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Abstract. Identifying a preclinical phase of Alzheimer’s Disease (PCAD) that is distinct from cognitive changes in healthy
aging continues to be a major research focus. Combining neuropsychological and neuroimaging methodologies should improve
our ability to differentiate healthy from pathological aging, although studies that utilize both methods often result in equivocal
findings, possibly due to variability in cognitive test performance that may be capturing distinct phenotypes. One method of
capturing this cognitive variability is to utilize contrasting neuropsychological tests to identify subgroups representative of distinct
cognitive phenotypes, and determine whether differences in brain morphometry support these classifications. We review several
approaches to defining cognitive subgroups, and we consider the possibility that cognitive asymmetry might provide one means
of identifying both functional and structural changes associated with aging and dementia.
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1. Introduction

Distinguishing healthy cognitive aging from sub-
tle changes characteristic of a preclinical phase of
Alzheimer’s Disease (PCAD) has become increasing-
ly important as new pharmacologic interventions be-
come available, and as our population ages. In-
creased longevity is accompanied by a concurrent rise
in Alzheimer’s disease (AD), with estimated incidence
increasing from 0.08% per year at age 65 to 6.48% per
year at age 85 [23]. Improving our ability to identify
AD at the earliest stages before significant neurodegen-
erative changes occur could have a tremendous impact
on potential neuroprotective therapies, early interven-
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tions with individuals at increased risk, and long-term
planning issues. Neuropsychological tests have been
one of the mainstays of early detection, with some stud-
ies suggesting that subtle changes in cognition can be
detected ten years or more prior to functional changes
and a subsequent clinical diagnosis of AD [9]. How-
ever, distinguishing age-related deficits from preclin-
ical AD can be problematic given the increased het-
erogeneity of cognitive profiles in older adults. This
increased variability in test performance probably re-
flects a cognitive continuum that ranges from stable,
preserved abilities and benign age-related changes, to
subtle deficits more suggestive of the early stages of a
dementing process. One method of capturing this cog-
nitive variability is to identify elderly subgroups rep-
resentative of distinct cognitive phenotypes, and deter-
mine whether differences in brain morphometry sup-
port these classifications.

Because cognitive profiles of PCAD share many
common elements with healthy aging, investigators
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have suggested that a combination of neuropsycholog-
ical testing and neuroimaging is likely to be the best
method to distinguish the two [8]. Both techniques can
be sensitive indicators of PCAD despite disagreement
about whether morphometric changes are typically de-
tected prior to subtle cognitive changes in PCAD [33,
43]. Many studies clearly find age-related changes in
brain structures predictive of neuropsychological func-
tioning [3], but there has not always been consistent, ro-
bust findings that link brain structure with function [45,
49]. Interms of neuroimaging, equivocal findings have
been partially attributed to differences in methodolo-
gies [47], and a paucity of large-scale studies with suf-
ficient sample sizes, or prospective longitudinal de-
signs [21,22] (see Fennema-Notestine, McEvoy et al.
in this issue). However, the current discussion will fo-
cus on characteristics of cognitive testing, and methods
of analysis that might contribute to ambiguous find-
ings in brain/behavior associations. We will consider
whether methods that capture cognitive heterogeneity
by identifying distinct cognitive subgroups might con-
tribute to improved discrimination between healthy and
pathological aging.

Many cognitive studies of early detection have fo-
cused on characteristics of a unitary process or a modal
pattern of evolving deficits in elderly at increased risk
for AD [28]. There is considerable evidence that the
most typical progression in AD begins with learning
and memory changes, progressing to more widespread
deficits in semantic networks, language skills, praxis
and executive functions, eventually affecting most cog-
nitive skills. However, many of the cognitive profiles
that typify both MCI and AD also reveal considerable
heterogeneity [5,32], and suggest that this variability in
cognitive abilities is a feature of PCAD [52]. The prob-
able number and complexity of PCAD profiles increas-
es when we consider that the cognitive changes pathog-
nomic for AD could be superimposed on an evolving
pattern of age-related changes in other cognitive do-
mains [4,14,38]. That is, amnestic changes or deficits in
semantic networks common to prodromal stages of AD
could occur in conjunction with age-related changes in
processing speed, cognitive control, and encoding effi-
ciency [48,50]. Given the complexity of these process-
es, developing cognitive profiles that reflect heteroge-
neous changes might improve our ability to understand
the corresponding changes in neural networks.

The presence of cognitive subgroups that reflect mul-
tiple, modular cognitive deficits has been a longstand-
ing consideration in AD diagnosis and nosology [26,
30,59], helping to identify patterns of neuropathologi-
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Fig. 1. Navon-type stimuli from attention-shifting task: Global “5”
with local “2” target.

cal changes [1]. For example, recent studies identified
four AD subgroups based on patterns of atrophy [41];
two AD subgroups based on distribution of neurofib-
rillary tangles [31], and the presence of comorbid fac-
tors affecting cognition contributed to six clearly de-
fined AD subgroups [25]. Confirmation of distinct AD
subgroups identified by patterns in amyloid-B and neu-
rofibrillary degeneration could even benefit develop-
ment of subtype-specific therapeutic drugs [16]. Iden-
tifying multiple, qualitatively distinct subgroups within
the larger aging population may serve to better charac-
terize the variability of cognitive decline in AD [29],
and possibly improve our ability to predict such decline
on the basis of brain morphometry.

One method of identifying potential subgroups in
elderly cohorts with increased risk for AD has been
to define asymmetric cognitive profiles that are based
on dissociations between two abilities or domains [18-
20]. One distinct advantage to this approach, partic-
ularly for cross-sectional research, is that it facilitates
interpretation of intra-individual cognitive patterns by
comparing consistency of performance across multiple
tests. There is an additional advantage, in that analy-
ses of a single domain using measures of central ten-
dency could limit detection of potential subgroups with
disparate abilities [30]. For example, contrasting re-
call abilities using two different modalities resulted in
detection of two distinct subgroups in the early stages
of AD; one with relatively preserved verbal memory
but impaired spatial memory, and a second group with
the opposing pattern [6]. A number of studies have
detected subgroups with asymmetric cognitive profiles
in early AD [46] a trend that could reflect asymmet-
ric neurodegeneration early in the course of the dis-
ease [44]. Interestingly, some studies of brain mor-
phometry in older cohorts suggest that a reduction of
expected structural asymmetry in hippocampal volume
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Fig. 2. Coronal views of BOLD activation with T1-weighted MRI in APOe4+ and non-g4 groups.

may be associated with both APOE-c4 genotype, and a
greater likelihood of progression to AD [13,54] while
others find that asymmetry is not influenced by age or
disease state [56].

Given these findings, asymmetric cognitive abilities
in these subgroups may indicate an increased risk for
progression to AD. A retrospective analysis noted that
large cognitive discrepancies (greater than one standard
deviation) between verbal naming and visuoconstruc-
tion performance in healthy older adults were associat-
ed with a subsequent change in diagnosis to “at-risk” or
“possible AD” within two years of assessment [18]. In
a follow-up study, older adults with APOE- 4+ genet-
ic risk were compared with non-e4 subjects on tests of
auditory and visual attention span [19]. Despite com-
parable performance on the tests, the ¢4+ subgroup
had larger verbal/spatial discrepancies relative to the
non-e4 subgroup. A similar pattern of larger cognitive
discrepancies in APOE-c4+ elderly was noted on the
switching condition of a Stroop interference/inhibition
task (D-KEFS Color-Word Interference subtest) [15].

Distinct subgroups of healthy APOE ¢4+ elderly al-
so showed asymmetric recall on a task incorporating
Navon-type stimuli (Fig. 1) that is sensitive to lateral-
ized hemispheric processing and unilateral brain dam-
age [10]. (Large, global gestalts are preferentially pro-
cessed by right-hemisphere brain regions, while small,
detailed local stimuli are left-hemisphere dependent.)
Despite comparable overall recall, the 4+ group con-
tained a subgroup with disproportionate recall of glob-
al relative to local details, and a second subgroup with
preferential local recall [20]. It is possible that this diffi-

culty shifting between stimulus components in the e4+
subgroup could be a precursor of the attention-shifting
deficits found in early AD [37]. To extend these find-
ings, an FMRI task was utilized to determine if the neu-
ral substrates underlying visual attention-shifting also
would reflect the presence of genotype subgroups [57].
In this study, participants identified a series of target
numbers that shifted between global and local stimulus
levels at pseudo-random intervals (see Fig. 1). A pre-
liminary comparison of BOLD activation in 14 geno-
typed adults over age 65 (seven ¢ 3/4 versus seven &
2/3 or 3/3) showed a greater spatial extent of blood
oxygenation level-dependent changes (BOLD) in the
€4+ group, primarily in left frontal and bilateral pari-
etal brain regions relative to a matched non-e4 group.
Figure 2 shows significant task-related BOLD changes
in both groups (overlaid on group composites of T1
weighted structural MRIs) that contrast activation in the
attention shifting condition (black areas), and direct-
ed attention to a single perceptual level (white areas)
based on AFNI single group ¢-tests with voxel clusters
> 300 mm3 at p < 0.05. Although these preliminary
data might suggest APOE-related differences in brain
activation, the BOLD changes also occurred in brain
regions that are among the most common sites of gen-
eral, age-related structural changes and compensatory
brain activity [14] regardless of genotype.

Larger, longitudinal studies of aging are needed to
determine if APOE-¢4 subgroups demonstrating asym-
metric cognitive profiles represent a preclinical phase
of AD, or whether they indicate longstanding cogni-
tive phenotypes that become more apparent with ag-
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Fig. 3. Boston naming/digit symbol asymmetry and right frontal cortical thickness.

ing [40]. The examples that follow are based on da-
ta publicly available from the multi-site Alzheimer’s
Disease Neuroimaging Initiative (ADNI), an important
effort designed to facilitate the scientific evaluation of
neuroimaging and other biomarkers in the onset and
progression of MCl and AD [17,34,35]. The large sam-
ple of healthy older controls and individuals with MCI
collected as part of the ADNI (see www.adni-info.org)
could provide additional evidence regarding the fre-
quency of e4+ subgroups with cognitive asymmetry,
and whether these profiles have structural brain corre-
lates. From data collected at baseline, an asymmetry
index was used to identify performance discrepancies
between Boston Naming Test, [BNT] and Digit Sym-
bol Test, [DSYM] in a subset of older healthy con-
trols from the ADNI cohort (n = 192) [58]. As with
previous studies, the higher risk, ¢4+ subgroup had
a significantly higher proportion of individuals with a
large z-score difference (greater than 1.5 SD) relative
to those without the €4 genetic risk (x2 = 6.2, p =
0.01). In addition, cognitive asymmetry predicted cor-

tical thickness in right superior frontal (F = 3.24, p =
0.04 see Fig. 3) and medial orbitofrontal cortex (F =
4.12, p = 0.02) with increased asymmetry associat-
ed with thinner cortex after controlling for gender and
estimated 1Q. In addition, asymmetry scores predicted
subcortical volume of thalamus (F = 7.14, p < 0.01)
and caudate (F = 6.32, p < 0.01) (controlling for in-
tracranial volume and gender). The asymmetry direc-
tion interacted with morphometry measures: cognitive
asymmetry resulting from lower DSY M scores relative
to BNT was associated with greater reduction in bilat-
eral caudate volume compared to an asymmetry score
caused by lower relative BNT scores (Fig. 4). Exam-
ining brain morphometry measures associated with the
BNT and DSYM scores individually resulted in con-
sistently weaker (or non-significant) associations. This
suggests that computation of indices to characterize
cognitive subgroups could highlight subtle group dif-
ferences in brain morphometry that were not associated
with individual cognitive measures. Longitudinal stud-
ies will determine if such indices could identify groups
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Fig. 4. Bar graph of caudate volumes in healthy elderly subgroups with more than 1.5 SD cognitive asymmetry.
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Fig. 5. Six longitudinal assessments of verbal/spatial asymmetry in preclinical AD case study.

with progressive structural changes and increased risk
for cognitive decline or AD.

In addition to the use of test contrasts for identify-
ing asymmetric subgroups with differing risk of de-
cline, comparing performance on two disparate mea-
sures yields an additional benefit by revealing possible
intra-individual changes in cognition. This method of
interpreting probable decline using cross-sectional data
has been used to detect the presence of neurodegener-
ative changes in a variety of patient groups. A priori
test selection is based on contrasts between a cognitive
domain that is resilient to injury or a neurodegenerative
process, and a second domain that is more sensitive to
impairment [53]. Alternatively, a contrast between two
domains could be established to mirror a specific neu-
rodegenerative process as well (e.qg. lateralized atrophy
in medial temporal regions). This type of contrast often

reveals a probable decline in functioning in individu-
als with high premorbid abilities whose performance
has not yet reached a level of true impairment. Fig-
ure 5 displays an illustrative example, obtained from
a six-year, longitudinal case study of an 80-year old
female healthy control participant who was diagnosed
with possible AD following the final assessment. The
graph depicts norm-referenced z-scores on the delayed
recall conditions of a verbal learning test. (California

Verbal Learning Test) and a test of recall for de-
signs (Heaton Visual Reproduction Test). Although
the participant’s memory performance would not be
considered significantly impaired until the final as-
sessment, performance discrepancies greater than one
standard deviation revealed increasing asymmetries be-
tween verbal and spatial modalities at a time when her
overall cognition was not significantly impaired (i.e.
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Fig. 6. MRl illustrating atrophic changes 2 years prior to AD diagnosis.

Mattis Dementia Rating Scale total score > 138 points).
The cognitive discrepancies were apparent in multiple
cognitive domains, and may have signaled a decline in
cognitive abilities even though her age-adjusted perfor-
mance on the individual tasks had not yet reached the
impaired range. Age-adjusted norms showed that she
maintained an average to above average performance
in most domains until the year prior to her change in
diagnosis, even though structural neuroimaging after
the fifth assessment confirmed significant generalized
cortical atrophy most prominent in medial temporal,
and hippocampal regions (see Fig. 6).

This individual’s cognitive profile was characteristic
of a subgroup of patients who present with a precipitous
rate of decline [42] rather than a gradual onset of im-
pairment. However, the interpretation of “impairment”
for test performances in the “oldest-old” subgroup de-
pends greatly on the normative comparison group — an
additional factor that may contribute to equivocal find-
ings in structural/functional brain relationships. Com-
paring cognitive tasks, or creating composite domain
scores will often require transformation of raw scores
into standardized scores to better facilitate inter-test
comparisons. In certain tasks, such as those requiring
processing speed, even minor age-related changes can
have a considerable impact on score variability, and
consequently, on the interpretation of “impairment” at
the individual level. For example, an examination of
ADNI participants over age 65 suggested that perfor-
mance on Trails B would vary within age-specific sub-
groups in this cohort (see Fig. 7 showing mean and
standard error for Trails B in four older age subgroups).

Scores that might be indicative of healthy cognitive
aging in an 85-year old could be considered in a deficit
range in a younger subgroup. Because the strength of
relationships between cognitive abilities and morphom-
etry measures can vary by age groups [2,55], failing
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Fig. 7. Trails B performance in four subgroups of healthy older
adults: Mean and standard error.

to stratify performance in the “oldest” old subgroups
could partially account for variable findings relating
brain structure to function in this group.

To continue investigating age subgroup effects, we
examined the healthy older control group from the AD-
NI cohort (NC), dividing them into three similar sized
subgroups, age 63-72 (n = 65), age 73-79 (n = 63),
and age 80+ (n = 69). We also converted Trails A
and Trails B scores to z-scores based on the entire
NC sample. We used this z-score difference (Trails
B minus Trails A [TrBz-TrAz]) to isolate visuospa-
tial sequencing ability while partially controlling for
processing speed. We then computed a cortical thick-
ness measure [56] for superior frontal cortex (SFC) re-
gions controlling for gender. We found trends for in-
teractions between age subgroups and both TrBz-TrAz
scores (F (2,193) = 3.9 p < 0.021) and right hemi-
sphere superior frontal thickness (F (2,193) =3.01p =
0.051) with the oldest-old subgroup significantly differ-
ent from the youngest-old subgroup. Linear multiple
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regressions showed that only the oldest-old subgroup’s
performance on TrBz-TrAz was a significant predictor
of right hemisphere SFC after entering gender in the
model (Adj. R square = 0.202; F change = 4.65 p =
0.035, standardized beta = —0.240). TrBz-TrAz was
not a significant predictor of cortical thickness in ei-
ther of the two “younger” old groups (both F change <
1.0; p > 0.10). Those in the oldest-old subgroup with
faster visuospatial sequencing had thicker cortex in our
region of interest (see Fig. 8.) Accounting for sub-
tle differences in performance in older age subgroups
could strengthen relationships between cognitive per-
formance and brain morphometry.

Characterizing cognitive phenotypes that might be
associated with increased risk for AD will require meth-
ods that account for multiple sources of variability in
cognitive test scores. These include a consideration
of potential ceiling and floor effects in cognitive mea-
sures [39], and the necessity of matching test vari-
ables on levels of difficulty [24]. There are also many
demographic elements that can interact with age and
cognitive performance such as premorbid 1Q, socio-
economic status, gender, and educational level [7,12,
36] increasing variability in neuropsychological perfor-
mance. New brain morphometry methodologies that
yield increased regional specificity [11,27,51,56] will
require new methods of fractionating and merging com-
ponents of cognition in order to improve our ability to
predict cognitive abilities based on brain structures in
healthy aging and PCAD. Developing cognitive indices
that capture cognitive heterogeneity through asymmet-

ric, or stratified, age subgroups may uncover stronger
relationships with morphometry measures.
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