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Abstract: Estrogenic steroids and adenosine A2A receptors promote the wound healing and
angiogenesis processes. However, so far, it is unclear whether estrogen may regulate the expression
and pro-angiogenic activity of A2A receptors. Using in vivo analyses, we showed that female wild
type (WT) mice have a more rapid wound healing process than female or male A2A-deficient mice
(A2AKO) mice. We also found that pulmonary endothelial cells (mPEC) isolated from female WT
mice showed higher expression of A2A receptor than mPEC from male WT mice. mPEC from female
WT mice were more sensitive to A2A-mediated pro-angiogenic response, suggesting an ER and A2A

crosstalk, which was confirmed using cells isolated from A2AKO. In those female cells, 17β-estradiol
potentiated A2A-mediated cell proliferation, an effect that was inhibited by selective antagonists
of estrogen receptors (ER), ERα, and ERβ. Therefore, estrogen regulates the expression and/or
pro-angiogenic activity of A2A adenosine receptors, likely involving activation of ERα and ERβ
receptors. Sexual dimorphism in wound healing observed in the A2AKO mice process reinforces the
functional crosstalk between ER and A2A receptors.
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1. Introduction

A substantial body of evidence describes contrasting influences of androgenic and estrogenic
sex steroids on the healing of acute skin wounds, in which the former inhibits whereas the latter
accelerates recovery [1]. However, gender differences in wound repair parameters would not
intuitively be expected [2,3]. Since healing is a complex mechanism involving several processes, such as
inflammation, coagulation, and angiogenesis, among others, it is feasible that female mice may have
certain advantages in some of those processes.
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Angiogenesis is a tightly regulated process that is rare under normal conditions in adults, except in
the female sexual tract where it occurs periodically as a result of fluctuations in sex hormone levels [4].
Among many cell actors in the angiogenesis process, endothelial cells (ECs) have an essential role for
new vessel formation via an increase in cell proliferation, migration, and tube formation capacity [5].

An increasing body of evidence indicates sexual dimorphism in endothelial cell function
and therefore in the angiogenesis process [6,7]. Mechanistically, estrogen (E2) directly modulates
angiogenesis [8], mostly through the activation of the classic estrogen receptors (ERs) alpha (ERα) [9]
and beta (ERβ) [10] in endothelial cells. For instance, 17β-estradiol enhances proliferation, migration,
and tube formation of endothelial cells, an effect likely involving the activation of the vascular
endothelial growth factor (VEGF) and ERα pathways [9].

On the other hand, adenosine is also an endogenous modulator of angiogenesis in a cell-dependent
manner via its four adenosine receptors (AR), named A1, A2A, A2B, and A3 [11,12]. In particular,
A2A (and A2B) receptors increase endothelial cell proliferation and migration in humans [13–15],
pigs [16], and rats [17]. Moreover, A2A also increases the functional expression of VEGF in endothelial
cells [18–20]. Accordingly, the key role of the A2A receptor in angiogenesis has been confirmed
using A2A-deficient mice (A2AKO), which showed reduced blood vessel and extracellular matrix
formation [21] and a delayed in vivo wound healing process [22] compared to wild type mice (WT).

Both estrogen (i.e., 17β-estradiol) via ER and adenosine via A2A activation promote angiogenic
behavior of endothelial cells. However, there is no information regarding potential crosstalk between
these two main regulators. Interestingly, ovariectomy causes a dramatic reduction of the mRNA levels
of A2A receptors [23], suggesting that expression of the adenosine A2A receptor may be regulated by
estrogen. Indeed, 17β-estradiol upregulates the mRNA levels of A2A in a dose-dependent manner in
the human cancer cell line MCF-7 [24]. Complementary to this in vitro evidence, it has been shown
that mice lacking A2A receptors exhibited sex dimorphism in many physiological processes including
heart rate, temperature, locomotion activities, oxygen demand [25], and maturation of the microglia in
the brain [26], in which female A2AKO mice were less negatively affected than male A2AKO.

Using an in vivo wound healing assay and a primary culture of pulmonary endothelial cells
isolated from female and male wild type (WT) and A2AKO mice, we aimed to investigate whether
female mice exhibited advantages in the wound healing process and angiogenesis. Additionally, we
wanted to investigate whether 17β-estradiol regulates the expression and pro-angiogenic function
of the A2A receptor and to elucidate whether ER and VEGF are involved in this regulation. Our a
priori hypothesis indicates that 17β-estradiol potentiates the A2A-mediated angiogenesis in female
derived endothelial cells that involve ER and VEGF activation and promote an advantage in the healing
processes compared to male mice.

2. Results

2.1. In Vivo Wound Healing Assay in Female and Male Wild Type and A2A-Deficient Mice

Wound healing requires the presence of an A2A receptor (Figure 1A). No significant differences
were observed between female and male WT or female and male A2AKO mice, although female WT
and female A2AKO mice tend to have a faster wound healing process compared to their respective
male counterparts.
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Figure 1. Wound healing in vivo assay in wild type and A2AKO mice: (A) Time course (up to 10 days) of
wound healing (relative wound closure with respect to day 0) in WT and A2AKO mice. Insert includes
representative images of the wounded area at day 4 (D4) and day 10 (D10) after injury. The line in the
representative images represents 0.5 cm. (B) Effect of sex on the wound healing process studied as
in A. Inset represents area under the curve (AUC) of the healing process in female and male WT and
A2AKO mice. In A, * p < 0.05 versus corresponding value in WT. In B, * p < 0.05 versus female WT mice.
† p < 0.002 versus male WT. Values were expressed as mean ± SEM and n = 3–4 per group.

Faster wound healing was found in female WT mice than in female A2AKO mice at days 8 and 10
of the analysis. This apparent advantage in female WT mice was present even early (from day 4 to day
10) compared to male A2AKO mice (Figure 1B; p < 0.05 in all comparisons). Nevertheless, male WT
showed higher healing capacity compared to male or female A2AKO only at day 10. This means that
male A2AKO mice exhibited the lowest wound healing capacity.

We also analyzed skin blood perfusion and quantification of blood vessels at day four after
injury in the dermis of the wounded area using Laser Doppler and histological analysis, respectively.
A2AKO mice tended to have reduced blood perfusion (Figure S1A–C; p = 0.06) associated with
a reduced number of blood vessels in the dermis of the wounded area compared to WT mice
(Figure S1E,F). Sex dimorphism was observed only in WT mice and solely in the blood perfusion
studies (Figure S1D) but not in the blood vessel count (Figure S1G) in which male WT exhibited higher
perfusion (i.e., redness due to the inflammatory healing process) than female WT (p < 0.05).

2.2. Characterization of Mice Lung Endothelial Cells (mPEC)

Since previous reports showed a more pro-angiogenic behavior in female than male endothelial
cells [7,27], we isolated female and male pulmonary endothelial cells (mPEC) from WT mice and
A2AKO mice (Figure 2). Primary cultures enriched in endothelial cells were successfully established as
demonstrated by the detection of the endothelial markers KDR and CD34 using Western blot analysis
(Figure 2A,B). Levels of KDR increased by 184% and 194% after magnetic immunoselection using
CD31 Dynabeads (CD31+ cell) in cells isolated from WT or A2AKO mice, respectively. Likewise,
CD34 expression augmented 299% and 341% in CD31+ cells. No statistically significant differences were
found in both endothelial markers when WT and A2AKO groups were compared, neither previous nor
after immunoselection. Cell gender was confirmed by PCR amplification of the Jarid gene, while A2AKO
origin of the cells was confirmed by the presence of the neomycin cassette (Figure 2C).
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Figure 2. Expression of adenosine receptors in female and male pulmonary endothelial
cells (mPEC) isolated from WT and A2AKO mice. Pulmonary endothelial cells were isolated
using collagenase-mediated tissue digestion and immune-selection with CD31-coated Dynabeads.
(A) Representative blots of endothelial cell markers. VEGF receptor 2 (KDR, ~230 kDa), CD34 (~80 kDa)
and β-actin (~43 kDa) were identified in cell extraction of immunoselected (CD31+, Waltham, MA, USA)
cells derived from wild type (WT) and A2A-deficient mice (A2AKO). Cells that were immunoselected
are identified with a plus sign (+). (B) Semiquantitative densitometry of KDR/β-actin and CD34/β-actin
ratio. (C) Confirmation of gender and genetic background of mPEC isolated from females (single band
in the PCR for Jarid gene) or male mice (double band). A2AKO cells were identified by positive
amplification of neomycin cassette (NEO). mlp37 gene was used as housekeeping. DNA Ladder 100 bp.
(D) In vitro angiogenesis assay at 4 h of incubation with bovine serum (1%). (E) Quantification of
tube length of angiogenesis in vitro. (F) QPCR analysis of mRNA levels of A1, A2B, and A3 adenosine
receptors in male and female WT and A2AKO mice. See Table S1 for details about primers and PCR
amplicons. In (B) * p < 0.05 versus CD31- cells in WT mice. † p < 0.05 versus CD31- cells in A2AKO.
In (F). * p < 0.05 versus respective value in female WT mice. † p < 0.05 versus respective value in male
WT mice. Values were expressed as mean ± SEM. n = 3–5 per group. All experiments were performed
in duplicate.
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Furthermore, cells were used for in vitro angiogenic capacity (Figure 2D,E). CD31+ cells isolated
from female and male WT and A2AKO mice presented a similar capacity to form tubular structures as
early as 4 h after seeding them on Matrigel. The cells exhibited growth inhibition by cell-to-cell contact
(data not shown).

Analysis of the transcript levels of the adenosine receptors A1, A2B, and A3 in the primary culture
of mPEC from A2AKO mice revealed no statistically significant differences in any of the receptors
compared to WT counterparts. However, when the analysis was carried out considering sex, male WT
exhibited the highest expression of A3 receptor mRNA (p < 0.05) vs. female WT (Figure 2F).

2.3. Sex Dimorphism in A2A Adenosine Receptors Expression

Mice pulmonary endothelial cells from female and male WT mice were used for the analysis of
the A2A expression. Higher mRNA (Figure 3A) and protein (Figure 3B) levels of A2A were observed in
mPEC isolated from female WT mice when compared to male WT mice.

Figure 3. Expression of A2A and cell proliferation in mPEC derived from female and male wild type
mice. (A) PCR analysis of mRNA levels of A2A and housekeeping gene mlp37. Bars below represent
densitometry of A2A/mlp37 ratio in female (white bars) and male (black bars) mPEC from wild type
(WT) mice. (B) Western blot of A2A (~55 kDa) and β-actin (~43 kDa) proteins. Bars below represent
semiquantitative densitometry of A2A/β-actin ratio. Space between blots means that they were run
in different gels. (C) Dose–response curve of cell proliferation stimulated by 17β-estradiol (10−9 to
10−5 M, for 24 h) in mPEC isolated from male WT mice. (D) Dose–response curve of cell proliferation
stimulated by 17β-estradiol (triangles) or CGS-21680 (circles) or both (squares) in mPEC isolated from
female WT mice. (E) Cell proliferation in the presence of NECA (10−5 M, 24 h), with (+) or without
(-) 17β-estradiol (10−7 M) or ZM-241385 (10−4 M). In (A) and (B), * p < 0.05 versus respective value in
female WT mice. In (E), * p < 0.05 versus basal condition (i.e., without agonist, represented by scatter
line) in mPEC isolated from female WT mice. † p < 0.01 versus NECA. ‡ p < 0.0001 versus NECA
+ 17β-estradiol. Values were expressed as mean ± SEM, n = 5–11 per group. All experiments were
performed in duplicate.
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Conversely, 17β-estradiol (10−7 M, 24 h) reduced the A2A protein levels in both mPEC isolated
from female WT mice (Figure S2A) and in human umbilical vein endothelial cells (HUVEC) isolated
from female babies (Figure S2B).

2.4. 17β-Estradiol Enhanced Both A2A-Independent and A2A-Dependent Cell Proliferation in Female WT Mice

Cells from male WT mice showed reduced proliferation in the presence of 17β-estradiol (Figure 3C).
Conversely, 17β-estradiol (24 h) enhanced cell proliferation in cells derived from female WT mice
in a dose-dependent manner (Figure 3D). This was an effect that was similar to A2A-mediated cell
proliferation, since 17β-estradiol and CGS-21680 showed similar LogEC50 (−7.40 M and −7.17 M,
respectively) (Table 1). Importantly, the co-incubation of 17β-estradiol + CGS-21680 had a synergic
effect, showing a shift of at least one order of magnitude in the log EC50 (Figure 3D and Table 1).

Table 1. LogEC50 of 17β-estradiol and CGS-21680 for female mPEC proliferation in WT mice.

Analyzed Parameters 17β-Estradiol CGS-21680 17β-Estradiol +
CGS-21680

LogEC50 −7.40 −7.17 −8.19 *
95% confidence intervals −8.24 to −6.57 −7.67 to −6.67 −8.92 to −7.47

Number of point analyzed 58 58 60
Outliers

(excluded, Q = 1.0%) 0 0 0

* p < 0.05 versus 17β-estradiol concentration. Values are mean ± SEM. All experiments were performed in triplicate.

Similar to the use of the A2A selective agonist CGS-21680 in cells from female WT mice, the
co-incubation of 17β-estradiol (10−7 M) alongside the non-selective adenosine receptor agonist NECA
(10−5 M, 24 h) showed a higher response than NECA alone. This was prevented in the presence of the
A2A antagonist, ZM-241385 (Figure 3E). ZM-241385 alone did not affect cell proliferation.

2.5. 17β-Estradiol Enhanced A2A-Dependent Angiogenesis in Female WT Mice

We further explored the potential relationship between estrogen and A2A receptor on endothelial
cell proliferation using mPEC isolated from female and male WT and A2AKO mice. At basal conditions,
no significant differences in cell proliferation were found in female or male mPEC derived from WT or
A2AKO mice (Figure 4A). However, in response to NECA (Figure 4B) or CGS-21680 (Figure 4C), female
mPEC from WT mice showed a higher sensitivity to both agonists. This was observed as a left shift of
at least one order of magnitude in the dose–response curve when compared to cells derived from male
WT (Table 2).

Table 2. Log EC50 for NECA and CGS-21680 in mPEC isolated from WT and A2AKO mice.

Agonists
Wild type A2AKO

Female Male Female Male

NECA −6.4
(−6.7 to −6.0)

−5.5
(−6.1 to −4.9) *

−5.4
(−5.9 to −5.0) *

−5.3
(−6.1 to −4.6) *

CGS-21680 −7.1
(−7.6 to −6.5)

−6.2
(−6.5 to −5.8) * – –

In parentheses, 95% confidence interval (CI). All experiments were performed in triplicate. * p < 0.05 versus
female WT.
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Figure 4. Sex dimorphism in the A2A-mediated cell proliferation. (A) Cell proliferation measured by
bromouridine incorporation at basal conditions in female and male WT and A2AKO mice. Respective
groups are identified by different colors. (B) Dose–response curves of cell proliferation induced by
NECA or (C) CGS-21680. (D) Cell proliferation in female (white bars) and male (black bars) WT mice
with (+) NECA (10−5 M × 24 h) or ZM-241385 (10−4 M × 24 h). The dotted line represents basal values
(i.e., control without agonists). (E) Dose–response curves of cell proliferation induced by CGS-21680 in
female and male A2AKO. In (D), * p < 0.05 with respect to basal, † p < 0.05 with respect to female WT.
Values were expressed as mean ± SEM, n = 4–8 per group in duplicates.

To confirm the participation of the A2A receptor in the sex dimorphism observed in cell proliferation,
we used the selective A2A antagonist ZM-241385 (Figure 4D) or analyzed cell proliferation in
mPEC derived from A2AKO mice (Figure 4E). ZM-241385 prevented the augmented NECA-induced
proliferative response observed in mPEC isolated from female WT mice. While sex dimorphism
observed in NECA-induced cell proliferation was observed in WT mice, it was absent in A2AKO mice.

Compatible with our last results, mPEC from female WT mice exhibited higher CGS-21680-induced
cell migration (Figure 5A) and tube formation (i.e., angiogenesis) (Figure 5C) than cells from male WT
mice. However, again, this sex dimorphism observed in WT was absent in cells isolated from A2AKO
mice (Figure 5B,D).
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Figure 5. Cell migration and in vitro angiogenesis in mPEC isolated from female and male WT and
A2AKO mice. Cell migration was analyzed using the in vitro wound closure assay. (A) Representative
images of migration assays in mPEC derived from female and male WT mice. Bars represent the
percentage of increase in cell migration in the presence (+) of CGS-21680 (10−5 M × 24 h) in WT female
(white bars) and male WT mice (black bars). (B) Representative images of migration assay in mPEC
derived from female and male A2AKO mice. Bar represents, as in (A), the response of mPEC isolated
from female (red bars) and male (blue bars) A2AKO mice. (C) Representative images and respective
quantification of branched number in the in vitro angiogenesis assay (see Methods) in cells treated as
in (A) in WT or (D) A2AKO mice. * p < 0.05 vs. female WT. Values are mean ± SEM, n = 4–6 per group
in duplicates.

Furthermore, NECA and CGS-21680 enhanced VEGF protein levels (Figure 6) in cells from female
WT, an effect that was absent in cells from female A2AKO mice. Indeed, VEGF levels were severely
diminished in female A2AKO mice compared to female WT in all experimental conditions.

Estrogen-A2A Synergic Effect Involves ERs

Finally, we further analyzed whether the synergic effect of 17β-estradiol + CGS-21680 observed
in cell proliferation found in female WT was mediated by estrogen receptors. After confirming that
female WT mice express both ERα and ERβ (Figure 7A,B), we found that the synergic effect observed
on cell proliferation using CGS-21680 + 17β-estradiol was blocked when cells were co-incubated with
the selective antagonists for both ERα and ERβ (Figure 7C).
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Figure 6. Expression of VEGF in female mPEC derived from wild type and A2AKO mice. (A)
Representative Western blot of VEGF (~55 kDa) and β-actin (~43 kDa) in mPEC from female WT (white
bars) and A2AKO mice (red bars). Cells were incubated (12 h) with (+) or without (-) NECA (10−4 M)
or CGS-21680 (10−5 M). (B) Semiquantitative densitometry of VEGF/β-actin ratio as in (A). * p < 0.05
respect to basal. Values are mean ± SEM, n = 4 per group in duplicates.

Figure 7. 17β-estradiol potentiates A2A-mediated cell proliferation via estrogen receptors in female
mPEC. (A) Q-PCR for measuring mRNA of estrogen receptor (ER) alpha and beta. Both genes were
normalized to mlp37. p = 0.34 between alpha and beta. (B) Representative Western blot and respective
densitometry of ERα (~70 kDa), ERβ (~60 kDa), and β-actin (~43 kDa). ERs/β-actin ratio is presented.
P = 0.86 between alpha and beta. (C) Cells incubated with 17β-estradiol + CGS-21680 with or without
the antagonists MMP (10−6 M × 24 h) or PHTPP (10−6 M × 24 h) for ERα and ERβ, respectively.
Dotted line in C represents basal values (i.e., control without stimuli). * p < 0.05 versus control.
Values are mean ± SEM, n = 3–6 per group. All experiments were performed in duplicates.
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3. Discussion

The adenosine A2A receptor has a well-described pro-angiogenic role, but it is unknown whether its
expression and activation are influenced by estrogen in endothelial cells. We showed that female mPEC
has a higher expression of A2A receptors. 17β-estradiol enhanced the endothelial cell proliferation
induced by A2A-stimulation, an effect more likely to be associated with the activation of both ERα and
ERβ receptors. Additionally, we found that the pro-angiogenic behavior mediated by stimulation of
A2A showed a sex dimorphism in mPEC isolated from WT mice, with female cells being more sensitive
to an A2A-mediated response. This female advantage was absent in cells isolated from A2AKO mice.
In vivo confirmation of sex dimorphism showed that A2A-deficient mice exhibited a delayed healing
process and fewer blood vessels in the skin. According to our in vitro experiments, female WT mice
have a more rapid wound healing process than A2AKO mice, suggesting a crosstalk between estrogen
and A2A receptors. However, the underlying mechanisms of this potential ER-mediated regulation of
A2A receptor expression and function was poorly understood.

Sex steroids regulate the healing process of acute skin wounds [1]. Sex dimorphism is present in
endothelial function, as demonstrated by the capacity of synthesis of nitric oxide [7], a key molecule
involved in vascular tone regulation as well as angiogenesis [6]. It is unclear whether this apparent
advantage present in females also involves the wound healing process. In particular, the dorsal incisional
wound healing process—generated in a similar experimental setting in this manuscript—showed no
difference between C57BL/6 male and female mice after 50 days post-injury [2]. In this last report,
female mice tended to have more rapid wound healing, especially in the time-lapse of up to 20 days.
Using another model of tissue recovery and angiogenesis, such as the hind limb blood flow recovery
after femoral artery ligation, it was found that female C57BL/6 mice had impaired hind limb use on day
seven after the artery ligation compared to their male counterpart [3]. Contrary to our findings, this last
piece of evidence suggests that female mice might have a reduced healing process in comparison
to male mice. Since, healing is a complex mechanism involving several other processes, including
activation of inflammation, coagulation, angiogenesis, and matrix recovery, among others, it is feasible
that female mice may have certain advantages in some of those processes (i.e., angiogenesis), but not in
all of them. In line with this observation, specific differences such as higher macrophage infiltration [1]
or collagen (type I and III) synthesis [28] in the healing area were found in females when compared to
male mice.

Under this complexity, sex dimorphism in some cardiovascular functions [25] or the brain
maturation process [26] has already been described in A2AKO mice. We contribute to those findings
by indicating that sex dimorphism may also be present during the wound healing process and tissue
perfusion. Although no differences were found in wound healing between female and male A2AKO
mice, male, but not female, A2AKO mice have a more delayed rate of healing compared to female
WT. Our results disagree with previous reports in the same strain of A2AKO mice that showed no
differences in the wound healing of those mice compared to their WT counterpart [22], although
the authors did not analyze sex dimorphism. Despite that, the authors also reported defects in the
formation of granulation tissue and a reduction in the number of Factor VII-positive endothelial cells
at days three or six after dermal excisional wounds in A2AKO mice. Contrary to WT, A2AKO mice did
not develop bleomycin-induced dermal fibrosis [21]. Then, it was confirmed that an A2A receptor was
required to synthesize the dermal extracellular matrix. Therefore, A2A appears to control the formation
of two key components of the tissue microenvironment, such as the extracellular matrix and blood
vessels (i.e., angiogenesis). However, the potential impact of the lack of A2A in the healing process
would require confirmation in a larger number of samples and more time-extended analyses.

We found significantly fewer blood vessels in the A2AKO mice compared to WT mice on day four
after injury, which may be related to less blood perfusion. In support of this finding, a reduced number
of endothelial cells (i.e., blood vessels) in the walls of air punches of A2AKO mice were shown [22].
We extended the current knowledge by showing that blood perfusion at day four after injury showed
sex dimorphism in WT mice, similar to what was found previously in the hind limb perfusion after
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femoral artery ligation [3]. In particular, high blood perfusion was found at day four after injury in
male WT mice compared to their female counterparts, which may correspond to the initial phase of
healing processes that are characterized by excessive angiogenesis accompanied by an increase in blood
flow [29], while in female mice, this healing process and angiogenesis may be accelerated, and then
reduced blood perfusion may constitute indirect evidence of this accelerated process. Interestingly,
this sexual dimorphism observed in blood perfusion in the wounded area was absent in A2AKO mice,
confirming that A2A was required for adequate blood vessel formation and action. How estrogen or
sex hormones contribute to control blood perfusion during the healing process in the absence of A2A

receptors is still unclear.
Our results suggest that sex hormones, including estrogen, may regulate the expression and

activity of A2A receptors in endothelial cells. As far as we know, there are no previous reports on
this topic. Previous evidence using a human cancer cell line (MCF-7) showed that 17β-estradiol
upregulates the mRNA levels of A2A in a dose-dependent manner, an effect that was inhibited by the
ER antagonist ICI182780 [24]. Additionally, whole-brain extracts of female rats exposed to ovariectomy
revealed subtype-specific repression of adenosine receptors three months after surgery, with preferential
downregulation of A2A (4.3 fold), A3 (2.3 fold), and A1 (2.1 fold), but not A2B, receptors [23]. Instead,
we showed that 17β-estradiol significantly reduced the total protein amount of A2A in mice or human
female endothelial cells.

Nevertheless, we also found that endothelial cells derived from female WT mice had higher mRNA
levels of A2A than cells from male WT mice, which was associated with 17β-estradiol upregulation of
A2A-mediated cell proliferation. This observation may be interpreted as a counterintuitive finding
considering the downregulation of the total protein amount of A2A induced by 17β-estradiol in
female endothelial cells. However, these findings may also suggest a regulatory loop between
ERs and A2A receptors in female endothelial cells, which might involve both transcriptional and
translational regulation. In addition, since functional potentiation between 17β-estradiol + CGS-21680
(A2A selective agonist) was found in our results, we encourage future studies focused on the
17β-estradiol regulation of intracellular traffic of the A2A receptor, its location on the cell membrane, or
A2A-derived intracellular pathways.

Our results also suggest that estrogen-mediated upregulation of A2A receptor activity could be
mediated by either ERα or ERβ, since the synergic effect of 17β-estradiol + CGS-21680 in mPEC
proliferation was blocked with the respective ER antagonists. In this regard, using MCF-7 breast cancer
cells, A2A adenosine receptor crosstalk with ERα has been described in the regulation of the expression
of progesterone receptor (PR), a well-described target of ERα. Thus, the expression of PR induced by
CGS-21680 was inhibited with the ERα antagonist, ICI 182,780 [30]. In accordance with our results,
17β-estradiol and CGS-21680 had a similar proliferative effect on MCF-7 cells, which was interpreted
as a part of the crosstalk between ERα and A2A receptors [30]. As far as we know, no other reports
have suggested a direct interaction between ER and A2A receptors.

To confirm the relevance of A2A in the pronounced pro-angiogenic behavior of female endothelial
cells compared to male cells, we found that female mPEC derived from A2AKO lost the NECA
or CGS-21680 mediated pro-angiogenic advantages (demonstrated in the form of higher cell
proliferation/migration and tube formation capacity) present in female cells isolated from WT.
These results support the hypothesis of a crosstalk between A2A and ERs, although the underlying
mechanism is still unknown. Since previous evidence described that estrogen [9] or A2A receptor [18–20]
independently upregulated VEGF, we decided to analyze this factor in our experimental setting. Thus,
mPEC from female WT mice showed a threefold increase in VEGF levels compared with mPEC from
female A2AKO mice. We could speculate that, in our experimental setting, the major regulator of VEGF
was the A2A receptor rather than estrogen. Therefore, experiments in ovariectomized or ER-deficient
mice must be conducted. Nevertheless, both CGS-21680 and NECA upregulated VEGF protein levels
in cells from female WT mice, again suggesting a potential crosstalk between ER and A2A receptors.
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Sex dimorphism was also found in A3 receptor expression in mPEC from WT mice, a phenomenon
that was not present in cells from A2AKO mice, suggesting a compensatory adaptation generated by
a lack of A2A. The underlying mechanism of the potential crosstalk between A2A and A3 and how
it may affect endothelial function and angiogenesis are unknown. We reported previously that cell
migration is mainly related to the activation of A2A and A3, but not A2B receptors in a primary culture
of human endothelial progenitor cells [31]. Therefore, we encourage future studies to try to understand
the potential A3-mediated pro-angiogenic behavior of endothelial cells that lack A2A receptors.

However, our study has some limitations due to the combined information gathered from in vitro
and in vivo experiments. For the former, we used a primary culture of pulmonary endothelial cells,
while in the latter, we used a skin wound healing model. However, our CD31-enriched primary culture
presented functional angiogenic capacities, which indeed were the focus of our research. Despite that,
we cannot rule out the possibility of functional changes in the interaction between A2A and ER in other
types of endothelial cells, including those from the skin microcirculation. One intriguing result was
the finding of sex dimorphism in blood perfusion in the wounded area, in which male WT mice had
higher perfusion than female WT mice. As indicated previously, this difference may reflect the degree
of healing, but also might indicate a limitation in the laser penetration of the Doppler analysis.

In conclusion, our results indicate that female mice exhibited advantages in the wound healing
process which is associated with 17β-estradiol upregulation of A2A-mediated angiogenesis in a primary
culture of female endothelial cells. The potential underlying mechanism for this effect may involve
translational rather than transcriptional regulation of the A2A receptor through activation of ERα and
ERβ receptors, although regulatory feedback between ER and A2A expression might be also present.
The interaction between ER and A2A in the regulation of angiogenesis brings a new area of research
into the complex regulatory scenario of the healing process.

4. Materials and Methods

4.1. Reagents

The A2A adenosine receptor selective agonist, 2-p-(2-Carboxyethyl) phenethylamino-5′-N-
ethylcarboxamido adenosine hydrochloride hydrate (CGS-21680), and the non-selective agonist,
5′-(N-ethylcarboxamido) adenosine (NECA), as well as the A2A adenosine receptor selective antagonist,
4-(2-(7-Amino-2-(2-furyl) (1,2,4) triazolo (2,3-α) (1,3,5)triazin-5-ylamino]ethyl) phenol (ZM-241385),
were purchased from Tocris Biosciences (Bristol, UK). The non-selective estrogen receptor agonist,
1,3,5-estratriene-3,17β-diol (17β-estradiol), was from Sigma-Aldrich, (San Luis, MO, USA). Antagonist
selective estrogen receptor alpha (ERα), 1,3-Bis(4-hydroxyphenyl)-4-methyl-5-(4-(2-piperidinylethoxy)
phenol)-1H-pyrazole dihydrochloride (MPP), and beta (ERβ), 4-(2-Phenyl-5,7-bis(trifluoromethyl)
pyrazolo(1,5-a) pyrimidin-3-l) phenol (PHTPP), were also purchased from Tocris Biosciences, UK.

4.2. Animals

C57BlackL/6 mice were purchased from the animal facility of the Pontificia Universidad Católica de
Chile (PUC). Dr. Jiang-Fan Chen from Boston University, USA, donated A2AKO mice. The generation
of A2AKO mice has been described in detail previously [32]. In brief, an A2A receptor genomic fragment
was split by a positive selection marker (neomycin cassette) which replaced the 3′ end of exon 2,
the adjacent 5′ splice junction, and intron sequences. Confirmation of A2AKO was performed using
the amplification of neomycin cassette using PCR (Table S1). Mice were housed at the Universidad
de Valparaiso, Chile animal facility where they were kept under standard environmental conditions
which included controlled temperature (25 ◦C) and humidity, exposure to 12/12 h light/darkness cycles,
and food and water supply ad libitum. All experiments were performed independently of estrous
cycle in the case of female mice. This study was carried out following the recommendations of the
guidelines for the Care and Use of Laboratory Animals published by the US National Institute of
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Health. The Ethical Committee from the Universidad del Bio Bío (UBB) and FONDECYT (1140586,
Chile) approved the protocol (1 March 2014).

4.3. In Vivo Wound Healing Assay

The in vivo wound healing assay was performed as described previously by our laboratory [33].
Briefly, female and male WT and A2AKO mice (four animals per group, three months old; body weight
20–23 g) were isolated in individual cages. Animals were anesthetized using ketamine (100 mg/kg)
under controlled temperature (37 ◦C) and aseptic conditions. After that, the animals were shaved at
the dorsal level to make a wound (5 mm) using a punch. An immediate-bonding adhesive was used to
isolate the injured area. A follow-up analysis was performed on day 10 and photographs were taken
every two days to record the evolution of wound healing. Percentage of wound closure was calculated
as follows: wound healing = (A0 − An/A0).

Where wound healing represented wound closure. A0 represented the wound area at time 0,
and An represented the wound area at “n” days follow-up.

4.4. Isolation of Mice Lung Endothelial Cells (mPEC)

Mice pulmonary endothelial cells (mPEC) were isolated following a similar protocol that was
used for human placental microvascular endothelial cells (hPMEC) [34]. Briefly, the lungs were excised,
immersed in Medium 199 (M119) (Life Technologies, Carlsbad, CA, USA), and kept on ice. Lung
tissue was cut into pieces of approximately 1 mm3, passed through a surgical mesh, and centrifuged
at 250× g for 10 min. Samples were digested for 2 h at 37 ◦C, using 0.1 mg/mL of collagenase type
II (Life Technologies). After enzymatic digestion, samples were washed using phosphate buffer
solution (PBS) + 0.1% fetal bovine serum (FBS) and centrifuged three times at 250× g for 10 min each.
Digested tissue was resuspended in M199, which contained 5 mM D-glucose, 20% new-born calf
serum (NBCS), 20% fetal calf serum (FCS), 3.2 mM L-glutamine, and 100 U/mL penicillin-streptomycin
(primary culture medium, PCM). The cell suspension was transferred to 1% gelatin-coated T25 culture
flasks for culture (37◦C, 5% O2, 5% CO2) in PCM until confluence. Confluent cells were trypsinized
(trypsin/EDTA = 0.25/0.2%) (Life Technologies, Carlsbad, CA, USA) at 3 min, 37 ◦C and subjected to
CD31 positive immune-selection using Dynabeads© CD31 (Thermo Fisher, Waltham, MA, USA) [34].
Immune-selection of endothelial cells was performed by mixing (20 min, 4 ◦C) magnetic microbeads
conjugated to anti-CD31 antibody (platelet endothelial cell adhesion molecule 1, PECAM-1 or CD31)
with the cell suspension to yield 48 × 103 beads/µL of cell suspension. Cells attached to the magnetic
microbeads were collected and washed (3×) in PBS at 37 ◦C). CD31-coated microbead-attached cells
were re-suspended in PCM containing 10% NBCS and 10% FCS and cultured until passage 2 [35].
No analysis of the effect of passages was performed; inter-assay variation in the proliferation assays
was 18.3 ± 1.2%.

Endothelial cells were further characterized by Western blot analysis for endothelial markers
(hematopoietic progenitor cell antigen CD34 and vascular endothelial growth factor receptor type 2 or
KDR, see below) and by in vitro angiogenesis assay (tube formation on Matrigel). Briefly, pulmonary
endothelial cells (4 × 104) from WT or A2AKO mice were cultured on a 96-well plate coated with
40 µL Matrigel basement membrane matrix (Merck, Darmstadt, Germany). Assays were performed
at different serum concentrations (0.1–1%). The formation of branches was quantified using the
“Angiogenesis Analyzer” plugin from ImageJ V1.48 software.

4.5. Semiquantitative and Quantitative PCR

Total RNA was isolated using Trizol® Reagent (Life Technology, Carlsbad, CA, USA) according to
the manufacturer’s instructions. RNA concentration was measured using MaestroNano (Maestrogen,
Xiangsham, Hsinchy, Taiwan). cDNA was synthesized from 1µg of RNA total. The reverse transcription
was performed as previously described [31] using a high capacity cDNA RT kit (Life Technology)
according to the manufacturer’s instructions.
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Details of primers used in quantitative PCR (Q-PCR) are described in Table S1 and comprised A1,
A2B, and A3 as well as mlp37 as housekeeping. The PCR reaction was performed in a final volume of
20 µL which included 1 µL of cDNA, 200 nM primers, 10 µL Brilliant II SYBR Green Q-PCR master mix
(including SureStart Taq DNA polymerase), and 0.375 µL reference dye (5 µM) (Agilent Technologies,
Santa Clara, CA, USA). Amplification was performed in a Rotor Gene 6000 thermocycler (Corbett Life
Science, Brisbane, Australia). Q-PCR cycles were set up as follows: 35 cycles of denaturation (95 ◦C,
30 s), annealing (see Table S1 for melting temperature of individual genes, 60 s), and extension cycles
(72 ◦C, 60 s) with a final extension at 72 ◦C (5 min). Fluorescent products were detected in the third step
of cycling. Product specificity was confirmed by agarose gel electrophoresis (2% v/v) and melting curve
analysis. Quantification of gene expression was performed following the delta-delta CT method [36].

For semiquantitative PCR, the mRNA levels of Adora2a (adenosine receptor A2A), Jarid1c/1d,
and mlp37 genes were assessed using a commercially available kit (Multigene Gradient, Labnet, Edison,
NJ, USA). Cells were sexed by specific amplification of the Jarid1c and Jarid1d gene, which yields
double bands for males and a single band for females, as previously reported (Clapcote and Roder,
2005). For PCR analysis, 20 µL reactions were carried out using DreamTaq Green PCR Master Mix
2X (Thermo Scientific, Waltham, MA, USA) with 1 µM primers according to the manufacturer’s
instructions. PCR products were separated using electrophoresis in 1.5% agarose gels and visualized
using ethidium bromide under UV light. The primers used are included in Table S1. DNA polymerase
was activated at 95 ◦C (10 min) followed by 35 cycles at 95 ◦C (30 s), 57 ◦C (60 s), and 72 ◦C (60 s)
with a final extension at 72 ◦C (5 min). Fluorescent products were detected in the third step of cycling.
Product specificity was confirmed by agarose gel electrophoresis (1.5% v/v). For each sample, the target
genes were normalized to that of the housekeeping gene mlp37.

4.6. Western Blot

Cellular proteins were extracted using lysis buffer (Tris HCL, pH 8, 20 mM; NaCl 137 mM; EDTA
2 mM; glycerol 10%; Nonidet P-40 1%) that contained a protease inhibitor cocktail (Thermo Scientific,
Waltham, MA, USA). Cell extracts were centrifuged at 14,000× g for 10 min at 4 ◦C. Proteins (70 µg)
from the supernatant were separated using SDS-PAGE (10%), transferred to nitrocellulose membranes,
and probed with primary antibodies: CD34 (Abcam, Cambridge, UK; ab8158, dilution 1:2500 v/v);
vascular endothelial growth factor receptor 2 (KDR) (Cell Signalling Technology, Danvers, MA,
USA; #2479, dilution 1:1000 v/v); A2A receptor (Millipore, Burlington, MA, USA; dilution 1:2000 v/v);
ERα (Santa Cruz, Dallas, TX, USA; # sc-8002, dilution 1:1000 v/v); ERβ (Santa Cruz, # sc-390243,
dilution 1:1000 v/v); VEGF (Abcam, MA, USA, #9479, 1:1000 v/v); and β-actin (Sigma-Aldrich; St Louis,
MO, USA; clone AC-74, dilution 1:15000 v/v). Rabbit (Thermo Scientific) or mouse (Sigma-Aldrich)
secondary antibody conjugated with horseradish peroxidase were used for visualization. Bands on
gels were scanned and images quantified using ImageJ V1.48 software (National Institute of Health,
USA) as previously described [37].

4.7. Cell Proliferation

Pulmonary endothelial cells (7× 103 cell/mL) from WT or A2AKO mice were seeded in 96-well plates
and maintained in standard growth conditions (PCM 37◦C, 5% CO2). After serum deprivation, cells
were incubated with 5-bromo-2-deoxyuridine (BrdU) in the presence (24 h) of adenosine deaminase
(ADA, 0.1 U/mL) either alone or in combination with the following agonists: 17β-estradiol (ER,
non-selective agonist, E2; 10−7 M), CGS-21680 (A2A, selective agonist, 10−5 M), and NECA (adenosine
receptor non-selective agonist, 10−5 M), or with the selective antagonists for ERα (MPP, 10−6 M) and
ERβ (PTHPP, 10−6 M) as well as for the A2A adenosine receptors (ZM-241385, 10−4 M) in parallel
experiments. Cells were fixed and measurements were performed according to the manufacturer’s
instructions (Roche Diagnostics, IN, USA), as we previously reported [20].
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4.8. Cell Migration

Cell migration was analyzed in vitro as described [37,38]. Briefly, cells were allowed to reach
confluence in growth medium, and switched to serum-free medium. The monolayer was wounded
with a single sterile cell scraper of constant diameter (0.2 cm). After migration, cells were fixed using
absolute ethanol (200 proof) for 20 min, washed three times with PBS, and stained using hematoxylin.
Cells were observed at 40×magnification on a phase contrast inverted microscope (Olympus, Tokyo,
Japan). Six random images were taken using a digital camera (MShot MD90, Guangzhou Micro-shot
Technology Co., Ltd., Guangzhou, China) immediately after wound generation and 24 h after treatment
with adenosine A2A receptor agonist CGS-21680 (10−5 M). Cell migration was analyzed using the area
measurement plugin from ImageJ software. Migratory area was expressed as percentage of migration
into the denudated area

M. area = (A0 − A24h/A0) ∗ 100

where M. area represented the migratory area, A0 represented the area at time 0, or denudated area,
and A24h represented the area that remained denude after 24 h.

4.9. In Vitro Angiogenesis

Pulmonary endothelial cells (4 × 104) from wild type or A2AKO mice were cultured on a 96-well
plate pre-coated with 40 µL Matrigel basement membrane matrix (Corning Labware, MA, USA).
Assays were performed in absence or presence (6 h) of adenosine A2A receptor agonist, CGS-21680
(10−5 M). Tubes were photographed using inverted phase contrast microscope under 10×magnification
(Olympus, Tokyo, Japan). Formation of networks (branches) was quantified using the “Angiogenesis
Analyzer” plugin from ImageJ 1.48 software as previously reported [37,38].

4.10. Statistical Analysis

The variables were analyzed using non-parametric ANOVA tests. Mann–Whitney tests were
used for pair-comparisons in cases where significant differences (p < 0.05) were found. Values are
presented as media ± S.E.M., and p < 0.05 were considered statistically significant. GraphPad Prism
V5.00 (GraphPad Software, Inc., San Diego, CA, USA) was used for data and statistical analysis.

5. Conclusions

Female mice exhibited advantages in the wound healing process which is associated with
17β-estradiol upregulation of A2A-mediated angiogenesis in a primary culture of female endothelial
cells. The potential underlying mechanism for this effect may involve translational rather than
transcriptional regulation of the A2A receptor through activation of ERα and ERβ receptors, although
regulatory feedback between ER and A2A expression might be also present.
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Abbreviations

A2A KO A2A-deficient mice
ERα Estrogen receptor alpha
ER-β Estrogen receptor beta
HUVEC Human umbilical vein endothelial cell
mPEC Mice pulmonary endothelial cells
HMEC-1 Microvascular endothelial cell line
PECAM-1 or CD31 Platelet endothelial cell adhesion molecule 1
VEGF Vascular endothelial growth factor
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