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A B S T R A C T

Objectives: Running therapy has been shown to be efficacious for depression and anxiety disorders. However, 
little is known about the effects of running therapy on functional brain connectivity.
Methods: We used resting-state functional MRI scans from 25 individuals with an affective disorder that per-
formed 16 weeks running therapy as part of the MOod Treatment with Antidepressants or Running (MOTAR) 
study. Using an atlas-based approach we investigated therapy-induced changes in connectivity and topology of 
several functional systems, e.g. the default-mode and salience networks. We additionally performed a case- 
control analysis using the pre-treatment scans of affective disorder patients (N = 50) and matched healthy 
controls (N = 66).
Results: Running therapy significantly improved depressive (Inventory of Depressive Symptoms; IDS) and anxiety 
(Beck’s Anxiety Inventory; BAI) symptoms after 16 weeks (IDS: Z = − 4.13, P < 0.001, BAI: Z = − 2.87, P =
0.003), but it had no significant effect on functional connectivity or network topology. The case-control analyses 
at baseline also did not reveal any between-group differences.
Conclusion: We conclude that there were either no functional abnormalities to improve or the effects of 16 weeks 
running therapy may be too subtle to impact (global) network communication of functional systems and may be 
limited to changes in localized brain regions. Discrepancies between our case-control results and that of previous 
literature are interpreted in light of methodological and clinical heterogeneity.

1. Introduction

Depressive and anxiety disorders are prevalent and debilitating af-
fective disorders that are associated with dysfunction of a multitude of 
different bodily systems, including the autonomic, immune, cardiovas-
cular, metabolic and central nervous systems (Craske et al., 2017; Otte 
et al., 2016). Traditional treatments for these affective disorders consist 
of antidepressants (mainly selective serotonin re-uptake inhibitors 
[SSRI’s]) or psychotherapy (National Collaborating Centre for Mental 
Health, 2010; NICE, 2014). Although these treatment have shown to 
have roughly equal efficacy (Cuijpers et al., 2013), treatment resistance, 

relapses or adverse effects have urged clinical researchers to investigate 
alternative strategies, including exercise-based interventions such as 
running therapy. Aerobic exercise therapy has shown to be efficacious to 
prevent depression (Pearce et al., 2022) or improve clinically relevant 
symptoms of both depression and anxiety (Dauwan et al., 2019; Herring 
et al., 2012; Kandola et al., 2019; Keating et al., 2018; Miller et al., 2020; 
Netz, 2017) with an effect size comparable to that of pharmacological 
treatment (Blumenthal et al., 2007; Knapen et al., 2015). While recent 
meta-analyses favor a role for exercise therapy as augmentation strategy 
(Lee et al., 2021),it can also be considered as a standalone treatment for 
mild-moderate depression (Ravindran et al., 2016). This is especially 
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relevant for individuals that are opposed to medication (González de 
León et al., 2022).

While exercise therapy has a positive influence on clinical symptoms, 
relatively little is known about the neurobiological mechanisms behind 
improving clinical symptoms by exercise. The MOod Treatment with 
Antidepressants or Running (MOTAR) study (https://www.motar.nl) 
was specifically designed to investigate the effects running therapy 
relative to antidepressants (SSRI’s) on biological outcomes, particularly 
physical health indicators, such as metabolic, immunological and 
autonomic markers (Lever-van Milligen et al., 2019). The results showed 
that although SSRI’s and running therapy had comparable favorable 
effects on remission of depressive and anxiety symptoms, running 
therapy showed a significant improvement in cardiovascular markers, 
weight, waist circumference and lung function compared with the SSRI 
group (Verhoeven et al., 2023). These significant differences were partly 
explained by a worsening of these physical health indicators in the SSRI 
group.

In the current study we investigated the effects of running therapy on 
functional network connectivity and topology as measured by resting- 
state functional magnetic resonance imaging (rs-fMRI) and graph anal-
ysis. In keeping with the triple-network theory (Menon, 2011), previous 
studies in individuals with a depressive or anxiety disorder have shown 
dysfunction of the default-mode network (DMN), salience network (SN) 
and frontoparietal network (FPN; also referred to as executive control 
network) (Brakowski et al., 2017; Kaiser et al., 2015; Kim and Yoon, 
2018; Mulders et al., 2015; Northoff, 2020; Peterson et al., 2014; Picó- 
Pérez et al., 2017; Williams, 2017, 2016; Xu et al., 2019). Particularly 
the DMN and SN have been reported to show dysconnectivity both 
within and between networks, although the direction of the reported 
effect is heterogeneous (i.e. hyper- or hypoconnected) (Williams, 2017, 
2016) and sub-modules of a network (e.g. anterior and posterior DMN) 
may be differentially affected (Doucet et al., 2020; Mulders et al., 2015). 
Most of this evidence is however based on seed-based connectivity 
studies that single out one (or a few) brain region(s). Graph-based an-
alyses, however, better capture large-scale communication across the 
entire functional brain network and a meta-analysis showed significantly 
lower modularity and local efficiency in individuals with a depression 
compared with healthy controls (Xu et al., 2021). In this study we 
therefore used atlas-based graph analyses to examine case-control dif-
ferences in network connectivity and topology using the pre-treatment 
scans of individuals with an affective disorder and matched healthy 
controls.

To the best of our knowledge, no study has yet investigated the ef-
fects of running therapy on functional connectivity in depressive and/or 
anxiety disorder individuals. Based on the few studies that investigated 
the effects of aerobic exercise training on functional connectivity in non- 
psychiatric populations, it seems that aerobic exercise particularly in-
fluences the DMN and associated brain areas, such as the hippocampal 
complex (Firth et al., 2018; Flodin et al., 2017; Li et al., 2017; McFadden 
et al., 2013; Porto et al., 2018; Tozzi et al., 2016). Some of these 
intervention studies also report effects on the sensorimotor network 
(Flodin et al., 2017), connectivity of the dlPFC (Prehn et al., 2019), and 
acute effects on amygdala reactivity during an emotional faces task 
(Chen et al., 2019).

This study investigates the short-term (immediately after treatment) 
and long-term effects (eight months after treatment) of running therapy 
on functional connectivity of the DMN and SN, and key brain regions 
known to be involved in the pathophysiology of affective disorders, i.e. 
the amygdala, hippocampus, sgACC and dlPFC. Because of its ability to 
provide a holistic view of large-scale communication across the entire 
network, we used a graph analytical approach, where we defined the 
entire brain as a network of nodes (brain areas) and edges (connections) 
and calculated connectivity strength and other topological measures 
(Rubinov and Sporns, 2010). We hypothesized that running therapy 
would normalize the network connectivity and topology of the aDMN, 
pDMN and SN and that these treatment-induced changes were related to 

symptom improvement. To infer the normalizing effects of running 
therapy we additionally performed a case-control analysis using the pre- 
treatment scans of individuals with an affective disorder and matched 
healthy controls. We also explored the effects of running therapy on 
modularity, the tendency of the whole-brain network to organize into 
densely connected communities (Rubinov and Sporns, 2010), and on 
clusters of edges that form an interconnected subnetwork using Network 
Based Statistics (NBS) (Zalesky et al., 2010).

2. Methods

2.1. Participants

Eligibility criteria for MOTAR are described in detail in the protocol 
paper (Lever-van Milligen et al., 2019). Briefly, individuals between 
18–70 years and diagnosed with a current major depressive disorder, 
social phobia, generalized anxiety disorder, panic disorder or agora-
phobia according to the DSM-IV criteria, were eligible for participation 
in this trial that recruited between July 2012 – July 2019. Diagnostic 
criteria were checked by a trained researcher according to the Com-
posite International diagnostic interview (CIDI). Exclusion criteria were: 
use of antidepressants in the last two weeks, current use of other psy-
chotropic medication apart from stable use of benzodiazepines, already 
exercising more than once a week, another psychiatric diagnosis other 
than depressive or anxiety disorder, acute suicidal risk, somatic con-
traindications to running therapy or treatment with antidepressant, 
pregnancy. Severe somatic contraindications that might interfere with 
safe participation in the running sessions were discussed with their own 
physician before enrollment. Healthy participants – without a history of 
any psychiatric disorder – were included as a comparison group to 
additionally perform case-control comparisons at baseline. For the MRI 
sub-study, participants additionally needed to be free from metallic 
objects (e.g. pacemakers) and not suffer from claustrophobia. All par-
ticipants provided informed consent. The study was approved by the 
medical ethics committee of VU University medical center and con-
ducted in accordance with the declaration of Helsinki. The trial was 
prospectively registered in the Netherlands Trial registry (NTR3460).

2.2. Study design

The MOTAR study had a partially randomized patient preference 
design where 141 individuals with depression and/or anxiety disorder 
were randomized or offered their preferred 16 week treatment of either: 
1) treatment with the SSRI escitalopram at a dose of 10–20 mg daily (or 
sertraline 50–200 mg if escitalopram was poorly tolerated or ineffective) 
or 2) outdoor running therapy consisting of at least two sessions of 45 
min per week. All participants were free from antidepressants or other 
psychotropic medication for at least two weeks prior to study partici-
pation, apart from stable (non-incidental) benzodiazepine use. Of the 
141 individuals that participated in the MOTAR study (96 receiving 
running therapy, 45 antidepressants), 55 underwent rs-fMRI (40 
running therapy; 15 SSRI group) (Verhoeven et al., 2023). Due to the 
small sample size of individuals with pre-post treatment imaging data in 
the SSRI group (N = 9), only the running therapy group is considered 
here, and no comparisons between groups were performed. Neverthe-
less, we report the effects of treatment on the full sample in the sup-
plements. Each running session consisted of 10-min warming-up, 30- 
min jogging at 50–70 % of heart rate reserve during the first four 
weeks and 70–85 % during the subsequent 12 weeks and finished with a 
5-min cooling down. Individuals were allowed to have one individual 
running session a week but were highly encouraged to participate in the 
three weekly organized group sessions. Treatment adherence was eval-
uated by attendance list during the group training sessions, supple-
mented by data from the heart rate monitors that participants wore 
during each running session. For more details on the interventions see 
(Lever-van Milligen et al., 2019). The intervention has previously been 
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shown to be efficacious in alleviating depressive symptoms and was 
conducted using the Dutch evidence-based clinical guidelines (https 
://www.nhg.org/sites/default/files/content/nhg_org/uploads/mult 
idisciplinaire_richtlijn_depressie_3e_revisie_2013.pdf). Clinical evalua-
tion and MRI were administered before (baseline) and after the inter-
vention (16 weeks) and follow-up (52 weeks). We additionally scanned 
70 healthy controls.

2.3. Clinical measurements

At the day of MRI scanning we administered the Inventory of 
Depressive Symptomatology (IDS; 30 items) (Rush et al., 1996), the Beck 
Anxiety Inventory (BAI; 21 items) (Beck et al., 1961), and Fear Ques-
tionnaire (Marks and Mathews, 1979), to measure the severity of 
depressive, anxiety and phobia symptoms, respectively.

2.4. MRI acquisition

MRI scans were acquired at the Spinoza centre on a Philips 3 T 
Achieva MR (Philips, Best, the Netherlands) equipped with a 32-channel 
head coil. We acquired a 3D Turbo Field Echo (TFE) T1-weighted 
structural MRI with scan parameters: TR = 8.1 ms, TE = 3.7 ms, flip 
angle = 8 degrees, matrix size = 240 × 240, 1 mm3 isotropic voxels. The 
same scan protocols were used at all time points. Resting-state fMRI with 
eyes closed was acquired for 8 min with T2*-weighted echo-planar im-
ages (TR = 2300 ms, TE = 28 ms, flip angle = 76 degrees, 3.0 × 3.0 mm2 

in plane resolution, 37 sequentially ascending slices of 3 mm with 0.3 
mm gap, 210 volumes).

2.5. MRI processing

Structural MRI images were skull-stripped and segmented to recon-
struct the brain surfaces using FreeSurfer 7.1.1. In case of longitudinal 
data (in individuals with an affective disorder only) we ran FreeSurfer 
on a mean robust template of the structural MRI scans of all available 
time points, otherwise we used the structural MRI at baseline. Resting- 
state fMRI images were preprocessed using fmriprep v20.2.1 (see sup-
plementary methods for the boilerplate). Briefly, fMRI images from each 
time point were skull-stripped, realigned, slice-time corrected and cor-
rected for susceptibility induced distortions using a ‘fieldmap-less’ 
approach. Noise regressors were extracted for further denoising the 
time-series. We simultaneously performed denoising and band pass 
filtering ([0.009–0.08 Hz]) using the denoiser tool (github.com/arielle 
tambini/denoiser). We applied ‘ICAAROMA8Phys’ denoising that has 
previously been shown to provide a good denoising strategy in bench-
mark tests (Parkes et al., 2018). It consists of removing eight physio-
logical signals from the white matter and cerebrospinal fluid (as well as 
their derivatives and quadratic terms) and the automatically identified 
motion-related components by automatic removal of motion artifacts 
using independent component analysis (ICA-AROMA) (Pruim et al., 
2015). We additionally calculated the Framewise displacement (FD) and 
excluded all participants with a mean root mean squared FD > 0.5 mm 
or >20 volumes with >0.5 mm volume-to-volume displacement, indic-
ative of excessive motion (Power et al., 2014, Power et al., 2012). Image 
quality metrics (e.g. DVARS and temporal SNR) were calculated using 
MRIqc (Esteban et al., 2017) and compared between groups and time- 
points.

Prior to timeseries extraction, the denoised functional images were 
mapped to the cortical surface. This approach has several advantages 
over a volume-based approaches including better adherence to cortical 
convolutions and better spatial localization (Coalson et al., 2018; Dickie 
et al., 2019). For this we used the ciftify tool that allows applying 
‘human connectome project-style’ processing to legacy data (Dickie 
et al., 2019) and projection of the denoised functional volumes to the 
cortical surface and resampling to fsLR32K standard space. The resulting 
cortical surface images were merged with segmentation maps of the 14 

subcortical areas (derived from FreeSurfer). See (Dickie et al., 2019) for 
more details. No smoothing was applied. Timeseries were extracted from 
400 cortical brain areas that were parcellated according to the Schaefer 
atlas (Schaefer et al., 2018), and the 14 subcortical areas.

2.6. Connectivity measures

Timeseries of all 414 brain areas were cross-correlated using Pearson 
correlations to construct weighted, fully connected connectivity 
matrices; one for each participant at each timepoint. Each brain area was 
assigned to a functional network according to the Yeo’s 17 Network 
solution (Yeo et al., 2011). Next, we collapsed the 17 networks con-
sisting of two visual, two somatomotor, two dorsal attention, two 
salience, two limbic, three frontoparietal and three default mode and 
one temporo-parietal network, into eight single networks of which we 
only considered the DMN and SN. The DMN was subsequently divided 
into an anterior (aDMN) and posterior (pDMN) part according to the 
spatial location of the node (see supplementary Table 1 for the node 
assignment) and the hippocampus was assigned to the pDMN. Connec-
tivity within networks was defined as the average strength of all the nodes 
within a network and connectivity between networks as the overall average 
of the strength of the connections between two networks. We investi-
gated case-control and therapy-induced differences in connectivity 
within and between the aDMN, pDMN and SN.

2.7. Topological measures

Topological measures were calculated using the brain connectivity 
toolbox (Rubinov and Sporns, 2010) on non-negative connectivity 
matrices because most network measures cannot be calculated with 
negative weights (we inverted the sign of these weights). We calculated 
the participation coefficient, within-module Z-degree and betweenness 
centrality of key regions in the pathophysiology of affective disorders to 
determine the role of these regions in long range network communica-
tion. These key regions were the amygdala, hippocampus, sgACC and 
DLPFC. The participation coefficient provides a measure for the connec-
tivity of a node with its own module (i.e. community of tightly inter-
connected nodes) relative to other modules, while the module Z-degree 
relates to the node’s connectivity strength within its module only (Power 
et al., 2013). Betweenness centrality measures the influence of a node on 
global communication across the entire network (‘hub status’). We 
additionally explored the effects of running therapy on network mea-
sures of global communication across the entire brain network: global 
efficiency (ability of a network to exchange information), modularity (the 
degree to which the network can be divided into modules) and the 
average participation coefficient. Modularity was established by using a 
generalized Louvain method for community detection (Jeub et al., 
2020). Robustness of the results were investigated by additionally using 
a wavelet coherence in the frequency range [0.009, 0.08 Hz] (Grinsted 
et al., 2004) to calculate the topological measures. This method and 
frequency range are less contaminated by head motion compared to 
Pearson correlation connectivity matrices (Mahadevan et al., 2020). 
Lastly, we explored the effects of running therapy on functional con-
nectivity by applying network-based statistics (NBS) (Zalesky et al., 
2010). NBS tests for potential statistically significant changes in edge 
strength for every cell in the connectivity matrix and identifies compo-
nents based on clustering of these significant edges. For these clusters, 
permutation testing is applied to calculate P-values, where the actual 
clusters sizes are compared to a null distribution of maximum cluster 
sizes from random networks. Per recommendation of the developers in 
the reference manual (v1.2) we performed NBS over a range of thresh-
olds (t = 1.41–4.24).

2.8. Data analyses

Case-control differences in clinical measures, image quality metrics, 
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connectivity or topology were investigated using permutated Wilcoxon- 
Mann-Whitney tests using the coin package in R and we used Wilcoxon 
signed-rank tests to investigate the effects of running therapy. For both 
analyses, P-values were calculated based on 10,000 Monte Carlo 
resamples and a statistical threshold of P < 0.05. Results on the con-
nectivity of the intrinsic networks (6 comparisons) or nodal level (8 
comparisons) were corrected for multiple comparison using the False 
Discovery Rate (FDR; q < 0.05). The association between change in 
connectivity or topology and treatment-induced change in depressive 
(IDS) and anxiety symptom (BAI) severity were analyzed using repeated 
measures correlations (rmcorr package in R) (Bakdash and Marusich, 
2017). Analyses were performed on the intention-to-treat sample but the 
robustness of the results were explored by additionally performing 
per-protocol analyses (taking into account compliance to therapy; 
defined as ≥22 session within 16 weeks (Verhoeven et al., 2023), based 
on evidence-based recommendations (Rethorst and Trivedi, 2013). We 
additionally explored the effects of running therapy at twelve month 
follow-up using a three time point repeated-measures ANOVA. This 
analysis plan was pre-registered: osf.io/986dj.

3. Results

3.1. Demographic and clinical characteristics

Nine participants had to be excluded, leaving 50 participants with a 
depressive or anxiety disorder and 66 healthy controls for analyses (see 
Fig. 1). An additional 25 individuals were excluded from the pre-to-post 
treatment analyses because they commenced SSRIs instead of running 
therapy (N = 15), showed motion artefacts (N = 2), did not receive a 
post-treatment MRI due to drop-out (N = 4) or refused to be rescanned 
(N = 4). Of the 50 individuals with an affective disorder, 20 % had major 
depressive disorder, 28 % had an anxiety disorder (social phobia, panic 
disorder or agoraphobia or generalized anxiety disorder) and 52 % had 
comorbid depression and anxiety disorder (see also Table 1). As ex-
pected, individuals with an affective disorder scored significantly higher 
on the IDS, BAI and FEAR questionnaires compared with healthy con-
trols (all P’s < 0.001). Groups were well matched on age and sex, but not 
education (U = 1172.5, P = 0.009).

3.2. Baseline case-control analyses

Comparing healthy controls and individuals with an affective dis-
order at baseline revealed no differences in connectivity within or be-
tween the aDMN, pDMN and SN or differences in global or nodal 
topology (see Table 2). Similar results were obtained when using 
wavelet coherence as connectivity strength measure.

3.3. Post-treatment changes following 16-week running therapy

After running therapy, the 25 individuals with depression and/or 
anxiety disorder showed a significant decrease in scores on the IDS (Z =
− 4.13, P < 0.001), BAI (Z = -2.87, P = 0.003) and FEAR questionnaires 
(Z = -2.41, P = 0.015). Individuals (n = 10) that were assigned to 
running therapy but excluded from analyses (see Fig. 1) showed no 
differences in age, sex, education level or baseline IDS or BAI score, 
although their score on the FEAR questionnaire was significantly higher 
(U = 57, P = 0.017).

Running therapy did not have a significant impact on the 16-week 
changes in within or between network connectivity, as well as on 
global or nodal topology (see Table 2, Fig. 2 and supplementary 
Table 2). This was observed when either using Pearson correlations or 
wavelet coherence as connectivity strength measure. In addition, we did 

Fig. 1. Flowchart. MDD/ANX = major depressive or anxiety disorder, HC =
healthy control.

Table 1 
Demographic and clinical characteristics.

Healthy 
controls 
(n = 66)

Individuals with 
an affective 
disorder (N =
50)

Case- 
control 
Statistics

Running 
therapy 
sample (N 
= 25)Ω

Sex (N (%))    
Male 36 (54.5 

%)
23 (46 %) χ2

(1) =

0.83, P =
0.36

14 (66 %)

Female 30 (45.5 
%)

27 (54 %)  11 (44 %)

Age (years) 
[range]

39.9 
(14.04)

36.6 (11.8) U = 1462, 
P = 0.30

40.2 (13.1) 
[22 – 66]

Education (years) 13.3 (3.3) 11.7 (3.1) U =
1172.5P 
= 0.009

12.1 (2.8)

IDS 3.2 (2.5) 39.7 (13.9) U = 0, P <
0.001

37.0 (13.8)

BAI 1.5 (2.0) 22.3 (12.2) U = 23.5, 
P < 0.001

21.2 (11)

FEAR 8.8 (9.7) 40.9 (26.7) U = 343, P 
< 0.001

34 (19.8)

Diagnosis#    
Major 
depressive 
disorder

− 36 (72 %) − 16 (64 %)

Social Phobia − 21 (42 %) − 8 (32 %)
Panic disorder − 21 (42 %) − 7 (28 %)
Agoraphobia − 13 (26 %) − 5 (20 %)
Generalized 
Anxiety 
Disorder

− 15 (30 %) − 9 (36)

Treatment 
(running 
therapy / SSRI)

− 35 / 15 − 25

Preferred or 
randomized 
treatment (%)

− − − 80 % / 20 %

Compliance* − − − 57.1 %

Data are presented as mean (SD) unless otherwise indicated. # percentages do 
not add to 100 because patients may have multiple diagnoses. * Percentage of 
patients that followed the entire running therapy according to protocol. This 
includes the four (11.4 %) patients that dropped-out. Ω sample of N = 25 for 
which there was pre-treatment and post-treatment MRI available after applying 
exclusion criteria (see flowchart Fig. 1. Abbreviations: IDS = Inventory of 
depressive symptomatology; BAI = Beck Anxiety Inventory; FEAR = Fear 
Questionnaire, SSRI = selective serotonin reuptake inhibitors.
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not find any significant correlations between the improvements in 
clinical symptoms (as measured by the IDS, BAI or FEAR questionnaire) 
and changes in any of the connectivity measures over the 16-week 
period. Only considering individuals that were compliant to running 
therapy (N = 18; per protocol sample) did not change these results. 
Analyses on the full sample of individuals that completed either running 
therapy or SSRI treatment showed similar results (supplementary 
Table 4). Our exploratory analysis using NBS at multiple thresholds (t =
1.41–4.24) did not reveal statistically significant changes in edge 
strength following the 16-week period of running therapy. Results on the 
image quality measures are reported in the supplementary material and 
supplementary Fig. 2.

3.4. Exploratory long-term changes at one year follow-up

A total of 16 individuals completed the one-year follow-up assess-
ment. Similar to the T0-T1 results, the longitudinal data for connectivity 
and global topological measures indicated no significant changes after 
running therapy (see supplementary figure 3 and supplementary 
Table 3).

3.5. Bayes factor

To follow-up on the non-significant case-control effects and effects of 
running therapy on functional network topology at 16 weeks, we 
calculated the Bayes Factor (BF) using the BayesFactor R package. BFs 
provide a direct comparison of the relative support for two competing 
theories (i.e. the null vs alternative hypothesis), based on the observed 
data. They provide several advantages over (post-hoc) power calcula-
tions, including offering a more comprehensive understanding of factors 
such as type II errors (Dienes, 2014). BFs are reported in Supplementary 
tables 4–5. While the strength of evidence was weak and inconclusive in 
some instances (0.33 < BF < 3), a consistent pattern emerged for the 
majority of our analyses concerning within and between network con-
nectivity, as well as global topology when comparing cases to controls 
and assessing the impact of running therapy. In most cases, the BF was 
below or close to 0.33. This indicates strong to moderate support for the 

‘evidence of absence’, effectively favoring the null hypothesis (Dienes, 
2014; Keysers et al., 2020).

4. Discussion

In this study we investigated case-control differences and examined 
the effects of 16 weeks of running therapy on resting-state functional 
connectivity and network topology in individuals with a depressive or 
anxiety disorder. While we previously observed significant improve-
ment of mental and physical health indicators (e.g., metabolic, immu-
nological and autonomic markers) among the broader sample of 96 
individuals (Verhoeven et al., 2023), our findings here indicate that 
running therapy did not induce alterations in brain network connectivity 
within a subsample of 25 individuals, despite significant improvements 
in depression and anxiety symptoms. No differences were observed be-
tween cases and controls at baseline. Post-hoc calculation of the Bayes 
factors tentatively suggests that these null findings are not merely a 
consequence of low statistical power. Image quality was also similar 
between time points, except for the temporal SNR which decreased over 
time.

Although multiple studies have shown beneficial effects of aerobic 
exercise on mood symptoms (Bailey et al., 2018; Stubbs et al., 2017), the 
neurobiological effects of exercise, including on neuroimaging markers, 
have been scarcely investigated (Schuch et al., 2016). Meta-analyses 
have consistently reported that exercise therapy increases hippocam-
pal volume (Firth et al., 2018; Li et al., 2017), including in individuals 
with depression (Krogh et al., 2014), yet exercise-induced changes in 
functional connectivity are more heterogeneous and showed tentative 
increases in connectivity of local regions such as the hippocampus and 
cingulate cortex with other areas of the brain (Li et al., 2017). Others 
have observed normalization of local resting-state synchronous activity 
(Shen et al., 2024) and degree centrality (Huang et al., 2024) after ex-
ercise therapy in individuals with a subthreshold depression. Another 
study that investigated the effects of exercise on mood and functional 
connectivity showed that 16 weeks of physical exercise was able to 
improve mood in 46 healthy sedentary individuals accompanied by a 
reduction in local efficiency of the parahippocampal gyrus and higher 

Table 2 
Functional connectivity and topology analyses.

Case-control Running therapy Case-control stats Running therapy stats

Individuals with an affective disorder (N = 50) 
M ± SD

Healthy controls (N = 66) 
M ± SD

T0 (N = 25) 
M ± SD

T1 (N = 25) 
M ± SD

Z* p-valueφ Z# p-valueφ

Within network connectivity
aDMN 0.25 ± 0.07 0.25 ± 0.07 0.24 ± 0.07 0.23 ± 0.11 0.38 0.72 − 0.39 0.71
pDMN 0.28 ± 0.06 0.25 ± 0.07 0.26 ± 0.05 0.25 ± 0.08 − 1.45 0.15 − 0.82 0.43
SN 0.32 ± 0.09 0.30 ± 0.09 0.34 ± 0.08 0.31 ± 0.10 − 1.39 0.17 − 0.98 0.33
Between network connectivity
aDMN – pDMN 0.20 ± 0.06 0.20 ± 0.06 0.19 ± 0.05 0.19 ± 0.09 − 0.15 0.89 0.04 0.73
aDMN – SN 0.09 ± 0.08 0.08 ± 0.07 0.09 ± 0.08 0.10 ± 0.10 − 0.83 0.41 0.36 0.73
pDMN – SN 0.05 ± 0.08 0.04 ± 0.06 0.05 ± 0.09 0.05 ± 0.09 − 0.28 0.77 0.12 0.92
Global topology
GE 0.30 ± 0.03 0.30 ± 0.03 0.30 ± 0.03 0.30 ± 0.03 0.17 0.86 0.34 0.76
Q 0.11 ± 0.02 0.11 ± 0.02 0.11 ± 0.02 0.11 ± 0.02 0.35 0.72 0.61 0.57
Average PC 0.88 ± 0.02 0.88 ± 0.02 0.88 ± 0.02 0.88 ± 0.02 − 0.41 0.69 − 0.18 0.88
Nodal topology (betweenness centrality x 10-3)
Amyg L 0.56 ± 0.65 0.66 ± 0.92 0.61 ± 0.69 0.62 ± 0.52 0.06 0.95 0.15 0.90
Amyg R 0.57 ± 0.77 0.54 ± 0.74 0.53 ± 0.65 0.38 ± 0.48 − 0.25 0.81 − 1.63 0.11
Hipp L 1.87 ± 1.81 1.64 ± 1.53 1.78 ± 1.71 1.88 ± 1.88 − 0.50 0.62 0.09 0.94
Hipp R 1.87 ± 2.05 2.14 ± 2.10 1.82 ± 2.22 1.55 ± 0.99 1.19 0.23 0.58 0.58
DLPFC L 2.72 ± 1.91 2.94 ± 2.87 2.51 ± 1.65 2.54 ± 2.24 − 0.38 0.71 − 0.77 0.46
DLPFC R 2.26 ± 2.08 2.43 ± 2.14 2.10 ± 2.10 2.63 ± 2.45 0.66 0.50 0.09 0.93
sgACC L 0.44 ± 0.38 0.60 ± 0.62 0.44 ± 0.41 0.63 ± 1.0 1.07 0.28 0.85 0.41
sgACC R 0.56 ± 0.60 0.64 ± 0.78 0.64 ± 0.72 0.42 ± 0.37 − 0.15 0.88 0.96 0.35

*Mann-Whitney U test with 10,000 resamples, # Wilcoxon signed rank test with 10,000 resamples. φ P-values are uncorrected for False Discovery rate. All PFDR > 0.05. 
On the nodal level only betweenness centrality values are reported. Participation coefficient and within Z degree showed similar results (see supplementary Table 2) 
Abbreviations:aDMN = anterior default mode network, pDMN = posterior default mode network, SN = Salience network, GE = global efficiency, Q = modularity, PC 
= participation coefficient, Amyg = Amygdala, Hipp = hippocampus, DLPFC = dorsolateral prefrontal cortex, sgACC = subgenual anterior cingulate cortex.
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Fig. 2. Effects of 16-week running therapy on within and between network connectivity and global topology in individuals with an affective disorder (n = 25). There 
were no running therapy induced changes on any of the within (A-C) or between (D-F) connectivity or topological (G-I) measures. Abbreviations: DMN = default 
mode network, SN = Salience Network, T0 = baseline assessment, T1 = assessment after 16-week running therapy.
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connectivity of this area with supramarginal gyrus, superior temporal 
gyrus/pole and precentral area (Tozzi et al., 2016). To the best of our 
knowledge no such studies have been performed in individuals clinically 
diagnosed with a depression or anxiety disorder. The limited available 
evidence suggests that exercise may primarily exert regional effects on 
the brain, particularly on the morphometry of the hippocampus but 
additional studies are needed to verify this. Our analyses were focused 
on the impact of running therapy on the connectivity of entire functional 
systems such as the DMN, global (i.e. whole-brain) topology and the 
influence of specific nodes on brain-wide network communication. 
Despite symptom improvements, these relatively global analyses 
showed no effects of running therapy on network communication, and 
more localized effects of the intervention may have been averaged out 
due to our method of choice. The repeated measures correlation be-
tween the change in clinical symptoms after running therapy and change 
in network measures was also not significant, suggesting a relative 
disconnect between clinical behavior and communication of the 
currently studied brain networks. This is also exemplified by the fact 
that symptom severity was not associated with network measures at 
baseline (data not shown). Future studies with larger samples are 
needed to confirm these findings.

Our study also did not reveal significant differences between cases 
and controls, implying typically functioning brain networks in the pa-
tient group. Given this, it is perhaps not surprising that running therapy 
had little room to improve the functional connectivity and topology. At 
first glance, these findings contrast that of previous literature that 
generally showed dysconnectivity of the DMN and SN in individuals 
with an affective disorder, most notably MDD. However, the majority of 
previous investigations into functional connectivity relied on seed-based 
methodologies, which entail comparing the connectivity pattern of one 
particular brain region between groups (Kaiser et al., 2015; Xu et al., 
2019). Alternatively, they have relied on independent component 
analysis (ICA), a data-driven but reproducible approach to identify 
“components” comprising brain voxels with synchronous activity which 
are thought to represent functional networks (Beckmann et al., 2005). 
With either method, the focus is primarily regional differences in func-
tional connectivity as opposed to large-scale dysconnectivity of entire 
functional systems. A similar argument may apply here as for the 
absence of an effect of running therapy: the current atlas-based 
approach with graph measures may have overlooked regional or local-
ized effects. Nevertheless, graph analysis offers several advantages over 
seed-based methods, including a more accurate description of the 
complex architecture of the entire human brain compared to seed-to- 
region correlations and calculation of measures that capture the 
fundamental principles of brain networks: integration and segregation 
(Rubinov and Sporns, 2010). A recent meta-analysis involving 12 rsfMRI 
graph studies showed that depressed individuals show significantly 
lower modularity and local efficiency compared to healthy controls (Xu 
et al., 2021). Both these findings point towards less segregation and 
higher coupling between functional systems. In the current study, we 
were unable to replicate these findings, as neither our modularity ana-
lyses nor our analyses of functional connectivity differences between 
functional systems yielded significant results. It is important to note, 
however, that sensitivity analyses showed that the meta-analytical re-
sults for modularity were mainly driven by a single study (Ma et al., 
2020). Furthermore, these results also pertained to individuals receiving 
medication, while no differences between medication-free individuals 
and healthy controls were found. In our study, individuals were free 
from psychotropic medication apart from stable benzodiazepine use 
(Verhoeven et al., 2023). This discrepancy in medication use might ac-
count for the lack of significant findings in our sample. Interestingly, a 
multicenter mega-analysis conducted by Javaheripour and colleagues 
(2021) involving 606 depressed individuals and 476 controls, also did 
not observe any between-group differences in the connectivity within 
the DMN or of the DMN with other networks. However, they did observe 
lower DMN connectivity in medicated vs unmedicated individuals 

(Javaheripour et al., 2021). This further aligns with the results reported 
by Yan et al. (2019), where they found lower DMN connectivity only in 
(recurrent) individuals who were using antidepressants (Yan et al., 
2019).

Javaheripour and colleagues also emphasize that previous reports on 
DMN connectivity patterns may be confounded by multiple factors, not 
only medication status and predominant reliance on seed-based ana-
lyses, but also depression subtype and severity as well as publication and 
confirmation bias. Alterations in the DMN (and FPN) may therefore not 
be considered a stable biomarker of MDD. A similar argument could be 
made for (comorbid) anxiety disorders. In fact, a recent study found no 
differences in functional connectivity of the SN or basal ganglia relative 
to healthy controls (Nawijn et al., 2022). Nevertheless, so far connec-
tivity patterns in anxiety disorders have been relatively understudied. 
Further large-scale studies on functional connectivity alterations in af-
fective disorders that use harmonized (pre)processing pipelines and take 
relevant covariates, most notably medication status and subtypes (e.g. 
immune-metabolic depression), into account. In this regard, the 
currently ongoing functional connectivity analyses by the Enhancing 
Neuro Imaging Genetics Through Meta Analysis (ENIGMA) MDD 
working group that involves several thousand participants may provide 
an important piece of that puzzle.

Strengths of this study are the fact what we pre-registered our ana-
lyses and that symptom improvement was also observed in this MRI 
subsample of the MOTAR study (Verhoeven et al., 2023). Limitations of 
this study are the relatively small MRI subsample that also precluded us 
from looking at the effects of running therapy on subtypes (e.g. the 
immunometabolic subtype) or specific affective disorders (e.g. MDD, 
generalized anxiety). It should, however, be noted that there also is high 
comorbidity between the disorders, both in our sample and in the gen-
eral population. Larger sample sizes are needed to better dissect the 
clinical and biological heterogeneity of the disorders.

In conclusion, whereas running therapy had significant clinical 
benefits for individuals with an affective disorder, these benefits were 
not accompanied by changes in the connectivity or topology of the brain 
network, nor did we observe any case-control differences at baseline. We 
hypothesize that the effects of 16 weeks running therapy may be too 
subtle to alter the communication between entire functional systems and 
may instead instigate subtle local effects for which our network 
approach was not sufficiently sensitive.
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