
RESEARCH ARTICLE

HIV-1 infection increases microRNAs that

inhibit Dicer1, HRB and HIV-EP2, thereby

reducing viral replication

Shira Modai1, Luba FarberovID
1, Eytan Herzig1,2, Ofer Isakov1, Amnon Hizi1,

Noam ShomronID
1*

1 Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel, 2 Gladstone Institute of Virology and Immunology,

University of California San Francisco, San Francisco, CA, United States of America

* nshomron@post.tau.ac.il

Abstract

HIV-1 is the causative agent of AIDS (Autoimmune Deficiency Syndrome). HIV-1 infection

results in systemic CD4+ T cell depletion, thereby impairing cell-mediated immunity. Micro-

RNAs are short (~22 nucleotides long), endogenous single-stranded RNA molecules that

regulate gene expression by binding to the 3’ untranslated regions (3’ UTR) of mRNA tran-

scripts. The relation between HIV-1 infection and human miRNA expression profile has

been previously investigated, and studies have shown that the virus can alter miRNA

expression and vice versa. Here, we broaden the understanding of the HIV-1 infection pro-

cess, and show that miRNA-186, 210 and 222 are up-regulated following HIV-1 infection of

human Sup-T1 cells. As a result, the host miRNA target genes: Dicer1 (Double-Stranded

RNA-Specific Endoribonuclease), HRB (HIV-1 Rev-binding protein) and HIV-EP2 (Human

Immunodeficiency Virus Type I Enhancer Binding Protein 2), are down-regulated. More-

over, testing the miRNA-gene anti- correlation on the Jurkat and the HeLa-MAGI cell lines

demonstrated the ability of the miRNAs to down-regulate viral expression as well. To con-

clude, we found that human miR-186, 210 and 222 directly regulate the human genes

Dicer1, HRB and HIV-EP2, thus may be filling key roles during HIV-1 replication and miRNA

biogenesis. This finding may contribute to the development of new therapeutic strategies.

Background

Infection with the human immunodeficiency virus type 1 (HIV-1) results in systemic CD4 T

cell depletion that impairs cell-mediated immunity; this leads to numerous opportunistic

infections and cancers. Therefore, the overall medical condition caused by HIV-1 infections is

called Acquired Immunodeficiency Syndrome (AIDS). Rates of both infection and death relat-

ing to HIV-1 have been declining, due to lifelong treatment by a cocktail of 3–4 medications.

Nonetheless, about 36.7 million people are currently living with HIV-1 and approximately 1

million die from it annually (UNAIDS Data, 2017). Since 1981, when the first cases of HIV-1

infections were reported, detection, control, and the eventual elimination of the viral HIV-1
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infection and AIDS have become worldwide goals. Achieving these goals has proven to be

highly challenging, as HIV-1 has become increasingly resistant to therapy, by evading the

immune response, as well as by altering cellular immune function and protecting infected cells

from apoptosis[1–3]. The combination of Anti-retroviral Therapy (cART), which is used to

suppress HIV-1 to undetectable levels in patients’ plasma, is a major medical success. Never-

theless, HIV-1 is far from being completely eliminated, and the development of novel means

to completely suppress viral replication is of high importance.

The HIV-1 life cycle involves numerous competing and complementary interactions of

viral RNAs with viral and cellular proteins, some of which can inhibit the infection, thus pro-

viding an opportunity for therapeutic interventions[4–7]. Virus entry, for instance, includes

the host receptors CD4 with co-receptors CCR5 or CXCR4 to promote host and viral mem-

branes fusion. Uncoating of the viral membrane, entry of the capsids and assembly of the Pre-

integration complex (PIC) includes the viral DNA and proteins (such as Vpr (viral protein R),

matrix and integrase), but also host proteins like BANF1 (Barrier to autointegration factor 1).

After integration is done, the HIV-1 transactivator protein (Tat) stimulates transcription from

the HIV-1 long terminal repeat (LTR) by interacting with the viral transactivation response

(TAR) element and recruiting another group of host proteins called P-TEF-b (Positive Tran-

scription Elongation Factor b), which stimulate transcriptional elongation. The HIV master

regulator Nef forces an environment suitable for dynamic viral production via up regulation of

YY1 (Yin-Yang 1) which is an HIV negative regulator but also HIV-EP2 (HIV enhancer bind-

ing protein 2) which activates T-cell for productive replication. The release of incompletely

spliced HIV-1 RNAs from the perinuclear region to the cytoplasm is promoted by the viral

Rev protein. It binds HIV mRNA that contains the RRE (REV Responsive Element) sequence

with the support of the host proteins HRB (HIV Rev Binding protein), CRM1 (chromosome

region maintenance 1) and RanGTP. Additional interactions between the HIV-1 and the cell

are known, but not to a full extent, and others are yet to be revealed.

MicroRNAs (miRNAs) are short (~22 nucleotides long), endogenous single-stranded RNA

molecules that regulate gene expression by binding to the 3’ untranslated regions (3’ UTR) of

mRNA transcripts[8–10]. miRNAs are key regulators in diverse biological processes, such as

development, differentiation, proliferation, growth, cell cycle, apoptosis and stress response

[11]. miRNA biogenesis starts with an initial, primary transcript (pri-miRNA), produced by

the RNA polymerase II enzyme. This RNA sequence contains a stem-and-loop secondary

structure that undergoes nuclear cleavage by the Microprocessor complex. The pri-miRNA

cleavage product is a 70-110bp stem-loop intermediate, known as the precursor miRNA (pre-

miRNA)[12]. After export to the cytoplasm, the pre-miRNA undergoes a subsequent cleavage

by the RNase III Dicer (transcribed from the Dicer1 gene) to a ~22bp duplex. One strand then

incorporates with Argonaute (Ago2) proteins into the RNA Inducing Silencing Complex

(RISC)[13], which enables recognition and suppression of the matching mRNA target.

The relation between HIV-1 infection and miRNA biogenesis is well documented. Over

1000 miRNAs are encoded in the human genome, and each one is able to target multiple

mRNAs. It seems that there are numerous possibilities in which cellular proteins could be

involved in HIV replication. Previous studies have described the ability of HIV-1 infection to

alter miRNA profiles on one hand; and the effects of miRNAs on HIV-1 pathogenesis, on the

other (reviewed in[14]). Comparing HIV-1-infected versus non-infected cells by microarray

analysis, it was shown that some cellular miRNAs were up-regulated, whereas others were

down-regulated by HIV-1. These findings argue for an alternative mechanism to explain how

specific genes and miRNAs are modulated by HIV-1. In one case cellular miR-29a was shown

in HIV-1-infected human T lymphocytes to target HIV-1 3’UTR region and inhibit HIV-1

production and infectivity. In other cases, the cellular miRNA expression profile of SUP-T1
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cells at earlier time points (5, 12, and 24 h post-infection) has demonstrated a phased pattern

of miRNA expression, wherein many miRNAs that were suppressed during early time points

post virus challenge were then upregulated at later time points post infection.

We recently conducted a detailed analysis of miRNA expression in cells that were infected

by HIV-1, and identified 151 miRNAs that were differentially expressed; some of them enabled

a more efficient infection process[15]. In this study, we hypothesize that there is a group of

human miRNAs which are involved in HIV-1 replication that may act to eliminate the infec-

tion. We continued our analysis of miRNA expression in the HIV-1 infected human Sup-T1

cell line by focusing on miR-186, miR-210 and miR-222, and by showing their ability to inhibit

viral replication via the down-regulation of the host mRNA molecules of Dicer1, HRB (HIV-1

Rev-binding protein) and HIV-EP2 (Human Immunodeficiency Virus Type I Enhancer Bind-

ing Protein 2).

Materials and methods

Cell culture

Suspension cells Sup-T1 (Human T-cell lymphoblastic lymphoma) and Jurkat (Human acute

T-cell leukemia cells), were cultured in RPMI medium 1640, supplemented with 10% (vol/vol)

heat-inactivated fetal bovine serum (FCS), 0.3 g/liter L-glutamine, 100 units/ml penicillin, and

100 units/ml streptomycin (Biological Industries, Kibbutz Beit Haemek, Israel).

Monolayer-adherent MCF7 (human adenocarcinoma breast cell line) and HeLa

MAGI-CCR5 (HeLa-CD4-LTR-β-gal)[16,17], which are HeLa derived cells that express high

levels of CD4 and CCR5, and a single integrated copy of a β-galactosidase under a truncated

HIV-1 LTR control to indicate HIV-1 infection, were grown in Dulbecco’s Modified Eagle

Medium (DMEM) supplemented with 10% (vol/vol) FCS, 0.3 g/liter L-glutamine, 100 units/

ml penicillin, and 100 units/ml streptomycin (Biological Industries, Kibbutz Beit Haemek,

Israel).

MCF7 cells were supplied by Prof. Ilan Tsarfaty, Tel-Aviv University.

HeLa MAGI-CCR5 cells were supplied by the AIDS-reagent program. Sup-T1 cells were

supplied by Prof. Dan Peer, Tel-Aviv University. Jurkat cells were supplied by Prof. Ronit

Sagie-Eisenberg, Tel-Aviv University.

All cells were incubated at 37oC in 5% CO2. Cells were counted with 1:1 trypan blue 0.5%

(Biological Industries, Kibbutz Beit Haemek, Israel) using Countess, an automated cell counter

(Life Technologies, USA) prior to each experiment.

HIV-1 preparation

HIV-1HXB2 –HIV-1 from HXB2 isolate was produced using the pSVC21 plasmid (full length

HIV-1HXB2 strain) as previously described[18]. Briefly, HIV-1 (pSVC21) wild type plasmid

was used to transfect HEK293 cells with the TurboFect Cell Transfection Reagent (Fermentas,

Lithuania), according to the manufacturer’s instructions. To identify virus titters, the trans-

fected cells were cultured in DMEM complete medium for 24, 48 or 72 hours. At each time

point, the medium was removed and filtered through a 0.45μM filter (Millipore, USA). The

number of virions in the medium was analyzed with RT-qPCR (see below) using virus specific

U5 primers. All the following experiments were based on the virus titer generated in the 48

hours post infection time point.
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Viral infection assays for next generation sequencing

HIV-1 Sup-T1 infection: Two million Sup-T1 lymphocyte cells were infected with 4 x104 HIV-

1HXB2 virions, MOI = 0.02. Four days later, 2 million fresh cells were added to the culture. To

achieve a high infection rate[15,19], eight days post-infection (PI), cells were harvested and

total RNA was extracted using TRIzol according to the manufacturer’s instructions. RNA was

analyzed using next generation sequencing, TaqMan Low-Density Arrays (TLDAs), and RT-

qPCR (see detailed description below).

Viral replication assays

MAGI-CCR5 cells were seeded in 6-well plates at a concentration of 2 x105 cells/well. miRNAs

were transfected using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) according to the

manufacturer’s instructions, with one of five plasmids: miR-Vec-186, miR-Vec-210, miR-Vec-

222, empty-miR-Vec and pEGFP, in triplicates. Twenty-four hours after transfection, the cells

were counted and seeded in a 96-well plate (Greiner Bio-One, Austria) at a concentration of

1x104 cells/well. Six hours later, when cells reached 30% confluency, the culture medium was

removed and each well was infected with 50μl HIV-1 (HXB2 strain diluted to MOI of 0.01

with complete DMEM in the presence of 20μg/ml DEAE-Dextran). Two hours PI, 150μl of

complete DMEM was added to each well. Twenty-four hours PI, supernatant was collected

from each well for RNA extraction and RT-qPCR was conducted to assess viral load. Five

microliters of MMLV were added to the supernatant and served as a control for RNA extrac-

tion, Viral RT-qPCR

HIV-1 quantification primers[15]:

Forward–TGGTAATAACAACATATTGGGGT
Reverse–CCTGACCCAAATGCCAGT
MLV control quantification primers[20]

Forward–CTCTAATGGCCACTCAGCAA
Reverse–CCTCCCTGAGATCATCCTGT

Plasmid cloning

All inserts were PCR amplified from Jurkat genomic DNA (for miRNA constructs and 3’UTR

constructs) using Phusion Flash High-Fidelity DNA Polymerase (Thermo Fisher Scientific,

USA) under the following conditions: 98˚C for 10 seconds, 30 cycles of: 98˚C for 10 seconds,

60˚C for 5 seconds, 72˚C for 15 minutes, and final extension at 72˚C for 10 minutes. Double

digestion was performed in the presence of two restriction enzymes (New England Biolabs

(NEB), USA) and their compatible buffer for 1 hour at 37˚C, according to the manufacturer’s

instructions. The restriction product was run on a 1.5% agarose gel, excised and then purified

using Wizard SV Gel and PCR Clean-Up kit (Promega, USA) to eliminate excess nucleotides

and primers. The clean product was then ligated to the complementary plasmid using T4

DNA ligase (NEB, USA) for 1 hour at 37˚C and transformed into DH5α competent E. coli
cells (Bio-Lab, Israel). Cells were grown overnight on 0.1% ampicillin LB-agar plates at 37˚C.

Colonies were selected and grown overnight in a 37˚C shaker in 0.1% ampicillin liquid LB.

Plasmids were extracted using the NucleoSpin midi-prep kit (Macherey-Nagel, Germany) and

were Sanger-sequenced for verification.

miRNAs constructs

The genomic regions of the human pre-miRNA-186, 210 and 222 were cloned into separate

retroviral vectors, in a BamHI-EcoRI restriction site under a strong CMV promoter, called
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miRVec[21] (Professor Reuven Agami, The Netherlands Cancer Institute). miRVec-186 and

miRVec-222 were received from Prof. Agami’s lab. miRVec-210 was prepared with the geno-

mic loci of ~70 bp, upstream and downstream of the pre-miRNA, by PCR-amplification from

the Jurkat cell line genomic DNA. BamHI–EcoRI restriction sites (as indicated by bold letters)

were added to the PCR primers:

miRVec-210 Forward: gcggatcctcggacgcccaagttggagg
miRVec-210 Reverse: gcgaattctgccctcgcgtccccgtgtg

3’UTR constructs

Fragments of the 3’ UTR of HIV-EP2, HRB and Dicer1 mRNA, spanning the matching miR-

186/210/222 binding sites, were cloned into the XhoI–NotI restriction site, downstream of the

Renilla luciferase reporter of the psi-CHECK-2 plasmid, under the T7 promoter. This plasmid

contains a firefly luciferase reporter, which is used as a control under the HSV-TK promoter

(Promega, USA). The 3’ UTR fragments were PCR amplified as described above. XhoI–NotI
restriction sites were added to the following primers (restriction sites for XhoI forward primers

and NotI reverse primers are marked in bold letters; forward primers are indicated by “F,” and

reverse primers by “R”) (see S1 Table).

Four-nucleotide mutations in the seed binding region of these cloned 3’UTRs were gener-

ated using PCR site-directed mutagenesis (SDM), according to the overlap expansion protocol

[22] (see primers in Table T1, and the sequences of the WT and mutated 3’UTR against the

miRNA seed).

The SDM reaction was performed in the following conditions: 95oC for 2 minutes; 18

cycles of: 95oC for 20seconds, 60oC for 10 seconds and 68oC for 2 minutes; and finally, 68oC

for 5 minutes. Products were treated with DpnI (NEB, USA) to digest the original methylated

plasmid. The new vectors were sequenced for verification.

RNA extraction

Total RNA was extracted using TRIzol reagent (Invitrogen, Life Technologies) according to

the manufacturer’s instructions. RNA concentration and purity were measured using a Nano-

Drop ND-1000 spectrophotometer (NanoDrop Technologies, Thermo Scientific, USA). The

samples that were analyzed by next generation sequencing underwent additional quality con-

trol using gel electrophoresis. RNA was separated in Tris-Acetate-EDTA (TAE) on a 1.5% aga-

rose gel supplemented with ethidium bromide for 60 minutes at 100 volts and then visualized

and photographed under UV light.

Small RNA next generation sequencing library preparation

Library preparation was conducted with 10 μg of each sample following Illumina’s TruSeq

Small RNA sample preparation protocol (v1.5). During this process, samples were ligated with

30 and 50 adapters, reverse-transcribed and then PCR amplified. Libraries of cDNA were pre-

pared from *100 bp PCR products (representing *25 nt RNA molecules) and sequenced

each on a separate lane of an Illumina Genome Analyzer IIx at the Tel Aviv University

Genome High-Throughput Sequencing Laboratory.

Illumina next generation sequencing data analysis

The data sequences were screened for the sequence of the small RNA adapter, and the adapter

sequences were trimmed using standard settings in Illumina’s GAPipeline1.0.
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Illumina data were processed in RandA software[23]. Reads were aligned to the human sub-

set miRNAs in the miRbase database (http://www.mirbase.org/)[24] using BWA-aligner soft-

ware (http://bio-bwa.sourceforge.net/index.shtml)[25]. The number of reads was standardized

by mapping each transcript according to its length; and the initial total number of mapped

reads in the sample was based on the "reads per kilo-base per million" (RPKM) method[26].

Only perfect matches were counted in the main analysis. Next, results were ranked in terms of

miRNAs that were differentially expressed (S2 Table), comparing the infected sample to the

uninfected one. Statistical analysis was performed using a chi-square distributed statistic that

showed the differentiability in expression, while accounting for the differences in size (number

of mapped reads) of both lanes and samples.

Additional processing by genome matching was assessed with ELAND software (Illumina)

using the Homo sapiens full genome hg19 (available from UCSC[27]) and Human Immunode-

ficiency Virus 1, complete genome (HXB2 strain—NC_001802.1 GI:9629357). Additionally,

the miRNAkey software pipeline was used for the analysis of microRNA next generation

sequencing data[28].

miRNA profiling arrays

One microgram of total RNA was used to generate cDNA using the TLDAs, which are RT–

qPCR assays based on specific stem–loop primers, each of which is complementary to a spe-

cific mature miRNA. These primers are provided in a mixture that generates a multiplex PCR

reaction (megaplex). Procedures were profiled and analyzed as previously described[29].

Briefly, first-strand cDNA was synthesized using the High Capacity cDNA kit (Life Technolo-

gies). Complementary DNA (cDNA), RNase-free water, and TaqMan Universal PCR Master

Mix No AmpErase UNG (Life Technologies) were then infused into a loading port on Human

TLDA card A (v2.0), centrifuged twice and sealed according to the manufacturer’s instruc-

tions. PCR amplification was performed on an ABI Prism 7900HT Sequence Detection System

under the following conditions: 2 minutes at 50oC, 10 minutes at 95oC and 40 cycles: 30 sec-

onds at 95oC and 1 minute at 60oC. Results were analyzed with SDS software (Applied Biosys-

tems / Life Technologies). Relative levels of miRNA were calculated based on the comparative

threshold cycle (Ct) method. -ΔΔCt = -[(normalized number of reads in the HIV-infected

sample)–(normalized number of reads in the non-infected sample)]. Fold Change = log2

(-ΔΔCt). U6 snRNA was used for normalization, which remained stable under the different

treatments. Reactions were run on an Applied Biosystems 7900HT Fast Real-Time PCR Sys-

tem (Life Technologies).

RT-qPCR assays

Reverse transcription of mRNA was achieved using the High-Capacity cDNA Reverse Tran-

scription Kit with random primers. Reverse transcription reactions for specific mature miR-

NAs were performed using TaqMan miRNA Assays, according to the manufacturer’s protocol

(Life Technologies). Single miRNA/mRNA expression was similarly assessed using TaqMan

Universal PCR Master Mix No AmpErase UNG (Life Technologies) or SYBR green Fast PCR

master mix (Life Technologies). PCR amplification and reading of mRNA and miRNA expres-

sion were performed in triplicate using the Step-One Sequence Detection System (ABI, Life

Technologies).

mRNA expression was quantified under the following thermal cycler conditions: 20 sec-

onds at 95˚C, 40 amplification cycles of: 3 seconds at 95˚C and 30 seconds at 60˚C; and a melt

curve: 15 seconds at 95˚C, 1 minute at 60˚C and 15 seconds at 95˚C. Expression levels were
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calculated based on the Ct method. mRNA expression levels were normalized to glyceralde-

hyde 3-phosphate dehydrogenase (GAPDH) as an endogenous control.

Mature mRNA expression was quantified under the following thermal cycler conditions: 2

minutes at 50˚C, 10 minutes at 95˚C and 40 amplification cycles (15 seconds at 95˚C and 1

minute at 60˚C). miRNA levels were normalized to U6 and are shown as fold change relative

to controls. Gene qPCR primers:

GAPDH Forward: CAAGAAGGTGGTGAAGCAGG
GAPDH Reverse: GGCCATGAGGTCCACCAC
Dicer1 Forward: ATTTTGCACTTACCCTGATGC
Dicer1 Reverse: CAGGGGGATCAAATATTGACA
HIV-EP2 Forward: TCTTCTGAGGTCCAAGCAAAA
HIV-EP2 Reverse: GGACGCATCAGGTTTCATCT
HRB Forward: CAAGAAAAGTATGAAAAGAAAAGATGG
HRB Reverse: CCTCAGGTGTGCTGCTTGT

Bioinformatics analysis

TargetRank (http://genes.mit.edu/targetrank/)[30] and TargetScan 5.1 (http://www.targetscan.

org/)[31] were used to predict target genes of the examined miRNAs. The miRBase (http://

www.mirbase.org/)[24] and UCSC genome browser (https://genome.ucsc.edu/)[27] were used

to obtain sequences of the miRNAs and their predicted 3’UTR target genes, as well as for in sil-
ico PCR prior to ordering primers. RNAfold webserver (http://rna.tbi.univie.ac.at/cgi-bin/

RNAWebSuite/RNAfold.cgi) was used to predict secondary structures and the amount of free

energy released when the 3’UTR of the target genes are spontaneously folded.

miRNA transfections

Transfections for non-infection assays were carried out 24 hours after seeding cells. All over-

expression assays were conducted with Lipofectamine 2000 (Invitrogen, USA) according to

the manufacturer’s instructions. Transfection efficiency was measured using Enhanced Green

Fluorescent Protein (EGFP), expressed from 5ng of pEGFP that was transfected in a separate

well. Only wells with transfection efficiency greater than 80% were used in downstream

applications.

miRNA over-expression

HeLa-CCR5 cells were seeded in six-well plates at a concentration of 2 ×105 cells/well. Cells

were transfected with 1.25ug of miRVec plasmids (miR-186, miR-210, miR-222 or control

empty plasmid). Twenty-four hours later, cells were either used for RNA purification or

infected with HIV-1.

Luciferase assays

MCF7 cells were seeded in 96-well plates at a concentration of 8 x 103 cells/well. Each well was

transfected with one of four combinations of plasmids: 1ng of the 3’UTR binding site, with or

without its suspected miRNA (97ng); or the mutated 3’UTR binding site, with or without its

suspected miRNA. Twenty-four hours later firefly and Renilla luciferase activities were mea-

sured using the Dual-Luciferase Reporter Assay kit (Promega, USA). The LUMIstar Omega

Luminometer (BMG LabTech, Germany) was used to read the intensities. The Renilla lucifer-

ase results were normalized to the values of the firefly luciferase.
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Statistical analysis

Data were expressed as mean ± standard deviation (SD) from three independent experiments.

The significance of differences between groups was determined by the Student’s t-test in all

experiments. Values of P< 0.05 were considered statistically significant.

Results

HIV-1 infection induces a shift in human miRNA expression profiles

The reciprocal interactions between micro-RNAs and HIV pathogenesis is a growing field of

research. To better understand the miRNA regulation process during HIV-1 infection, we

used NGS to profile the small non-coding RNAs (ncRNAs) of HIV-1-infected and non-

infected Sup-T1 cells. Sequencing reads were aligned to the human and HIV-1 genomes. The

miRNA profiles were validated using an RT-qPCR-based method, known as TLDA (TaqMan

Low Density Arrays). The two datasets were compared and 12 miRNAs with the highest corre-

lations between both methods were further analyzed (Fig 1).

miRNAs-186, 210 and 222 down-regulate HRB, HIV-EP2 and Dicer1

mRNAs

miR-186, 210 and 222 were the miRNAs that were most up-regulated following HIV-1 infec-

tion (as measured by both methods), and thus were selected for further experiments. To

Fig 1. miRNA expression levels following HIV-1 infection. Two methods were used to profile miRNA levels: NGS (dark grey bars) and

TaqMan Low Density Array (TLDA) (light grey bars). NGS data were normalized using the "reads per kilo-base per million" method. -ΔΔCt =

-[(normalized number of reads in the HIV-infected sample)–(normalized number of reads in the non-infected sample)]. TLDA data were

normalized, using U6 snRNA, and -ΔΔCt was calculated using the ΔΔCt method (for details see the Materials and Methods).

https://doi.org/10.1371/journal.pone.0211111.g001
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understand the implications of this up-regulation, we analyzed their target genes, using algo-

rithms that seek conserved complementary binding sites on each gene’s 3’UTR (TargetScan-

Human 5.1. at http://www.targetscan.org/). We crossed their list of potential targets and

searched for conserved miRNA binding sites that were putative targets of at least two of the

miRNAs tested, and that are known to be components of the viral replication cycle. The genes

that were identified by this analysis were Dicer1, HRB and HIV-EP2 (see the level of conserva-

tion of the miRNAs families and the seed, and the number of miRNA binding sites in the

3’UTR). Indeed, mRNA levels of these genes in the same experimental samples were decreased

(48% and up to 82%, Fig 2), as expected, given the increase of their regulating miRNAs.

To corroborate our results, we examined the reciprocal miRNA-mRNA interaction. We

over-expressed miR-186, 210 and 222 in the Jurkat cell-line, using a miRNA vector. Following

24 hours of miRNA over-expression, target gene levels were reduced by 23% to 62%, as

depicted in Fig 3. An attempt to perform an antagomir experiment to reduce the miRNAs and

consequently increase its target genes was unsuccessful (data not shown).

Then, we examined the direct regulation of the different putative targets by each miRNA,

using the dual luciferase reporter assay (Fig 4A). We measured the luminescence generated in

the reaction (S2 Table), from which we calculated the level of direct binding between every

miRNA and its target gene. Our results demonstrate the down-regulation of all three genes:

Dicer1 by miR-210 and by miR-222 (52% and 41%, respectively); HRB by miR-222 and by

miR-186 (39% and 17%, respectively); and HIV-EP2 by miR-210 and by miR-186 (29% and

21%, respectively) (Fig 4B). Therefore, we established a direct interaction of binding of the

miRNAs with those genes.

Fig 2. Overlapping mRNA targets of miRNA-186, 210 and 222 are decreased during HIV-1 infection. Expression

fold change values of predicted mRNA targets in HIV-1 infected Sup-T1 cells, compared to uninfected Sup-T1 cells,

using RT-qPCR normalizer GAPDH (3 technical repetitions).

https://doi.org/10.1371/journal.pone.0211111.g002
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miRNA-186, 210 and 222 are involved in HIV-1 replication

Finally, to establish the functional involvement of miR-186, 210 and 222 in HIV-1 replication,

we transfected HeLa MAGI-CCR5 cells with miR-186, 210 or 222 twenty-four hours prior to

HIV-1 infection. HIV-1 expression was determined by RT-qPCR of the HIV-1 in the superna-

tant 24 hours PI (S2 Table). A decrease in HIV-1 expression was detected with all three miR-

NAs tested, as shown in Fig 5.

Overall, we conclude that miR-186 and miR-210 alter the expression of HIV-related target

mRNAs, and may play significant roles in viral replication. Additionally, miR-222 shows a

similar phenotypic trend, though without statistically significance.

Discussion

HIV-1 infection has been shown to promote the expression of various small RNA molecules

that originate from both viral and human genomes, and that may affect the virus and host

organism[2,32–35]. The involvement of these small RNA molecules in the pathogenesis of

HIV-1 infection may be important for viral detection, as well as for gaining new insights

regarding the infection process. In this work, we explored the expression profile of one type of

small RNA–miRNA–during HIV-1 infection.

Here we studied the effect of human miRNA on its own mRNA expression using: small

RNA deep sequencing data in SupT1 cells, previously published TLDA data, bioinformatics

analysis and RT-qPCR experiments. We suggest that HIV-1 interferes with the human

response to the infection, and alters levels of host miRNAs; this results in up/down-regulation

of mRNAs, and potentially affects downstream protein levels related to key pathways (for

example of complex pathway effects see [36]).

After infecting Supt-T1 cells for eight days, we identified and validated the altered expres-

sion of 12 miRNAs that we hypothesized to have important roles in the HIV-1 infection pro-

cess. Bioinformatics analysis was applied to evaluate the potential target genes of these

miRNAs, and revealed that miR-186, 210 and 222 were most up-regulated and were predicted

to have 3 mutual human target genes–Dicer1, HRB and HIV-EP2.

Dicer is a type III cytoplasmic endoribonuclease that participates in the maturation of miR-

NAs[37]. Interestingly, Dicer was shown to affect viral RNA[38], but is also affected by HIV-1

Fig 3. miRNAs-186, 210 and 222 promote down-regulation of HRB, Dicer1 and HIV-EP2 mRNA expression. miRNAs miR-186, 210 and 222 were over–expressed

in the Jurkat cell line (in triplicates). After 24 hours, RNA was extracted, and cDNA was prepared and assayed by RT-qPCR of miRNAs and their predicted targets. U6

snRNA and GAPDH were used for the background of miRNA and mRNA, respectively. Fold change was calculated compared to a control plasmid, using the ΔΔCt

method. The paired Student t-test was used for statistical analysis (n = 3, � p<0.05, �� p-value<0.005).

https://doi.org/10.1371/journal.pone.0211111.g003
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Fig 4. miRNA-186, 210 and 222 directly regulate Dicer1, HRB and HIV-EP2. (A) The sequences of Renilla and firefly luciferase under regulation of Dicer1, HRB and

HIVEP2 30UTRs, which were used for transient reporter assay experiments. Each of the three miRNA-binding sites is presented with its wild-type (WT) and mutant

(mut) alleles. The miRNA seed region is marked in bold, and the mutated nucleotides in the complimentary 30UTR sequence are marked in bold and underlined. The

number of binding sites and conservation of the miRNAs are detailed. The level of conservation of the miRNAs families and the seed and the number of miRNA

binding sites in the 3’UTR are decribed on the right. (B) miRNA-186, 210 or 222 were over–expressed in the MCF7 cell line in combination with either of the 30-UTR
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infection. A recent study showed that Dicer alters virus-derived small RNA 1 (vsRNA1) gener-

ation, which in turn represses viral translation and IRES (internel ribosomal entry site) activity

in infected cells[39]. Dicer was also shown to induce TAR element processing, yielding a viral

miRNA involved in viral LTR chromatin remodeling[40]. Alternatively, Dicer was shown to

be suppressed in HIV-1 infected macrophages via the viral gene Vpr[41], and the HIV-1 tran-

scription factor Tat was reported to reduce Dicer activity[42]. As expected, Dicer reduction

induces a decrease in miRNA expression[41,42].

Here, we demonstrated that upon HIV-1 infection, miR-222 expression was markedly

increased in SupT1 cells and, consequently, Dicer and HRB mRNA expression decreased. The

expression of miR-222 was previously shown in Jurkat cells [43]. The involvement of Dicer in

the suppression of HIV-1 replication via the processing of the TAR element is accompanied by

a feedback inhibition loop (see Fig 6). This is because HIV-1 induces a competitive interaction

between TAR and RRE RNA, which suppresses the activity of miRNA machinery by interfer-

ing with Dicer’s interaction to HIV-1 TAR RNA binding protein (TRBP2)[34]. HRB binds to

HIV Rev and exports partly spliced, RRE-bound HIV RNA from the nucleus periphery to the

constructs (as described in the Materials and Methods). Twenty-four hours post- transfection, the cells were lysed and luminescence was measured. Reduction in

luminescence was calculated as follows: (3’UTR+miRNA/3’UTR-miRNA) / (mutated 3’UTR+miRNA/mutated 3’UTR-miRNA). The paired Student t-test was used for

statistical analysis (n = 3, � p<0.05, �� p<0.005).

https://doi.org/10.1371/journal.pone.0211111.g004

Fig 5. miRNAs-186, 210 and 222 affect HIV-1 replication. HeLa MAGI-CCR5 cells were transfected with the

indicated miRNAs. Twenty-four hours later, the cells were infected with the HIV-1 virus. HIV-1 mRNA

expression fold change was monitored by quantifying HIV-1 copies in the culture supernatants using RT-qPCR

twenty-four hours post viral infection. Values are expressed as Expression Fold Change following miRNA over-

expression compared to a control plasmid over-expression. The paired Student t-test was used for statistical

analysis (n = 2, � p<0.05, �� p <0.005).

https://doi.org/10.1371/journal.pone.0211111.g005
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cytoplasm[44,45]. Therefore, we hypothesized that the reduced levels of HRB, following the

up-regulation of miR-222, most likely induce a decrease in cytoplasmic RRE RNA. The Dicer-

TRBP2 interaction is stabilized, resulting in the continuous processing of TAR into viral miR-

NAs (as demonstrated by Klase et al[40].). This in turn reduces LTR expression and enhances

viral latency[40]. Our HIV-1 replication assay in MAGI-CCR5 cells supports this notion, as we

detected a decrease in HIV-1 levels following miR-222 over-expression. Indeed, one study

found that miR-222 expression is significantly induced in HIV-1-infected Jurkat T cells[46].

The authors of that study also showed the involvement of Tat protein in enhancing the tran-

scriptional activity of NFkB on the miR-222 promoter, and the effect of the latter on down-reg-

ulating CD4, which is the key receptor for HIV-1.

In the current study, Dicer was also down-regulated by miR-210, which reduced expression

levels of HIV-EP2 as well. HIV-EP2 is a large, zinc-finger containing transcription factor that

plays a critical role in cell growth[47], signal transduction, apoptosis and differentiation regu-

lation in T-cell development[44,45]. According to our analysis, HIV-EP2 down-regulation was

induced by both miR-210 and miR-186. These findings correspond to the decrease in cellular

HIV-EP2 levels, consequent to suppression in viral gene expression. We suspect that a similar

effect occurs when HIV-EP2 interacts with IL-2R, as the IL-2/IL-2R regulatory determinant of

T cell reactivity is known to be impaired during HIV-1 infection[48, 49, 50,51]. miR-210 was

previously shown to be up-regulated in PBMCs and the Jurkat cell line, but down-regulated in

CD8+ T cells of HIV-1 infected individuals[52,53]. Both miR-210 and 222 were associated

Fig 6. miRNAs-186, 210 and 222, their target genes and their potentially affected downstream pathways. A schematic

diagram representing the possible interactions affecting cellular pathways.

https://doi.org/10.1371/journal.pone.0211111.g006
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with several inflammatory markers, suggesting they might play a role in regulating inflamma-

tion processes.

Based on our analysis, HRB and HIV-EP2 are potential targets of miR-186. Interestingly,

mir-186 was shown to be significantly up-regulated (along with 10 other miRNAs) in subcuta-

neous adipose tissue of HIV-1 patients undergoing cART therapy[54]. The authors postulated

that this up-regulation might contribute to the pathogenesis of HIV-associated lipodystrophy,

by increasing cell turnover or promoting apoptosis. Our data regarding the involvement of

miR-186 in HRB and HIV-EP2 regulation should be examined in depth, as it may shed light

on the mechanisms that underlie the attenuated control of cellular-viral interactions. We note

that the limitations of this study are that the experiments were conducted in a different cell

line per experiment and miRNAs in infections assays were over expressed before viral

infection.

Finally, a list of selected miRNAs was predicted to influence the human cell cycle and

immune response pathways. MiRNA-186, 210 and 222 were suggested to be involved in a

novel regulatory network of human miRNAs and target genes that influence HIV-1 latency.

We demonstrated that these three miRNAs directly regulate the human genes Dicer1, HRB

and HIV-EP2, thus filling key roles during the late stages of HIV-1 replication: in viral gene

expression, in viral RNA transfer from the nucleus to the cytoplasm, and in the human and

viral related miRNA biogenesis pathway (see Fig 6). The details of this regulation should be

further studied with the goal of elucidating the cellular and viral interactions during HIV-1

replication.
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