellular trafficking, and signaling pathways of nucleic acid-sensing Toll-like receptors (TLRs). TLR3, TLR7, TLR8, and TLR9 are synthesized in
the endoplasmic reticulum (ER) and transported to endosomes via UNC93B1. Each TLR is transported to its destination [endosomes, endolysosomes, and lysosome-
related organelles (LRO)] by individual mechanisms. TLR9 requires the AP-2 complex to translocate from the cell surface to endosomes, whereas TLR7 interacts with the AP-
4 complex for direct trafficking to endosomes. Several endosomal proteases and endoribonucleases in endosomes/endolysosomes process TLRs and nucleic acids,
respectively. Upon the recognition of cognate ligands, TLR7, TLR8, and TLR9 recruit MyD88 to activate downstream signaling pathways. MyD88 recruits IRAKs and TRAF6,
which subsequently activate TAK1. Activated TAK1 leads to the activation of AP-1 through MAPK to initiate the transcription of proinflammatory cytokines. NF-kB is also
activated by TAK1 and induces the production of proinflammatory cytokines. In pDCs, TLR7 and TLR9 in LRO induce the activation of IRF7 by forming a complex with
TRAF6, TRAF3, IKKa; and IRF7, which results in the expression of type I IFNs. An AP-3 complex is required for the localization of TLR7 and TLR9 to LRO. TLR3 recruits TRIF
to initiate downstream signaling pathway. TRIF recruits TRAF3 and TRAF6 to activate TBK1 and TAK1. Activated TBK1 induces type I IFNs through IRF3, and TAK1 induces
proinflammatory cytokine production through NF-kB and AP-1.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Okude et al. Nucleic Acid-Sensing and Inflammation
interacts with the AP-4 complex to mediate direct trafficking from
the trans-Golgi network to endosomes (7). For TLR3, the TRIM3-
mediated K63-linked polyubiquitination of TLR3 is required for
its trafficking from the Golgi apparatus to endosomes by
endosomal sorting complex required for transport (ESCRT)
complexes (8). Furthermore, lysosomal trafficking regulator
(LYST), which mediates phagosomal maturation, was reported
to be important for activation of the TLR3 signaling pathway (9).

Compartmentalization into endosomes is important for the
recognition of nucleic acids released from phagocytosed
pathogens by TLRs while avoiding contact with self-derived
nucleic acids (10). UNC93B1, a 12-transmembrane protein in
the ER, is a key molecule that interacts with and transports TLRs
from the ER to endosomes (Figure 1) (7, 11). Consistently, the
loss-of-function of Unc93b1 disrupted the TLR3, TLR7, and
TLR9 signaling pathways (12). Moreover, endosomal TLR
protein levels were reduced in mice harboring a Unc93b1 loss-
of-function mutant that impaired its interaction with TLRs,
suggesting a role of UNC93B1 in the stabilization of TLR
proteins (13). Furthermore, TLR7 and TLR9 are oppositely
regulated—TLR9 is predominantly maintained at a steady
state, suppressing TLR7 responsiveness and avoiding TLR7-
induced autoinflammatory diseases. This predominance of
TLR9 was inhibited by a D34A mutation in Unc93B1, which
also exacerbated TLR7 activation and systemic lethal
inflammation in mice (14). Recently, Unc93b1 was shown to
prevent TLR9 activation in intracellular compartments other
than endosomes (15). TLR9 is released from Unc93b1 in
endosomes, and this disassociation is required for the
activation of signaling pathways. However, TLR7 continues to
interact with Unc93b1 in endosomes and can activate signaling
pathways without dissociation from Unc93b1. The association of
Unc93b1 with TLR7 in endosomes is important for terminating
TLR7 signaling. Syntenin-1, a PDZ domain-containing adaptor
protein, facilitated sorting of the TLR7-Unc93b1 complex from
endosomes into the intralumenal vesicles of multivesicular
bodies to terminate receptor signaling (16). After stimulation
with TLR7, but not TLR9 or TLR3, the interaction of Syntenin-1
with Unc93b1 is increased. Disruption of its binding to Unc93b1
prevents the sorting of TLR7 into multivesicular bodies and
results in exaggerated TLR7 signaling. These findings suggest
that UNC93B1 regulates the activities of individual endosomal
TLRs via different mechanisms. The importance of UNC93B1 in
human pathology was also demonstrated in patients with a
mutation in UNC93B1 who developed herpes simplex virus
(HSV) encephalitis (17). The pathogenesis of HSV encephalitis
in UNC93B1-deficient patients is likely caused by impaired
TLR3 signaling in neurons and oligodendrocytes (18). The
ectodomains of endosomal TLRs undergo proteolytic
processing within endosomal compartments by cathepsins and
asparagine endopeptidases to generate functional receptors
(Figure 1) (19, 20). This proteolytic processing is thought to
protect against unwanted interactions with self-derived nucleic
acids. Indeed, mice expressing TLR9 mutants that accessed the
cell surface, and did not require proteolysis for activation,
developed systemic and lethal inflammation (21). The pH of
Frontiers in Immunology | www.frontiersin.org 3
intracellular vesicles might also be important for proteolytic
processing and ligand recognition of endosomal TLRs.
Blockade of the acidification of intracellular vesicles resulted in
impaired innate immune responses mediated by TLR3, TLR7,
and TLR9 (22, 23). The localization of nucleic acid-sensing TLRs
in cellular compartments is also important for the initiation of
cell-type-specific signaling pathways. In plasmacytoid DCs
(pDCs), a subset of DCs that produce large amounts of type I
IFNs via TLR7 and TLR9 signaling, the activation of NF-kB
mediated by TLR7 or TLR9 was initiated in endosomes, whereas
activation of IRF7 for type I IFN expression requires further
transport from endosomes to lysosome-related organelles (LRO)
via an adaptor protein-3 (AP-3)-dependent mechanism (Figure
1) (24).

Upon ligand binding, TLRs form a dimer that promotes the
association of their intracellular TIR domains, resulting in the
recruitment of TIR-containing adaptor proteins such as MyD88
and TRIF (Figure 1) (25). Upon ligand recognition, TLR7 and
TLR9 recruit MyD88, IRAKs, and TRAF6. IRAKs and TRAF6
complexes subsequently activate TAK1, leading to the activation
of NF-kB and mitogen-activated protein kinases (MAPKs). In
pDCs, IRAKs and TRAF6 induce the activation of IRF7 by
forming a complex that contains IRAK1, TRAF6, TRAF3,
IKKa; and IRF7 (26–30). IRAK1 and IKKa phosphorylate
IRF7, leading to the translocation of IRF7 into the nucleus (27,
28). In contrast, TLR3 is the only TLR that signals independently
of MyD88 by recruiting TRIF upon ligand binding. TRIF
interacts with TRAF3 and TRAF6, which promote the
activation of TANK-binding kinase 1 (TBK1) and TAK1,
respectively. Subsequently, activated TBK1 phosphorylates the
pLxIS motif in TRIF, which in turn recruits and activates the
transcription factor IRF3 (31). Finally, activated TAK1 activates
NF-kB and MAPKs.
EXPRESSION AND LIGANDS OF NUCLEIC
ACID-SENSING TLRS

TLR3 is mainly expressed by DCs, fibroblasts, and intestinal
epithelial cells (32–34). TLR3 forms a homodimer and binds to
40–50 bp dsRNA, and multiple dimers bind to long dsRNA (35,
36). Although dsRNA longer than 90 bp can bind to TLR3 in
early endosomes (pH 6.0–6.5), dsRNA of 40–50 bp is required to
form a complex with TLR3 in late endosomes (lower than pH
5.5) (35). Thus, activation of the TLR3-mediated signaling
cascade is thought to be dependent on the length of dsRNA
and the localization of TLR3. Furthermore, TLR3 is involved in
immune responses to several RNA viruses, such as West Nile
virus (WNV), Semliki Forest virus, and encephalomyelitis virus
(EMCV). DNA viruses such as mouse cytomegalovirus (MCMV)
and HSV-1 also elicit TLR3-mediated immune responses,
presumably by recognizing dsRNA intermediates from viruses
(2). Accordingly, TLR3 is important for protection against HSV-
1 infection of the central nervous system (37–39).

Human TLR7 and TLR8, and mouse TLR7, recognize ssRNA
from viruses and bacteria, and imidazoquinoline derivatives,
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such as imiquimod (R837) and resiquimod (R848) (5, 40–42).
TLR8 in mice does not respond to ssRNA ligands because of the
absence of five amino acids corresponding to amino acids in
human TLR8 that are required for RNA recognition (43).
Compared with other immune cells, pDCs and B cells
predominantly express TLR7 (44, 45). In contrast, TLR8 is
strongly expressed in immune cells other than pDC, such as
monocytes/macrophages and myeloid DCs (46). Structural
analysis revealed that TLR7 and TLR8 have two ligand binding
sites in their ectodomains through which TLR7 binds to free
guanosine molecules and ssRNAs, and TLR8 binds to free
uridine molecules and ssRNAs (47, 48). In the presence of
ssRNAs, the affinity of these free nucleotides was enhanced
and the binding of both ssRNAs and free nucleotides was
important for the efficient activation of TLR7 and TLR8.
Because the presence of free nucleotides is required for their
activation, the degradation of ssRNAs in lysosomes may be
important for ssRNA recognition by TLR7 and TLR8. Indeed,
activation of the endolysosomal endoribonucleases RNase T2
and RNase 2 is required for the recognition of pathogen-derived
RNA by TLR8 (49, 50). In addition to guanosine and uridine,
deoxyguanosine and deoxyuridine can also activate TLR7- and
TLR8-induced signaling pathways, respectively in the presence of
ssRNA (51). Therefore, together with ssRNA, DNA degradation
products also synergistically increase the activation of TLR7 and
TLR8, and abnormalities in DNA metabolism may trigger the
inflammatory response due to increased activation of TLR7 and
TLR8, as well as TLR9. Physiologically, TLR7 and TLR8 are
involved in host responses against a variety of RNA viruses,
including influenza A virus (IAV), human immunodeficiency
virus (HIV), and vesicular stomatitis virus (VSV) (2). Although
TLR7 and TLR8 are often considered to be similar, a recent
report showed that TLR7 and TLR8 in human monocytes elicited
different immune responses (52). In that study, activation of
TLR7 promoted the expression of cytokines that induced Th17
cell polarization whereas activation of TLR8 induced the
expression of Th1-type cytokines and type I IFNs.

TLR9, mainly expressed by pDCs, B cells, and monocytes/
macrophages, recognizes DNA with an unmethylated CpG motif
from bacteria and viruses (4). TLR9 forms a complex with CpG
DNA at a 2:2 ratio (53). This interaction is increased under acidic
conditions, and thus localization to lysosomes may allow TLR9
to recognize DNA. In contrast to CpG DNA, TLR9 has a
different binding site for DNA with a cytosine at the second
position from the 5′ end (5′-xCx DNA) (54). Moreover, binding
of this type of DNA with CpG DNA promotes TLR9
dimerization and activation, suggesting that activation of TLR9
is regulated by binding to two types of DNA. Indeed, co-
stimulation of mouse bone marrow-derived macrophages and
pDCs with CpG DNA and 5′-xCx DNA increased TLR9
activation (54). It remains to be elucidated whether the
recognition of 5′-xCx DNA motif has any advantage in
inducing immune responses. Studies using TLR9-deficient
mice showed that TLR9 was physiologically involved in
sensing DNA viruses, including MCMV, HSV-1, HSV-2, and
adenovirus (2).
Frontiers in Immunology | www.frontiersin.org 4
CYTOSOLIC RNA SENSOR: RLRS

Invading RNA viruses release their RNA into the cytoplasm of
host cells and force the host cell to synthesize viral components by
using the host machinery. The innate immune system can sense
cytosolic RNA via RLR family members (Figure 2). RLRs are
composed of retinoic acid-inducible gene I (RIG-I), melanoma
differentiation-associated protein 5 (MDA5), and laboratory of
genetics and physiology2 (LGP2), which are upregulated by type I
IFN exposure in various tissues (55–58). RLRs share structural
features consisting of a central DExD/H box RNA helicase domain
and a C-terminal domain (CTD), which sense RNA. In addition,
RIG-I and MDA5 have two caspase activation and recruitment
domains (CARDs) at the N-terminus that mediate downstream
signaling. In contrast, LGP2 lacks CARD, and its physiological
function with regard to RIG-I- or MDA5-mediated signaling
remains controversial (59, 60).

RIG-I and MDA5 recognize different dsRNA species. RIG-I
recognizes relatively short dsRNA while MDA5 preferentially binds
to long dsRNA (>1 kb) (61). In addition to RNA length, RIG-I
requires additional properties at the dsRNA 5′-end. Although short
dsRNA without a 5′-triphosphate was proposed to activate RIG-I, a
5′-tri- or 5′-di-phosphate end in dsRNA seems to be important
for the strong activation of RIG-I (61, 62). Furthermore, a blunt-end
at the triphosphate end and unmethylated 5′-terminal nucleotide at
the 2′-O position were important for RIG-I activation (63, 64). In
addition to dsRNA, RIG-I recognizes ssRNA with a 5′-triphosphate
to activate downstream signaling pathways (65, 66). However, the
length and the degree of complementarity of dsRNA are considered
more important for the activation of MDA5 (Figure 2) (61, 67).
Because host-derived RNA undergoes 5′-processing, including cap
formation by 2′-O-methylation in the nucleus, and long dsRNA is
not normally present in host cells, these ligand specificities of RIG-I
andMDA5 are critical to avoid the recognition of self-derived RNA.

In the steady state, RIG-I is present in an auto-repressed
conformation, which masks its CARDs to prevent signal
transduction. Binding of nucleic acids to RIG-I leads to an ATP-
dependent conformational change, which results in the release of
CARDs from autoinhibition (68). This conformational change
allows CARDs to undergo additional modifications such as
polyubiquitination (Figure 2) (55). Covalent conjugation and
non-covalent binding of K63-linked polyubiquitin chains to the
CARDs of RIG-I lead to the formation and stabilization of a RIG-
I-tetramer that functions as a signaling platform (69, 70). Several
E3 ubiquitin ligases positively regulate the RIG-I signaling
pathway, including TRIM25, RIPLET, TRIM4, and MEX3C
(71–74). All of these E3 ligases are involved in the K63-linked
polyubiquitination of RIG-I CARDs, while only RIPLET was
reported to mediate the K63-linked polyubiquitination of RIG-I
CTD (75). This polyubiquitination of RIG-I CTD promotes the
release of RIG-I CARD autoinhibition and is required for
TRIM25-mediated RIG-I activation, suggesting RIPLET may be
a prerequisite for RIG-I activation (75, 76). Recent studies showed
that RIPLET, but not TRIM25, is required for RIG-I signaling (77,
78). These findings support the critical role of RIPLET in the RIG-
I signaling pathway, and indicate that other E3 ligases for CARD
January 2021 | Volume 11 | Article 625833
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polyubiquitination might be functionally redundant. In addition
to ubiquitination, a recent study showed that RIPLET regulated
the RIG-I signaling pathway in a ubiquitin-independent manner.
RIG-I forms filaments on dsRNA and RIPLET binds to the
filamentous oligomers of RIG-I, which induces the cross-
bridging of RIG-I filaments and receptor clustering that allows
the efficient activation of RIG-I signaling. However, ubiquitination
by RIPLET is dispensable for MDA5 activation, which requires the
formation of a helical filament along with long dsRNA, allowing
the oligomerization of CARDs (79–81). In contrast, ZNF598,
another E3 ubiquitin ligase that negatively regulates RIG-I-
mediated signaling, interacts with RIG-I to deliver a ubiquitin-
like protein FAT10 to RIG-I, which inhibits the K63-linked
polyubiquitination of RIG-I and prevents activation of the RIG-I
signaling pathway (82).

Oligomerization of the CARDs of RIG-I or MDA5 upon
dsRNA recognition induces their interaction with the CARD of
adaptor protein interferon-b promotor stimulator 1 (IPS-1, also
known as MAVS) (Figure 2) (83, 84). In addition to CARD, IPS-
Frontiers in Immunology | www.frontiersin.org 5
1 contains a proline-rich region, TRAF-interacting motifs
(TIMs), and a C-terminal transmembrane domain. IPS-1
anchors to the outer mitochondrial membrane (OMM),
mitochondrial-associated endoplasmic reticulum membranes
(MAMs), and peroxisomes via its C-terminal transmembrane
domain (85). The binding of IPS-1 to RIG-I or MDA5 leads to
the oligomerization of IPS-1 to form prion-like aggregates, which
are crucial for activating downstream singling pathways (86).
IPS-1 activates TBK1 to induce the IRF3- or IRF7-mediated
transcription of type I IFNs, and also the IKK complex (IKKa,
IKKb, NEMO) to induce the NF-kB-mediated transcription of
inflammatory cytokines (55, 87).

Although RIG-I and MDA5 sense cytosolic RNA, their
responses to RNA viruses are different. RIG-I recognizes
Paramyxoviruses, Rhabdoviruses, Orthomyxoviruses, Filoviruses,
and Flaviviruses, such as Sendai virus, Newcastle disease virus
(NDV), VSV, influenza virus, Ebola, and hepatitis C virus (HCV).
In contrast, MDA5 recognizes Picornaviruses, such as EMCV,
Theiler’s virus, and Mengo virus. Viruses including dengue virus,
FIGURE 2 | Signaling pathways of RIG-I-like receptors (RLRs). RIG-I recognizes the 5′-tri- or 5′-di-phosphate end of RNA. A blunt-end at the triphosphate end and
an unmethylated 5′-terminal nucleotide at the 2′-O position are also required to activate RIG-I. MDA5 binds to long dsRNA, which allows the oligomerization of
MDA5 by forming a helical filament-like structure. Polyubiquitination on RIG-I CTD by RIPLET has a critical role in RIG-I activation. In addition to RIPLET, other E3
ubiquitin ligases such as TRIM25, TRIM4, and MEX3C act as positive regulators by mediating K63-linked polyubiquitination on RIG-I CARDs. Oligomerized CARDs of
RIG-I or MDA5 interact with IPS-1 on mitochondria, which activates downstream signaling pathways. IPS-1 induces activation of the TBK1 and IKK complex (IKKa,
IKKb, and NEMO), which activates the transcription factors IRF3/7 and NF-kB, respectively. These transcription factors induce the production of type I IFNs and
proinflammatory cytokines.
January 2021 | Volume 11 | Article 625833
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WNV, and reovirus are recognized by RIG-I and MDA5 (55). In
addition to RNA viruses, several DNA viruses also activate RIG-I
andMDA5. Epstein-Barr virus (EBV) and adenovirus stimulate the
RIG-I signaling pathway. EBV-encoded small RNAs (EBERs),
short noncoding RNAs that are highly abundant viral transcripts
in latently EBV-infected cells, are recognized by RIG-I (88).
Adenovirus also produces short noncoding RNA called
adenovirus-associated RNAs (VA) in infected cells, and VA
induce type I IFNs by a RIG-I-dependent mechanism (89). RNA
polymerase III (Pol III) is an enzyme that mediates the synthesis of
EBERs and VA that contain a 5′-triphosphate from viral DNA. In
human primary macrophages, the early induction of type I IFNs
against HSV-1 is dependent on MDA5; however, Pol III does not
appear to mediate this response (90). MDA5 also induces innate
immune signaling against hepatitis B virus (HBV) by associating
with HBV-specific nucleic acids (91).
CYTOSOLIC DNA SENSOR: CGAS

Z-DNA binding protein 1 (ZBP1), IFN-gamma inducible protein
16 (IFI16), Pol III, MRE11, and cyclic GMP-AMP (cGAMP)
synthase (cGAS) were reported to be cytosolic DNA sensors that
induce type I IFNs (55, 92–96). Absent in melanoma 2 (AIM2) is
Frontiers in Immunology | www.frontiersin.org 6
a cytosolic DNA sensor that induces caspase-1-dependent IL-1b
production and pyroptotic cell death rather than type I IFNs
(discussed below). Among these molecules, cGAS, an enzyme
that synthesizes the second messenger cGAMP from ATP and
GTP upon its binding to dsDNA, plays a central role in
recognizing cytosolic DNA, which induces the production of
type I IFNs and proinflammatory cytokines (Figure 3). cGAS
binds to dsDNA independent of its sequence by forming a 2:2
cGAS-dsDNA complex (97, 98). However, the length or bending
of dsDNA seems to be a key factor for cGAS activation.
Furthermore, compared to short dsDNA, long dsDNA is a
potent activator of cGAS (99, 100). Long and bent dsDNA
allows cGAS dimers to form protein-DNA ladder-like
structures, which stabilize complexes consisting of two cGASs
and two dsDNAs (99). Mitochondrial transcription factor A
(TFAM) and high-mobility group box 1 protein (HMGB1) are
known as endogenous DNA-interacting proteins that are able to
induce U-turns and bends in DNA, which nucleate the formation
of cGAS dimers to enhance the activation of cGAS. In addition to
its dimerization, the length of dsDNA influences the efficiency of
signal transduction (101).

cGAS was reported to localize to plasma membrane, cytosol,
and nucleus (95, 102–104). Depending on cell types, the
localization of cGAS is different (102). Furthermore, the
FIGURE 3 | Activation of the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of IFN genes (STING) signaling pathway and AIM2/IFI16 inflammasome. cGAS
recognizes DNA in the cytosol and subsequently synthesizes the second messenger cGAMP from GTP and ATP. In the steady state, STIM1 interacts with STING to
retain it on the endoplasmic reticulum (ER) membrane. Binding of cGAMP to STING induces the translocation of STING from the ER to the Golgi apparatus. Upon
activation, enhanced interactions between STEEP and STING promote the trafficking of STING from the ER to the Golgi apparatus where it undergoes post-
translational modifications such as palmitoylation. Activated STING on the Golgi apparatus recruits and activates TBK1 and the IKK complex (IKKa, IKKb, and
NEMO), which induce the production of type I IFNs and proinflammatory cytokines by IRF3 and NF-kB, respectively. cGAMP activates surrounding cells by being
transferred to the extracellular space via SLC19A1, P2X7R, VRAC, and gap junctions. cGAS is associated with PI(4,5)P2 on the plasma membrane and is trafficked
away from the nucleus to prevent the aberrant activation of cGAS by self-derived DNA. cGAS is also localized in the nucleus where its activity is inhibited by
interactions with the nucleosome. Cytosolic DNA is recognized by ALRs, leading to the formation of an inflammasome composed of AIM2 or IFI16, ASC, and pro-
Caspase-1. Within the inflammasome, Caspase-1 is activated by proteolytic cleavage from pro-Caspase-1 to Caspase-1. Activated Caspase-1 cleaves GSDMD,
pro-IL-1b; and pro-IL-18. The N-terminus of GSDMD (GSDMD-N) forms a pore on the plasma membrane and induces cell death accompanied by the release of
biologically active IL-1b and IL-18.
January 2021 | Volume 11 | Article 625833

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Okude et al. Nucleic Acid-Sensing and Inflammation
localization of cGAS might change upon DNA stimulation (102).
In mouse and human phagocytes, cGAS interacts with PI(4,5)P2,
a phosphoinositide in the plasma membrane, to promote its
localization to the plasma membrane, which may prevent
excessive immune responses to self-derived dsDNA, which is
abundant in the nucleus (Figure 3) (102). However, recent
reports suggested that cGAS is localized in part in the nucleus
(103, 104). Although cGAS is expressed as a cytosolic protein, it
can bind to self-derived dsDNA when the nuclear envelope
undergoes breakdown during the cell cycle and generates
daughter cells that contain cGAS in the nucleus. However, the
activity of cGAS in response to self-derived dsDNA is less than
for exogenous dsDNA although nuclear-localized cGAS can also
induce innate immune signaling. Therefore, in addition to the
existence of nuclear envelope, there may be an unknown
regulatory mechanism which prevents the activation of
immune response against self-DNA. Recently, structural
analyses of the complex formed between nucleosome core
particles (NCPs) and cGAS revealed that the nucleosome
inhibits cGAS activation by binding to the DNA binding site
of cGAS to prevent its dimerization by steric hindrance with the
proximal NCPs (105–109). In the presence of DNAs and
nucleosomes, cGAS preferentially binds to nucleosomes, which
might be a key regulatory strategy allowing cGAS to localize to
the nucleus without persistent activation. Positively charged
residues of human and mouse cGAS, such as lysine and
arginine, were reported to be important for their specific
binding to the acidic part of nucleosomes, and mutations in
these positions disrupt the interaction with nucleosomes to
abolish the cGAS-suppressive effect of NCPs. Moreover,
nuclear cGAS accelerates irradiation-induced genome
destabilization and cell death by restraining homologous
recombinant-DNA repair. This inhibition is achieved by the
compression of dsDNA to a higher order state through its
binding to dsDNA and self-oligomerization (103). Thus, cGAS
regulates various cellular responses in which nuclear self-derived
DNA is involved, in addition to antiviral innate immune
responses to foreign DNA.

Upon activation, cGAS produces the second messenger
cGAMP from ATP and GTP, which subsequently binds to and
activates ER-resident adaptor protein stimulator of IFN genes
(STING), resulting in a conformational change and
oligomerization of STING (Figure 3) (110, 111). Of note,
cGAMP can be transferred to surrounding cells via SLC19A1,
P2X7R, or LRRC8A/LRRC8E-containing volume-regulated anion
channels and gap junctions, inducing the STING-dependent
production of type I IFNs in neighboring cells (112–116). In
addition, cGAMP can be incorporated into viral particles and
newly formed viruses transmit antiviral signals to subsequently
infected cells (117, 118). Such cell-to-cell transfer of cGAMP
promotes the rapid propagation of inflammatory signals and the
amplification of inflammatory responses.

Upon DNA stimulation, STING changes its cellular
localization from the ER to the Golgi apparatus via ER-Golgi
intermediate compartments, which is necessary to activate the
downstream signaling pathway (Figure 3) (119). In the inactivated
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state, STING is retained on the ER membrane by its association
with ER-resident protein stromal interaction molecule 1 (STIM1).
The binding of cGAMP to STING reduces the association between
STIM1 and STING, and promotes its translocation to the Golgi
apparatus (120). TOLLIP, another protein that interacts with
resting-state STING, stabilizes STING by preventing its
degradation by the lysosome pathway (121). Knockout of
TOLLIP ameliorates autoimmune symptoms in Trex1-knockout
mice in which cGAS-STING-mediated signaling is activated (121).
A recent study showed that CxORF56, also known as STING ER
exit protein (STEEP), interacted with STING to promote its
trafficking from the ER to the Golgi apparatus. STEEP augments
PI(3)P accumulation in the ER and promotes ER membrane
curvature, which facilitates COPII-mediated STING ER exit
(122). In contrast, myotubularin-related protein 3 (MTMR3)
and MTMR4, members of the phosphatase superfamily,
negatively regulate STING-mediated innate immune responses
by reducing PI(3)P levels. MTMR3 and MTMR4 deficiencies
resulted in increased PI(3)P and rapid STING trafficking from
the ER to the Golgi apparatus upon DNA stimulation (123). Post-
translational modifications such as phosphorylation and
ubiquitination are also involved in STING activation (124, 125).
In addition, the palmitoylation of STING by palmitoyl transferases
(DHHC3, DHHC7, and DHHC15) in the Golgi apparatus is
necessary for STING-dependent IFN production (126, 127).
Cysteine residues in proteins are the target sites for
palmitoylation, and Cys88/91 on STING is thought to be critical
for its modification and activation. Activated STING subsequently
recruits and activates TBK1 to phosphorylate STING at a pLxIS
motif (31, 128). This further induces IRF3 recruitment, and in
turn, TBK1 phosphorylates IRF3, leading to type I IFN expression.
A small GTPase RAB2B and its effector protein Golgi-associated
RAB2B interactor-like 5 (GARIL5) were reported to positively
regulate the cGAS-STING signaling pathway (129). The RAB2B-
GARIL5 complex colocalizes with STING on the Golgi apparatus
to regulate the cGAS-STING signaling pathway by promoting the
phosphorylation of IRF3 by TBK1 (129). STING also activates
the IKK complex to induce the translocation of NF-kB into the
nucleus (Figure 3). Notably, cGAS-STING pathway also induces
autophagy, which is thought to play a role in mediating the
clearance of cytosolic DNA or DNA viruses (130).

A number of studies using cGAS- or STING-deficient mice
showed that cGAS is involved in antiviral responses against a
wide range of DNA viruses, including HSV, vaccinia virus, and
murine gamma herpesvirus 68 (MHV68) (131). Importantly,
retroviruses including HIV also activate the cGAS-STING
pathway. Following retroviral infection, cGAS recognizes DNA,
reverse-transcribed from viral genomic RNA, which is
incorporated into the host cell genome (132). In addition to
viruses, cGAS is also involved in immune responses against
intracellular bacteria, such as Listeria monocytogenes and
Neisseria gonorrhoeae (133, 134). Interestingly, certain bacteria
can activate cGAS indirectly by inducing cellular stress. For
example, Mycobacterium tuberculosis causes the release of
mitochondrial DNA (mtDNA) into the cytoplasm from
mitochondria, which activates cGAS (135). A recent study
January 2021 | Volume 11 | Article 625833

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Okude et al. Nucleic Acid-Sensing and Inflammation
reported that cell fusion induced by bacteria, such as
Burkholderia pseudomallei, acts as a danger signal in the host
and triggers genomic instability and micronuclei formation,
resulting in cGAS activation. This activation of cGAS leads to
autophagic cell death rather than type I IFN production (136).
cGAS can also recognize mtDNA released through Bak- and
Bax-mediated pore formation during apoptosis (137). However,
the activation of cGAS-STING pathway in apoptotic cells is
inhibited by pro-apoptotic caspases which cleave key proteins for
production of type I IFNs, including cGAS and IRF3, to prevent
inflammation induced by cell death (137–139).
CELL DEATH INDUCED BY NUCLEIC
ACID SENSORS

Nucleic acid sensors are shown to trigger cell death such as
apoptosis, pyroptosis and necroptosis. RLRs induce apoptosis via
IRF3 (140). Activated IRF3 interacts with Bax, a pro-apoptotic
protein, which induces their co-translocation to mitochondria
and triggers Cytochrome c release to cytoplasm (140). This IRF3-
mediated apoptosis pathway is not dependent of transcriptional
activation of IRF3, but linear polyubiquitination of IRF3 by the
protein complex, LUBAC (linear ubiquitin chain assembly
complex) (141). IRF3-mediated apoptosis is sufficient for
protection against pathogenesis in Sendai virus infection (141).
Activation of TLR3-TRIF pathway also induces apoptosis in
cancer cells. TRIF interacts with RIPK1 through their RIP
homotypic interaction motif (RHIM) domains and forms a
complex with caspase-8 to induce apoptosis in the absence of
cellular inhibitor of apoptosis proteins (cIAPs) (142).

AIM2-like receptors (ALRs), including AIM2 and IFI16,
recognize cytosolic DNA and induce inflammatory responses.
The recognition of DNA by ALRs promotes the formation of an
inflammasome, a multiprotein complex formed in response to
pathogens and endogenous danger signals, leading to a
programmed, immunogenic, and lytic type of cell death termed
pyroptosis (143). The inflammasome activates Caspase-1
(proteolytic cleavage from pro-Caspase-1 to Caspase-1), resulting
in maturation of the inflammatory cytokines IL-1b and IL-18, as
well as the cleavage of Gasdermin D (GSDMD). Subsequently, the
N-terminus of cleaved GSDMD form a pore at the plasma
membrane that leads to pyroptosis accompanied by the release of
biologically active cytokines (IL-1b and IL-18) (Figure 3). However,
in human monocytes, the inflammasome activation by cytosolic
DNA is dependent on cGAS-STING-NLRP3 axis, but not AIM2
(144). Mechanistically, STING triggers lysosome membrane
permeation, which results in NLRP3 inflammasome activation.
Moreover, cGAMP contributes to NLRP3 and AIM2
inflammasomes activation in bone marrow-derived macrophages
(145). cGAS-STING-NLRP3 axis is activated upon HSV-1 infection
(146). HSV-1 infection promotes the STING-NLRP3 interaction
and facilitated the formation NLRP3 inflammasome in ER.

The AIM2 inflammasome is involved in responses against viral
and bacterial infections. Several bacterial species were reported to
activate AIM2 including Francisella tularensis, Listeria
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monocytogenes, Streptococcus pneumoniae, Brucella abortus, and
Chlamydia muridarum (147, 148). Because AIM2 is localized in
the cytoplasm, bacterial DNAmust be released into the cytoplasm
for AIM2 to access it. This is achieved by guanylate-binding
proteins (GBPs) that are involved in bacteriolysis and which are
important for AIM2 inflammasome activation. Indeed, Francisella
novicida infection induces the expression of GBP2 and GBP5 in
the cytosol, which is dependent on the IRF1-mediated induction of
type I IFNs. These proteins associate with Francisella novicida in
the cytoplasm to trigger bacteriolysis, which allows AIM2 to
recognize dsDNA released from bacteria (149, 150).
Furthermore, another IFN inducible gene, interferon response
gene B10 (IRGB10), is associated with these GBPs, and in
combination they induce the membrane rupture of Francisella
novicida (151). Moreover, AIM2 inflammasome is activated by
several DNA viruses, such as MCVM, vaccinia virus, and human
papillomavirus (147, 148, 152). In addition to viral DNA, AIM2
recognizes self-derived DNA released from tissues damaged by
viral infection. IAV was reported to trigger the release of
mitochondrial or nuclear DNA from macrophages and damaged
lung tissues, leading to AIM2 inflammasome activation. However,
it is debatable whether this activation of AIM2 is protective or
harmful (153–155).

IFI16 is localized in the cytosol and nucleus, and is associated
with the production of type I IFNs and cell death induced by
HSV, HIV-1, Kaposi sarcoma-associated herpesvirus (KSHV),
and intracellular bacterium Listeria monocytogenes (94, 133,
156–158). Furthermore, in human cells, IFI16 is thought to
cooperate with the cGAS-STING pathway to induce robust
host anti-viral responses (156, 157). In contrast, STING
negatively regulates IFI16 by recruiting an E3 ligase TRIM21 to
induce its degradation (159). This STING-mediated negative
feedback might prevent excess immune responses mediated by
IFI16. IFI16 is localized in the nucleus and acts as a nuclear
sensor for nuclear replicating viruses such as KSHV, EBV, and
HSV-1 (158). A previous study reported that IFI16 colocalized
with virus genomes in the nucleus to form an inflammasome
complex, which is then relocated into the cytoplasm to induce
inflammasome activation and STING-dependent IFN responses.
Furthermore, breast cancer 1 (BRCA1), a DNA damage repair
sensor and transcription regulator, was reported to be a positive
regulator of IFI16. BRCA1 interacts with IFI16 in the nucleus,
and is enhanced upon virus infection. The knockdown of BRCA1
decreased the association of IFI16 with the viral genome and
reduced the subsequent activation of inflammasomes and IFN
responses (160).

TLR3 and ZBP1 induce necroptosis, a lytic type of cell death
which is regulated by receptor-interacting protein kinase 3
(RIPK3) and mixed-lineage kinase domain-like pseudokinase
(MLKL). RIPK3 is activated by RIPK1 which is activated by
death receptors, such as TNF receptor 1 (TNFR1), CD95, and
TRAIL-R, when caspase-8 activation is inhibited (161). Activated
RIPK3 phosphorylates MLKL, which in turn triggers MLKL
oligomerization, membrane translocation, and membrane
disruption. In addition to RIPK1, the activation of RIPK3 is
mediated by other RHIM domain-containing molecules. TRIF
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and ZBP1, which contain the RHIM domain, also induce
necroptosis by interacting with RIPK3 (162, 163).
ROLES OF NUCLEIC ACID SENSORS
IN INFLAMMATORY DISEASES

Autoinflammatory Diseases Caused
by Aberrant Activation of Nucleic
Acid-Sensing Pathways
Although the induction of inflammatory responses through the
abovementioned nucleic acid receptors is important for protecting
hosts from invading pathogens, autoinflammatory pathology can
be caused by aberrant inflammatory responses, specifically
abnormalities in receptors, signaling molecules, and nucleic acid
metabolism. Mutations in the RNA helicase domains of RIG-I and
MDA5 were found in patients with systemic lupus erythematosus
(SLE), Aicardi-Goutieres syndrome (AGS), and Singleton-Merten
syndrome (SMS), all of which exhibit a type I IFN signature (164–
169). A mutation in RIG-I was reported in SMS whereas
mutations in MDA5 were associated with the various diseases
described above. Mice with an Ifih1 missense mutation encoding
MDA5, developed lupus-like autoimmune symptoms without
viral infection (170). TLR7 and TLR9 were reported to be
involved in the pathogenesis of SLE. The proportions of B cells
and monocytes expressing TLR9 were higher among patients with
active SLE than among patients with inactive SLE, and this
correlated with the presence of anti-dsDNA antibodies (171).
Another study showed that mice overexpressing TLR7
developed SLE-like disease (172). In addition, IFNa production
mediated by TLR7 was increased in pDCs derived from SLE
patients, and correlated with disease severity. Furthermore,
enhanced IFNa production was associated with increased TLR7
expression in the late endosomal/lysosomal compartment in lupus
pDCs (173).

Genetic mutations in molecules that function in signaling
cascades downstream of nucleic acid sensors also cause
autoinflammatory diseases. STING gain-of-function mutations
(V147L, N154S, and V155M) are involved in lupus-like
syndromes and STING-associated vasculopathy with onset in
infancy (SAVI) (174, 175). SAVI is characterized by systemic
inflammation, interstitial lung disease, cutaneous vasculitis, and
recurrent bacterial infection. The STING mutation, STING-
V155M, which is localized mainly in the Golgi apparatus and
perinuclear vesicles in fibroblasts independent of the presence of
its ligand, interacts with STEEP to a greater degree compared with
WT STING (122, 176). Recently, it was reported that C9orf72 is
essential for control of immune activation mediated by STING
and the loss of C9orf72 promoted the production of type I IFNs
(177). Expansion of a hexanucleotide repeat (GGGGCC) in the
C9orf72 gene was shown to be the major cause of familial
amyotrophic lateral sclerosis (ALS) and frontotemporal
dementia (FTD). Blood monocyte-derived macrophages from
these patients showed an enhanced type I IFN signature (177).
Furthermore, IRF5, a downstream mediator of TLR signaling, was
also identified as an autoimmune susceptibility gene (178). IRF5
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expression is upregulated in SLE patients and this enhanced
expression was associated with the risk haplotype of IRF5 (179).
IRF5-deficient mice or SLE model mice treated with an IRF5
inhibitor attenuated lupus pathology (180, 181). Ex vivo human
studies demonstrated that an IRF5 inhibitor blocked SLE serum-
induced IRF5 activation in healthy immune cells and significantly
reduced basal IRF5 hyper-activation in SLE immune cells (181).

Inflammatory Diseases Caused
by Dysregulated Nucleic Acid Homeostasis
Molecules involved in nucleic acid metabolism, such as DNases
and RNases, play important roles in avoiding aberrant induction
of inflammatory responses against self-derived nucleic acids that
lead to autoinflammatory diseases.

TREX1,RNaseH2complex, SAMHD1,DNASE1L3, andDNase
II are key enzymes that control the turnover of endogenous DNA,
and mutations in these genes cause autoinflammatory diseases
(182–184). TREX1 is the major mammalian 3′ to 5′ DNA
exonuclease located on the ER membrane. Loss-of-function
mutations in the human TREX1 gene were reported to induce
AGS and SLE (185, 186). Mutations in TREX1 cause the
accumulation of cellular nucleic acids, and failure to remove these
nucleic acids may result in the excessive activation of immune
responses against them. Indeed, single-stranded DNA fragments
derived from endogenous retroelements that had accumulated in
the heart cells of TREX1-deficient mice might induce type I IFN
responses (187).AnRNaseH2complex comprisedof threeproteins
encoded by RNASEH2A, RNASEH2B, and RNASEH2C, degrades
the RNA strand of the RNA-DNA heteroduplex. Mutations in
RNase H2 subunits result in genome instability, which causes AGS
(188, 189). SAMHD1, a deoxynucleotide triphosphate (dNTP)
triphosphohydrolase, is required to maintain the balance of the
dNTP pool in cells. Recently, it was reported that SAMHD1
promoted the degradation of nascent DNA at stalled replication
forks by activating MRE11 exonuclease independent of the
dNTPase activity of SAMHD1, and that SAMHD1-deficiency
caused the accumulation of ssDNA in the cytoplasm (190).
Mutations in SAMHD1 caused AGS possibly by the
accumulation of ssDNA and a genome instability due to the
increase in dNTP pools (190, 191). Importantly, enhanced type I
IFN production in AGS caused by TREX1, RNaseH2 complex, or
SAMHD1 mutations is mediated by the cGAS-STING pathway
(190, 192, 193).Ofnote, genome instability leads to the formationof
micronuclei, small DNA-containing structures that are not
incorporated correctly into the nucleus after cell division (194).
Micronuclear envelopes are prone to rupture, resulting in the
release of damaged DNA to the cytosol, which in turn stimulates
the cGAS-STINGaxis to induce inflammatory responses (195, 196).
Genome instability triggers the generation of micronuclei, which
are thought to promote excessive cGAS-dependent immune
responses in cells carrying these mutations (197). DNASE1L3 is a
secreted DNase that digests cell-free DNA and chromatin in
microparticles derived from apoptotic cells (198, 199). Loss-of-
functionmutation inDNASE1L3 leads to rare form of SLE (183). In
Dnase1l3-deficient mice, TLR9 and TLR7, but not cGAS-STING
pathway, were redundantly required for autoimmunity (199, 200).
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DNase II is localized in lysosome and digests the DNA from
apoptotic cells and nuclear DNA expelled from erythroid
precursor cells (201, 202). The embryonic lethality of DNase II
knockout mice is rescued by lack of Ifnar1 gene, suggesting that
abnormal activation of type I IFN responses is taken place in this
mice (203). Mice lacking DNase II and Ifnar1 developed chronic
polyarthritis, and loss ofDNase II gene in the bonemarrow-derived
cell was sufficient to induce this arthritis (184, 204).

To prevent excessive inflammation against self-derived RNA,
proper RNA-processing systems is also important. Up to 25% of
cytosolic Alu RNAs are forming Alu-Alu hybrids which have
duplex RNA structures formed by inverted repeat Alu elements
(67). These Alu-Alu hybrids are modified by ADAR1, an
adenosine-to-inosine editing enzyme of dsRNA, which results
in destabilization of RNA duplexes and prevents the recognition
by MDA5 (67, 205, 206). Mutations in ADAR1 cause AGS with
aberrant type I IFN response (207). mtRNAs also form double-
stranded RNA structures, which can activate MDA5 when they
escape to the cytoplasm (208). To restrict the levels of
mitochondrial dsRNA, mitochondrial RNA helicase SUV3 and
polynucleotide phosphorylase PNPase play an important role
(208). Knockdown of PNPase, but not SUV3, caused the release
of mitochondrial dsRNA into cytoplasm, and increased type I
IFN production through the MDA5-IPS1 axis (208). Mutations
in PNPT1, which encodes PNPase, cause several disorders
including hearing loss and Leigh syndrome (209, 210).

Inflammation Induced by Self-Derived
Nucleic Acid Recognition in Other
Common Diseases
In addition to autoinflammatory diseases, the pathologies of
several common diseases are linked to inflammatory responses
induced by self-derived DNA or RNA. The cGAS-STING
signaling pathway is activated following myocardial infarction
by recognizing self-DNA derived from dead cells in the heart.
The genetic or pharmacological disruption of cGAS-STING and
type I IFN signaling improved survival and pathological
remodeling in a myocardial infarction mouse model (211, 212).
Parkinson’s disease is also linked to inflammation induced by self-
derived DNA. Mutations in Parkin or PINK1, which are involved
in mitophagy that removes damaged mitochondria, lead to
Parkinson’s disease in humans. The accumulation of damaged
mitochondria and increased circulating mtDNA in serum were
observed in Prkn−/− or Pink1-knockout mice under mitochondrial
stress, and this induced strong inflammation which was rescued by
a loss of STING (213). The upregulation of cGAS was observed in
the striatum from postmortem Huntington disease (HD) patients,
and HD cells showed enhanced inflammatory gene expression and
autophagy induction. Numerous micronuclei were found in HD
cells indicating they might enhance cGAS activity, which may
contribute to HD pathology (214). Psoriasis is another disease in
which DNA-induced inflammation is involved. Increased cell-free
DNA andmtDNAwere detected in the serum of psoriatic patients
(215, 216). The topical skin application of imiquimod, a TLR7
ligand, is used to induce psoriasis in mice. In this imiquimod-
induced psoriasis model, TLR7 and TLR9, but not TLR7 or TLR9
alone, are required for its pathogenesis, suggesting DNA
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recognition is important for the development of disease (217).
In addition to the activation of TLR7 signaling pathway,
imiquimod induces cell death, and thus DNA derived from dead
cells might be a trigger of TLR9 signaling in this model (218).
LL37, an antimicrobial peptide, has an important role in psoriasis
by forming a complex with DNA and delivering cell-free DNA
into endosomes, which activates TLR9 (219). Recently, it was
reported that topical treatment with cationic nanoparticles, which
interfere the DNA-LL37 complex, relieved the symptoms of
psoriasis in mice and monkeys (220). Self-RNA-mediated
inflammation is also thought to be involved in the pathogenesis
of psoriasis. LL37 was reported to form complexes with self-
derived RNA as well as self-derived DNA, triggering TLR7 and
TLR8 activation in human DCs, which may be associated with
psoriasis pathogenesis (221). Another study showed that together
with cargo peptides, polyamines form a complex with RNA,
promoting endosomal uptake and activation of TLR7 in DCs
(222). The decreased expression of protein phosphatase 6 was
observed in psoriatic lesions, leading to an increased generation of
arginase-1-mediated polyamine. Thus, inflammatory responses
induced by self-derived nucleic acids may cause disease as well
as contribute to the exacerbation of disease pathogenesis, and the
inhibition of nucleic acid-induced inflammation might be a
therapeutic target for the treatment of various diseases.
NUCLEIC ACID SENSORS IN CANCER

Role of Nucleic Acid Sensors in
Anti-Cancer Treatment
Many studies have demonstrated the involvement of DNA-
sensing pathways in antitumor responses as well as tumor
development. Cancer cells often contain cytosolic DNA, which
may not be present under physiological conditions. The
generation of micronuclei and the release of mtDNA from
mitochondria, caused by chromosomal instability and
mitochondrial damage, respectively, are the main sources of
cytoplasmic DNA in cancer cells. Sensing tumor DNA in tumor
cells results in type I IFN production, which contributes to the
maturation of DCs and the activation of CD8+ T cells that have
potent antitumor activity (223). Several reports have suggested the
importance of the cGAS-STING axis in antitumor responses,
rather than other nucleic acid-sensing receptor-mediated
pathways, by bridging innate immune responses and tumor-
specific T cell responses via the production of type I IFNs.
Downregulation of the cGAS-STING pathway in tumors
correlates with a poor prognosis in patients with gastric cancer
(224). Of note, several human colon cancer cell lines show low or
defective STING-mediated signaling, and STING-deficiency in
prostate cancer cells increased tumor growth in vivo (225, 226).
These defects in the STING pathway may be related to epigenetic
silencing via methylation of the promoter region of cGAS and
STING, or the loss-of-function mutations of these genes (227).

In addition to cancer cells, activation of cGAS-STING
pathway in immune cells also contributes to antitumor
activities. It is well known that antitumor effects are associated
with the production of type I IFNs by DNA sensing after
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radiotherapy and chemotherapy, which induce DNA damage in
cancer cells and the release of DNA into the cytosol (228). The
cGAS-STING pathway can be activated by tumor cell-derived
DNA, and STING- or IRF3-deficient mice showed defects in
priming CD8+ T cells and tumor control (113, 229).
Furthermore, cancer cell-derived cGAMP is thought to be
transferred to neighboring immune cells, resulting in activation
of the STING pathway (113, 230). Moreover, tumor-derived
DNA is also thought to be transferred to host immune cells and
activate immune responses. Treatment with the anticancer drug
topotecan induces the release of exosomes containing DNA,
which are then taken up by DCs and presented to activate
antitumor immunity via the STING pathway (231).

Because of the importance of the cGAS-STING pathway in
antitumor activities, cyclic dinucleotide (CDN), a STING agonist
structurally related to cGAMP, is thought to be useful for anti-
cancer therapy. Indeed, treatment with the STING agonist
cGAMP inhibited tumor growth in mice (232, 233). STING-
activating nanoparticles containing cGAMP were designed to
enhance the efficacy of CDN by protecting it from clearance and
increasing its transport to the cytosol, and nanoparticle
treatment of mice injected with poorly immunogenic B16.F10
melanoma showed a decreased tumor growth rate and prolonged
survival relative to mice treated with pure cGAMP (234). The
antitumor efficacy of cGAMP treatment was further enhanced
with anti-CTLA4 and PD-1 immune checkpoint blockade (233,
234). Based on their anticancer activities in mice, synthetic
CDNs that stimulate STING have been approved for clinical
trials to test their anticancer effects in humans (235).

In addition to DNA sensors, RNA sensors also contribute to
the elimination of cancer cells. DNA methyltransferase inhibitors
have been shown to exert clinical anti-tumor effect by inducing
MDA5 and TLR3 signaling pathways (236, 237). The activation of
these RNA sensors might be induced by dsRNAs derived from
endogenous retroviruses (ERVs) which are normally silenced in
cells by DNA methylation (237). Furthermore, ablation of histone
H3K4 demethylase LSD1 resulted in upregulation of ERVs and
accumulation of dsRNAs that are recognized by MDA5 and TLR3
in cancer cells, which promotes anti-tumor T cell immunity and
elicits significant responses to anti-PD-1 therapy in a mouse
melanoma model (238). Therefore, inhibition of LSD1 might
also be a potent strategy in cancer immunotherapy. Radiation
therapy also induces the activation of ERVs, which mediates IPS-
1-dependent type I IFN response in A549 and B16F10 cells (239).
Another study suggests that RIG-I but not MDA5 is important in
inducing IFN signaling and cytotoxic effects in response to
radiation therapy in cancer cells, such as human D54
glioblastoma and HCT116 colorectal carcinoma cells (240). In
these cells, accumulation of U1 non-coding RNA (ncRNA) in the
cytoplasm was observed following radiation, suggesting that this
ncRNA may contribute to activate RIG-I signaling pathway (240).
These differences in radiation-induced responses may vary
according to the strength of radiation or types of cancer cells.
Endogenous dsRNAs which are originated from pre-mRNA
introns were also reported to induce anti-tumor effects.
Heterogeneous nuclear ribonucleoprotein C (HNRNPC) is up-
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regulated in multiple tumors or tumor cell lines. Knock-down of
HNRNPC in breast cancer cells, such as MCF7 and T47D, results
in accumulation of endogenous dsRNAs which are largely from
Alu introns, and induces tumor-inhibitory effect by activating
RIG-I-mediated type I IFN responses (241). Argonaute 1x
(AGO1x), a translational read-through isoform of AGO1, is also
highly expressed in breast cancer cells and is involved in the
responses to endogenous dsRNAs (242). AGO1x interacts with
dsRNA-processing proteins such as PNPT1 and this complex
prevents the accumulation of dsRNAs in cells. Genetic deletion of
AGO1x results in dsRNA accumulation and increased IFN
responses (242). Deletion of ADAR1, an adenosine deaminase
that limits the sensing of endogenous dsRNA, also induces
MDA5-dependent type I IFN production and inflammation,
which increase the sensitivity of tumors to radiation therapy and
immunotherapy (243). The activation of innate immune cells by
ligands of endosomal TLRs is another strategy for antitumor
therapy (244, 245). TLR ligands are often studied for their
effectiveness as adjuvants to induce antitumor T cell activity.
The application of liposomes loaded with tumor-specific
synthetic peptides and poly(I:C) induced tumor regression and
controlled the outgrowth of melanoma and human
papillomavirus-induced tumors (245). Another study showed
that the administration of ARNAX, a TLR3-specific adjuvant,
with a tumor-specific antigen promoted tumor regression. When
in combination with anti-PD-L1, this cocktail led to the relief of
anti-PD-1 unresponsiveness (244).

Role of Nucleic Acid Sensors
in Tumor Growth
Although there are many reports of cGAS-STING pathway for
anti-tumor effects, it was also reported that activation of the cGAS-
STING axis in metastatic cancer caused chronic inflammation in
tumor tissues, which enhanced cancer cell survival and metastasis.
The transfer of cGAMP from cancer cells to astrocytes through
gap junctions promoted the production of type I IFNs and
proinflammatory cytokines, which in turn supported the brain
metastasis of cancer cells (246). While canonical NF-kB signaling
is required for antitumor immunity, the noncanonical NF-kB
signaling pathway was reported to negatively regulate radiation-
induced antitumor immunity (247). In metastatic cells,
chromosomal instability is enriched compared with primary
tumors, and this leads to activation of the STING-dependent
noncanonical NF-kB signaling rather than canonical NF-kB and
IRF3 signaling (248). Given that the cGAS-STING pathway can be
beneficial and harmful in terms of antitumor immunity, the future
direction of therapeutic strategies involving the cGAS-STING
pathway should consider the efficiency and safety concerns of
the treatment in different stages and type of cancers.

In addition to the cGAS-STING pathway, it was reported that
activation of RIG-I signaling pathway in breast cancer cells also
enhanced tumor growth, metastasis, and therapy resistance.
Cancer cells interact and activate stromal cells to enhance
RN7SL1 RNA levels by pol III, which results in secretion of
exosomes containing RN7SL1 (249). This exosome activates
RIG-I in breast cancer cells and leads to cancer progression.
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Endosomal TLRs may also play a role in tumor progression.
Mutations in MyD88 (L265P) are frequently (90% of cases) found
in Waldenström’s macroglobulinemia (WM), a lymphoplasmacytic
lymphoma characterized by an excess of IgM-secreting
lymphoplasmacytic cells in the bone marrow (250). MyD88-
L265P spontaneously activates the Myddosome, resulting in the
constitutive production of proinflammatory cytokines. Combined
TLR3/7/9 deficiency was reported to induce tumor regression
dependent on the activities of CD4+ and CD8+ T cells (251).
Moreover, activation of endothelial TLR3 by the detection of
extracellular RNA from tumors enhanced metastatic progression.
TLR3 activation induced the expression of the axon guidance gene
SLIT2 in endothelial cells, which mediated the migration of cancer
cells to endothelial cells for intravasation, which was dependent on
ROBO1, a SLIT2 receptor (252). The detection of tumor-derived
exosomal RNAs by TLR3 in lung epithelial cells might also be
involved in tumorigenesis. Activation of lung epithelial TLR3
induced neutrophil recruitment to the lungs and lung metastatic
niche formation (253).
CONCLUSIONS

Numerous studies have reported detailed mechanisms for ligand
recognition and activation by PRRs. Because all pathogens possess
nucleic acids, a defensive barrier network consisting of PRRs
recognizing pathogenic DNA or RNA as PAMPs and their
downstream signaling pathways is important for host protection
against invading pathogens such as viruses and bacteria. However,
host cells alsopossess nucleic acids. Therefore, the recognition system
for nucleic acids must be strictly controlled regardless of whether
nucleic acids are derived from either the host or the invading
pathogen. Indeed, the activation of PRRs and downstream
signaling pathways are strictly regulated at multiple steps including
cellular localization, post-translationalmodifications, and binding by
inhibitors and activators. Nucleic acid metabolism is also critical for
limiting responses to self-derived nucleic acids, and defects in the
regulatorymechanism lead to autoinflammatory diseases. Therefore,
it is important to investigate how nucleic acid-mediated signaling is
activated and terminated. Anumber of negative regulators have been
Frontiers in Immunology | www.frontiersin.org 12
reported to date, and it will be a topic for future research that should
be uncover the detailed mechanisms of how and under what
conditions such negative regulators function.

Host immune responses induced by nucleic acids are a double-
edged sword for the host. Even if immune responses are
physiologically induced in response to invading pathogens or
damaged cells as host defense, they can lead to morbid symptoms
as side effects, and at worst, death. Therefore, the inhibition of
nucleic acid-sensing receptors and their signaling pathways might
be a promising treatment for undesired and severe inflammatory
conditions. Nevertheless, the activation of nucleic acid-induced
signaling pathways, especially the STING pathway, may enhance
therapeutic effects in cancer, although the effect of the treatment is
dependent on the stage and type of cancer. Coupled with the
advances in immune checkpoint blockade therapy, it is expected
that CDN-based therapy will be used in combination with such
therapies in the future. Because inflammatory responses, even if
localized, can affect the immune system throughout the body,
investigating the impact of inflammatory responses on
surrounding cells and tissues as well as distant locations might be
another topic for future research. Elucidating the systematic
responses induced by the immune response will contribute to our
understanding of the pathogenesis of infectious diseases and
autoinflammatorydiseases, anddevelopingappropriate treatments.
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Cyclic GMP-AMP synthase promotes the inflammatory and autophagy
responses in Huntington disease. Proc Natl Acad Sci USA (2020) 117
(27):15989–99. doi: 10.1073/pnas.2002144117

215. Therianou A, Vasiadi M, Delivanis DA, Petrakopoulou T, Katsarou-Katsari
A, Antoniou C, et al. Mitochondrial dysfunction in affected skin and
increased mitochondrial DNA in serum from patients with psoriasis. Exp
Dermatol (2019) 28(1):72–5. doi: 10.1111/exd.13831

216. Beranek M, Fiala Z, Kremlacek J, Andrys C, Krejsek J, Hamakova K, et al.
Changes in circulating cell-free DNA and nucleosomes in patients with
exacerbated psoriasis. Arch Dermatol Res (2017) 309(10):815–21.
doi: 10.1007/s00403-017-1785-5

217. Tanaka M, Kobiyama K, Honda T, Uchio-Yamada K, Natsume-Kitatani Y,
Mizuguchi K, et al. Essential Role of CARD14 in Murine Experimental
Psoriasis. J Immunol (2018) 200(1):71–81. doi: 10.4049/jimmunol.1700995

218. Gross C, Mishra R, Schneider K, Medard G, Wettmarshausen J, Dittlein D,
et al. K+ Efflux-Independent NLRP3 Inflammasome Activation by Small
Molecules Targeting Mitochondria. Immunity (2016) 45(4):761–73.
doi: 10.1016/j.immuni.2016.08.010

219. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, et al.
Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial
peptide. Nature (2007) 449(7162):564–9. doi: 10.1038/nature06116

220. Liang H, Yan Y, Wu J, Ge X, Wei L, Liu L, et al. Topical nanoparticles
interfering with the DNA-LL37 complex to alleviate psoriatic inflammation
in mice and monkeys. Sci Adv (2020) 6(31):eabb5274. doi: 10.1126/
sciadv.abb5274
Frontiers in Immunology | www.frontiersin.org 18
221. Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V, et al.
Self-RNA-antimicrobial peptide complexes activate human dendritic cells
through TLR7 and TLR8. J Exp Med (2009) 206(9):1983–94. doi: 10.1084/
jem.20090480

222. Lou F, Sun Y, Xu Z, Niu L, Wang Z, Deng S, et al. Excessive Polyamine
Generation in Keratinocytes Promotes Self-RNA Sensing by Dendritic Cells
in Psoriasis. Immunity (2020) 53(1):204–16.e10. doi: 10.1016/j.immuni.
2020.06.004

223. Fuertes MB, Woo SR, Burnett B, Fu YX, Gajewski TF. Type I interferon
response and innate immune sensing of cancer. Trends Immunol (2013) 34
(2):67–73. doi: 10.1016/j.it.2012.10.004

224. Song S, Peng P, Tang Z, Zhao J, Wu W, Li H, et al. Decreased expression of
STING predicts poor prognosis in patients with gastric cancer. Sci Rep (2017)
7:39858. doi: 10.1038/srep39858

225. Xia T, Konno H, Ahn J, Barber GN. Deregulation of STING Signaling in
Colorectal Carcinoma Constrains DNA Damage Responses and Correlates
With Tumorigenesis. Cell Rep (2016) 14(2):282–97. doi: 10.1016/
j.celrep.2015.12.029

226. Ho SS, ZhangWY, Tan NY, Khatoo M, Suter MA, Tripathi S, et al. The DNA
Structure-Specific Endonuclease MUS81 Mediates DNA Sensor STING-
Dependent Host Rejection of Prostate Cancer Cells. Immunity (2016) 44
(5):1177–89. doi: 10.1016/j.immuni.2016.04.010

227. Konno H, Yamauchi S, Berglund A, Putney RM, Mulé JJ, Barber GN.
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