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An increasing number of experiments had verified that miRNA expression is related to
human diseases. The miRNA expression profile may be an indicator of clinical diagnosis
and provides a new direction for the prevention and treatment of complex diseases. In this
work, we present a weighted voting-based model for predicting miRNA–disease
association (WVMDA). To reasonably build a network of similarity, we established
credibility similarity based on the reliability of known associations and used it to
improve the original incomplete similarity. To eliminate noise interference as much as
possible while maintaining more reliable similarity information, we developed a filter. More
importantly, to ensure the fairness and efficiency of weighted voting, we focus on the
design of weighting. Finally, cross-validation experiments and case studies are undertaken
to verify the efficacy of the proposed model. The results showed that WVMDA could
efficiently identify miRNAs associated with the disease.
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INTRODUCTION

MicroRNA (miRNA) is a class of non-coding single-stranded RNAwith a length of approximately 22
nucleotides, which play a huge role in cell differentiation, biological development, and disease attack
(Ambros, 2001; Lee and Ambros, 2001; Ambros, 2004; Bartel, 2004). By comparing the expression
profiles of different miRNAs in cancer cells and normal cells, the researchers found that some
miRNAs can inhibit the occurrence and development of malignant tumors (Esquela-Kerscher and
Slack, 2006; Huang et al., 2008; Wang et al., 2013), such as breast cancer (Blenkiron et al., 1981) and
prostate cancer (Garzon et al., 2006). Therefore, the discovery of disease-related miRNAs is of great
significance to prevent and treat human diseases. However, it is expensive and time-consuming to
look for miRNAs associated with the disease through biological experiments. Therefore, a large
number of calculation methods have been developed over the past several years (Ji et al., 2020; Chen
et al., 2019; Zhao et al., 2019), and some relevant datasets have also been constructed (Jiang et al.,
2009; Yang et al., 2014; Yang et al., 2016; Huang et al., 2018).

In the past, a large number of methods based on measuring biological information have been
established, and this idea has been the main theme of miRNA–disease association prediction. Based
on the hypothesis that miRNAs with similar functions are related to the same diseases (Chen et al.,
2021), Jiang et al. (2010) developed a model that uses hypergeometric distribution to determine the
association between diseases and miRNAs. Since then, most researchers have based their predictions
on this assumption. Yang et al. (2018) proposed a new algorithm, MiRGOFS, to measure semantic
similarity and miRNA similarity based on GO terms. Chen et al. (2016) predicted potential disease-
associated miRNAs by integrating miRNA functional similarity (Chen et al., 2015), disease semantic
similarity, and Gaussian interaction profile kernel similarity, which is a calculation method that
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integrates a variety of biological information and greatly reduces
the time and expenditure of biological experiments. In addition,
introducing associated biological information also serves as a
supplementary reference for predictive goals. Chen et al. (2018)
introduced lncRNA into miRNA–disease association prediction.
They constructed a miRNA–lncRNA–disease heterogeneous
network and applied label propagation to identify disease-
related miRNAs. Analogous to introduce other types of data,
Ji et al. (2020) integrated the association between miRNA and
protein and the association between protein and disease to build a
tripartite network. Zheng et al. (2020) first introduced
incremental learning into the field of biological association
prediction. This method can distinguish the associations of
previous training when adjusting new data, which strengthens
the ability of acquisition, adjustment, and transfer to learning the
interaction mode of miRNA and disease.

In addition to integrated biological information as a research
subject, researchers also put forward a variety of colorful models,
providing inspiration for follow-up research. Chen et al. (2020)
presented KBMFMDA to estimate the association network by
project miRNA and disease into a unified subspace. This method
combines kernel-based nonlinear dimensionality reduction,
matrix factorization, and binary classification. Zhao et al.
presented the ABMDA to infer potential associations of
miRNA–disease, which utilized a random sampling way to
balance the positive and negative samples. Besides, ABMDA
applied the decision tree to serve as weak classifiers that were
integrated to improve the accuracy of the provided learning
method. (Toprak and Eryilmaz, 2020) used weighted known
nearest neighbor and network congruence projection
techniques to predict new miRNA–disease relationships after
integrating multiple similarity degrees. The model
NCMCMDA (Chen et al., 2020) combined neighborhood
constraint with matrix completion and provided a new way to
predict potential associations with similarity information. After
the task of recovering missing associations was transformed into
an optimization problem, the model solved it with a fast iterative
shrinkage threshold algorithm. SMALF (Liu et al., 2021) uses
XGBoost as the final prediction model and stacked automatic
encoders learn miRNA potential features and disease potential
features from the original miRNA–disease association matrix,
which helps to improve the sparsity and incompleteness of
existing datasets.

It is worth mentioning separately that the application of neural
networks provides a novel idea for predicting disease-related
miRNAs. DBNMDA (Chen et al., 2020) constructed feature
vectors for all miRNA–disease pairs to pretrain restricted
Boltzmann machines and put the same amount of positive
and negative samples into the deep-belief network to get the
final prediction results. Li et al. (2021) proposed GAEMDA to
identify potential miRNA–disease associations in an end-to-end
manner. In multilayer perception machine learning of diverse
dimensions of semantic information, the introduction of a graph
neural network serves to aggregate the neighborhood information
of nodes. The model NIMCGCN (Li et al., 2020) put miRNA
similarity and disease similarity into the graph convolutional
neural network to learn the potential feature representation of

miRNA and disease, and then these features were input into the
new neural induction matrix completion model to train its
parameters in a supervised manner. Finally, the trained model
is used to recover the unknown association.

The above methods provide us with important references,
while label propagation (Chen et al., 2018; Yu et al., 2018) and the
weighted voting method (Tong and Kain, 1988; Campbell and
Kelly, 2010) directly give us great inspiration. In the label
propagation algorithm, the elements in the adjacency matrix
are iterated with the similarity matrix as a reference until the
adjacency matrix converges, and the converged adjacency matrix
is used to infer potential associations. Weighted voting is a
method of apportioning an unequal number of votes to
members of a special proportion. Referring to the algorithm of
label propagation, and considering the weighted voting method,
we combine the two to get the weighted voting-based model for
predicting miRNA–disease association (WVMDA), which does
not require iteration.

WVMDA is also a recommendation algorithm in essence,
and the main factor that assesses its performance is the
construction of voting weight. Its purpose is tantamount to
control the weight to get the voting result as fair as possible, and
not to let the members of a certain class control the whole
situation, and also not to let some classes have no sense of
existence. In addition to the design prediction model, we also
handled similarity. First, we construct the credibility similarity
and use it to complete the existing dataset. Second, we design a
filtering method to extract more reliable similarity information
while eliminating noise interference as much as possible. In the
experimental part, we visualized the processing of similarity to
observe its effect. The five-fold cross-validation (5CV) and
global leave-one-out cross-validation (LOOCV) were used to
measure the performance of our method, and AUC values of
0.9537 and 0.9683 were obtained, respectively. In addition, we
performed case studies on human prostate tumors and looked
for the top predictor miRNAs in other datasets, and the results
showed that our method identified the majority of disease-
related miRNAs. In conclusion, WVMDA effectively
optimizes the similarity and has certain reliability in
predicting miRNA–disease association.

MATERIALS AND METHODS

Human miRNA–Disease Associations
In this paper, we downloaded the validated association of
miRNA–disease from the HMDD v2.0 database. We defined
an adjacency matrix A ∈ Rn×m to designate the association
between miRNAs and diseases. The two dimensions of the
matrix correspond to 495 miRNAs and 383 diseases,
respectively, and 5,430 of the 189,585 nodes are known
associations that have been verified experimentally. The
adjacency matrix A was defined as:

⎧⎨⎩ A(mi, dj) � 1 miRNAmi has association with dj

A(mi, dj) � 0 miRNAmi has no association with dj

(1)
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miRNA Functional Similarity
The functional similarity of miRNAs was calculated based on the
basic assumption that functionally similar miRNAs tended to be
associated with similar diseases (Cui, 2010). We can load miRNA
functional similarity data from http://www.cuilab.cn/files/
images/cuilab/misim.zip. From these data, we constructed
FM ∈ R495×495 to account for the functional similarity of
miRNA, where FM(mi,mj) represents functional similarity
between miRNA mi and mj.

Disease Semantic Similarity
The MeSH database includes many disease descriptions
(Lipscomb, 2000). Directed acyclic graphs (DAG) are used to
calculate disease semantic similarity. For node D, we define D(D)
� [T(D), E(D)], where T(D) and E(D) are the nodes set and edges
set, respectively. (D) includes node D and its ancestor nodes, and
(D) represents the direct connection between parent nodes and
child nodes. The contribution value of disease d to the semantic
value of disease D can be calculated according to the following
formula:

{DD(d) � 1 if d � D
DD(d) � max {ω*DD(d′)|d′ ∈ children of d} if d ≠D

(2)

Where ω is the semantic contribution factor, and we set ω � 0.5
in this paper. The setting of the contribution factor means that the
contribution ofD to itself is 1, and the contribution of other nodes
to D will decrease as the distance increases. The semantic value of
disease D can be defined as:

V(D) � ∑
t∈T(D)

DD(t) (3)

Thus, the semantic similarity of disease di and disease dj can
be defined as follows:

SD(di, dj) �
∑

t∈T(di) ∩ T(dj)
(Ddi(t) + Ddj(t))

V(di) + V(dj)
(4)

Where SD ∈ R383×383 is the disease semantic similarity matrix
composed of 383 diseases, and SD(di, dj) is the similarity between
disease di and disease dj.

Credibility Similarity
In order to solve the problem of the incompleteness of the existing
dataset, we established a novel similarity network based on the
association network in this section. The building principle is that
if two miRNAs are alike in expression for the same disease, then
we believe that the two miRNAs are more analogous.

Unlike previous methods for establishing similarity, the
known association matrix was first addressed. Compared with
the unknown association, we thought the known association had
a higher credibility. Consequently, the credibility of the known
association was designed to be δ, while the credibility of the
undetermined association was 1, and δ was higher than 1.

Therefore, the following transformation could be performed to
obtain the credibility matrix C (Figure 1).

The similarity of mi and mj can be defined as:

⎧⎨⎩ CM1(mi,mj) � C(mi) · C(mj) if i≠ j

CM1(mi,mj) � 0 if i � j
(5)

CM(mi ,mj) � (CM1(mi ,mj) − CM1(mi)min) × (CM1(mi ,mj) − CM1(mj)min
)

(CM1(mi)max − CM1(mi)min) × (CM1(mj)max
− CM1(mj)min

)
(6)

The range of the similarity matrix calculated according to Eq.
5 is too wide, so it is necessary to reduce it to between 0 and 1.
Since our weighted voting model only uses the diagonal elements
of the similarity matrix when the voters vote for themselves, its
definition does not affect the result of the weighted voting, so we
do not need to calculate the diagonal elements of the matrix and
set them to 0. Since the elements of the principal diagonal are very
large, which affects the scaling of other elements, it is also
essential to set the principal diagonal element to 0 before the
operation of Eq. 6. With the same method, the credibility
similarity CD of disease can be constructed.

Based on miRNA functional similarity and credibility
similarity of our constructs, the integrated miRNA
similarityM is built. Similarly, integrated disease similarity D
can be constructed:

M(mi,mj) � FM(mi,mj) + CM(mi,mj)
2

(7)

D(di, dj) � SD(di, dj) + CD(di, dj)
2

(8)

WVMDA
To infer potential associations from known miRNA–disease
associations, we proposed a weighted voting method called
WVMDA (Figure 2). In WVMDA, the elements of the matrix
composed of diseases andmiRNAs are regarded as members to be
voted, where known associations are regarded as members with
voting rights, and these voting members vote for other members
according to the designed weight. The final voting result will serve
as the prediction result, and members with higher votes are more
likely to be potential associations.

Voting Method
Assuming that there is a known association A(mi, dj), which is
regarded as a member with voting rights (Figure 3), then A(mi)
and A(dj) are regarded as related groups, and all members in
these two groups will receive votes from A(mi, dj).

When voting for all candidates in group A(mi):

F(mi, ds) � F(mi, ds) +W(mi, dj, ds)A(mi, dj) (9)

where F(mi, ds) represents one candidate, A(mi, dj) represents
one voter, andW(mi, dj, ds) represents the weight of voting from
A(mi, dj) to F(mi, ds).

When voting for all candidates in group A(di):
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F(mt , dj) � F(mt , dj) +W(mi, dj,mt)A(mi, dj) (10)

According to this idea, the final voting result can be achieved
by repeating the operation on all members with voting rights. Our
design of voting method is so simple, but planning its weight is
the highest priority, which directly determines the rationality and
effectiveness of our method.

Assuming the weight of the vote is 1, there will be some
unreasonable problems. If there is only a single voterA(mi, dj), all
elements in A(mi) and A(dj) will become 1 after the voting ends.
In this case, the voter and the candidate have the same status, but

the voter should have a higher status as a known connection. In
addition, the difference between the candidates cannot be
evaluated in this case.

Furthermore, when there are several voters whose right to vote
is 1, the number of votes obtained by the members of the group
with the most voters will be significant. On the contrary, members
of smaller groups will receive very few votes. Even though
candidates with more voters are more likely to be potential
association, we do not wish to see such an extreme imbalance.
In this situation of extreme imbalance, some groups control the
whole situation, whereas others have no meaning of existence.

FIGURE 1 | Obtain the credibility matrix C according to the incidence matrix A.

FIGURE 2 | WVMDA can be divided into three steps: (A) we construct the credibility similarity network through known associations, (B) we filtered them after
combining both similarity, and (C) weighted voting is used as the predictive model.
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Basic Voting Weight
With regard to Figure 4, the vote is extremely imbalanced.
Obviously, several members have the right to vote in row 3,
whereas a single member has the right to vote in row 2. As a
result, members of the third row will receive more votes than the
second row. For example, A(m3, d1) will get three votes, and
A(m2, d4) will only have one vote. As voters, it is unfair that they
get so much difference in the number of votes. Furthermore,
some members who have no right to vote get more votes than
those who have the right to vote. For example, A(m3, d4) gets four
votes and A(m2, d4) gets one vote, which is obviously not feasible.
More commonly, although some members of the A(m2) group
may be potentially association, they have far fewer votes than the
members of group A(m3). The right to vote should be fairly
distributed, and certain groups should not be allowed to
monopolize seats, nor should the votes of some groups be
negligible. Based on this, we designed the basic voting weight
to eliminate this gap:

Wb(mi, dj, ds) � 1
Nmi + Nds − A(mi, ds) (11)

whereNmi � ∑n
μ�1 A(mi, dμ) represents the number of voting

members in group mi;Nds � ∑m
]�1 A(m], ds) represents the

number of voting members in group ds. According to the
same principle, there can be the following definitions:

Wb(mi, dj,mt) � 1

Nmt + Ndj − A(mt , dj) (12)

The basic voting weight is determined by the number of voters
linked to the current candidate. This design ensures that the
overall number of votes for each candidate is 1. Because the basic
voting weight reduces the voting rights of voters from related
groups, each group will not be dominant or trivial. However, this
kind of operation will make it impossible to reflect the differences
of all potential connections, so we need to further plan the
uniqueness of each vote.

Group Weight
Following the above ideas, we have successfully assigned the
weight of each vote that guarantees that the total number of votes

for each candidate is 1. But common sense is that the bigger the
group, the bigger their voice, meaning that the current candidate
should be more credible if recommended by more voters.
Therefore, we must consider extending the influence of larger
groups a little more.We design weights according to the influence
of the group to improve the voice of the group:

Wg(mi, dj, ds) � Ne
mi (13)

Wg(mi, dj,mt) � Ne
dj (14)

where Nmi represents the number of voting members in group
mi, and e is utilized to control the size of the group weight. The
bigger the e, the more obvious the power difference of the group
will be. In order not to allow certain groups to dominate, we
should design the e to be slightly smaller. In this experiment, we
set e to be one-third. Due to the design of the group weight, the
gap between the candidates has begun to emerge, and the
candidates in the larger teams will be in a more advantageous
position.

Candidate’s Weight
In order to account for the different status between the voter and
the candidate, as well as the difference between the different
candidates, we need a reference to control the weight of the
acceptance of the candidate of the vote.

Both miRNA similarity and disease similarity are generally set
between 0 and 1. The higher the value, the more similar the two
diseases or two miRNAs. The similarity between voters and
candidates is equivalent to the efficiency of the candidate in
accepting votes. Due to the difference in similarity, the efficiency
of different candidates for voting is also different, which reflects
the uniqueness of different candidates to a certain extent. Since
the main diagonal element of the similarity matrix is 1, the
absolute status of voters can also be guaranteed.

Since there is a great amount of noise in the similarity network,
which affects the predictive performance of the model, we
designed a filter to retain the more reliable information.
Taking a row of the matrix as an example, our goal is to find
the smallest valuable element in the sequence. If the sequence is

FIGURE 3 | Schematic diagram of the voting method. FIGURE 4 | The dark-colored elements represent the voters, and the
remaining elements are the candidates. The number in the figure represents
the number of times the current member has been voted and does not
represent the final score.
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arranged in descending order, the above problem is
approximately to find the range that falls faster and is
relatively early in the sequence. Considering the particularity
of some sequences and for easier implementation of operations,
we preset a hyperparameter to represent the hypothetical position
and find the most reasonable element with the same level of
element size as that of the hypothetical position.

Figure 5 displays the distribution of a row in the miRNA
similarity matrix. Due to the different number of miRNA
sequences and disease sequences, it is not reasonable to use a
fixed number to represent the hypothetical position. It is a better
choice to use the ratio of the hypothetical position to the
sequence length. In the processing of miRNA similarity, the
hypothetical position was defined as ph � rpn, while in the
processing of disease similarity, it was defined as rpm.
Assuming that the hypothetical position ph is 1/10th of the
sequence length, the interval of its level is found. In this
experiment, it is enough to divide the level with the interval
of 0.1. The point in the figure above can be identified as between
0.5 and point 0.6. We define the element closest to 0.6 as the
leading point pl and the element closest to 0.5 as the following
point pf. For the confirmation of the final position, we followed
the following principles:

p �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

pf , pf < 2ph

pl, pf > 2ph and pl >
ph
2

ph, pf > 2ph and pl <
ph
2

(15)

Elements before the imaginary position are preserved, and
elements after that are set to 0 (Figure 6). Filter each row of the
matrix according to the above principles, thereby retaining an
appropriate amount of reliable information depending on their
different distribution.

This weight maintains the status of voters and reflects the
differences between different candidates. The more scattered the
elements in the similarity matrix are, the more obvious this
difference is. The more reasonable the similarity matrix is
constructed, the better the effect of the model.

In conclusion, we finally determined the voting weight:

W(mi, dj, ds) � Ne
mi × D(dj, ds)

Nmi + Nds − A(mi, ds)
(16)

W(mi, dj,mt) � Ne
dj ×M(mi,mt)

Nmt + Ndj − A(mt , dj) (17)

The association prediction score between disease mi and miRNA
dj can be defined as follows:

F(mi, dj) � ∑m
s�1

Ne
mi × D(dj, ds) × A(mi, ds)
Nmi + Nds − A(mi, ds)

+∑ n
t�1

Ne
dj ×M(mi,mt) × A(mt , dj)
Nmt + Ndj − A(mt , dj)

(18)

RESULTS

In this section, we conducted a number of different experiments
to observe and evaluate the effectiveness of this approach,
including visualization of similarity processing, adjustment of
important hyperparameters, comparison with other existing
methods, and analysis based on disease cases.

FIGURE 5 | The distribution of a similarity sequence.

FIGURE 6 | According to the p-value of each similarity sequence, the valuable information corresponding to it is retained.
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Visualization of Similarity Processing
Taking miRNA similarity as an example, we firstly fused
functional similarity and credibility similarity, and then put it
into the similarity filter. To observe the situation of similarity
matrix more intuitively, we choose the heat map to express them.
The process of their change is shown in Figure 7 below:

As shown in the figure, the similarity network after fusion is
denser, and the similarity after filtering retains more reliable
information, which provides a guarantee for the subsequent
prediction.

Performance Evaluation
In this part, we evaluate the performance of the model. The main
measurement methods are 5CV and global LOOCV. 5CV uses
four-fifths of the positive samples as the training set, the
remaining one-fifth of the positive samples and all the
negative samples as the test set, and measures the effect of the
model according to the accuracy of the test. When describing its
accuracy, we mainly use AUC as the measurement index. It is
worth mentioning that AUC is not sensitive to whether the

sample category is balanced, which is also a reason why AUC
is usually used to evaluate the performance of classifier for
unbalanced samples. AUC is defined as the area below the
ROC curve. Among them, the ROC curve is plotted with the
true positive rate (TPR) as the vertical axis and the false positive
rate (FPR) as the horizontal axis. By adjusting the threshold, the
probability is converted to the category, so that the TPR and the
FPR are plotted as points, and the ROC curve is obtained. The
calculation methods of FPR and TPR are as follows:

TPR � TP
TP + FN

(19)

FPR � FP
FP + TN

(20)

Among them, TP are samples truly positive and predicted to
be positive, and FN are samples truly positive and predicted to be
negative. Where FP are samples truly negative but predicted to be
positive, TN are the samples truly positive but predicted to be
negative. The ROC curve is generally above y � x. For random
distribution, the ROC curve is close to y � x, so the AUC value is
close to 0.5 generally. If the AUC is moving closer to 1, the better
the classification effect; the closer the AUC is to 0.5, the worse the
classification effect.

According to the aforementioned indicators, we first
commissioned the parameters in the model, including
credibility and hypothetical position (Figure 8).

Credibility has a very significant meaning for the structure
of similarity. For any two sequences L1 � A (mi) and
L2 � A (mj), the credibility similarity can be defined as
CM(mi, mj). It can be assumed that its order of magnitude
is nδ2, where n is the length of L1. If both L1(s) and L2(s) are −1,
but their true values are both δ, then the similarity error is
about δ2−1

nδ2
; if one of them should be δ, the error is about 1+δ

nδ2
. If

L1(t) � −1 and L2(t) � δ, but the true value of L1(s) is δ, the
error is about δ2+δ

nδ2
. According to the above analysis, it seems

that the maximum credibility is more conducive to the
establishment of similarity, but the fact is not the case:
first of all, due to the relatively small number of known
associations, the order of magnitude of similarity may be
significantly different from nδ2, which makes it impossible to

FIGURE 7 | miRNA function similarity, similarity after fusion, and similarity after filtering.

FIGURE 8 | Heat map of 5CV.
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blindly allow δ to take a very large number. Secondly, the
larger δ is, the more obvious the role of the known association
is, which goes against the original intention of making full use
of all miRNA–disease connections. Based on these two points
alone, it is necessary to debug δ.

The hypothetical position roughly determines the number
of elements to be extracted from each similarity sequence.
Due to the uniqueness of different similarity sequences, the
number of optimal elements is also different. Our approach
does not necessarily guarantee that the most suitable
elements are extracted for each sequence, but we can
approach the optimal result by adjusting the hypothetical
ratio r. Multiple tests are carried out by dividing the data set
for many times. The specific results are shown in Table 1.

Comparisons With Existing Work
In recent years, researchers have proposed many miRNA–disease
association prediction methods. However, the datasets or
evaluation methods used in the existing methods are not
consistent. Therefore, we mainly conduct comparative
experiments based on five-fold cross-validation and leave-one-
out cross-validation. To confirm the validity of the WVMDA
prediction results, we compared our model with the previous
three models: SVAEMDA (Ji et al., 2021), ICFMDA (Jiang et al.,
2018), AEMDA (Ji et al., 2020), SACMDA (Shao et al., 2018), and
GRL_2, 1-NMF (Gao et al., 2020). All models were cross-
validated to calculate TPR and FPR, draw the ROC curve, and
calculate AUC (Figure 9). The better the performance of the
model, the farther its ROC curve is from the straight line y � x,
and the closer its AUC value is to 1.

It can be seen from the figure that our method is more
responsive and has achieved higher AUC values, which
indicates that our method has good performance.

Case Study
In this paper, the prediction results of WVMDA were verified by
taking prostate neoplasms as an example. We use the HMDD

V2.0 database as the training database, and the dbDEMC 2.0
database and miR2Disease database as the validation databases,
respectively, to measure the validity of the prediction model. The
candidate miRNAs obtained from WVMDA were ranked
according to the predicted score. If the miRNAs with the
highest scores were found in the other two datasets, it would
indicate that our model was effective. Finally, 28 of the top 30
miRNAs were verified in the other two datasets (Table 2). The

FIGURE 9 | ROC curve.

TABLE 1 | Prediction results under different training sets.

miRNA 1 2 3 4 5 Average

5CV 0.9485 0.9509 0.9497 0.9529 0.9481 0.9506
LOOCV 0.9639 0.9670 0.9657 0.9684 0.9621 0.9668

TABLE 2 | The top 30 potential miRNAs associated with prostate neoplasms.

miRNA Evidence miRNA Evidence

hsa-mir-133b D hsa-mir-30a M
hsa-mir-34c D hsa-mir-200c D
hsa-mir-10a D; M hsa-let-7b D; M
hsa-mir-29c D hsa-mir-182 D; M
hsa-mir-154 M hsa-mir-155 D
hsa-mir-199a D; M hsa-mir-497 D
hsa-mir-330 M hsa-mir-200b Unconfirmed
hsa-mir-203 D hsa-mir-373 D; M
hsa-mir-513c M hsa-mir-513c M
hsa-mir-181a D; M hsa-mir-616 D
hsa-mir-572 D hsa-mir-628 Unconfirmed
hsa-mir-198 D; M hsa-mir-21 D; M
hsa-let-7d D; M hsa-mir-195 D; M
hsa-mir-15a D; M hsa-mir-371 D
hsa-mir-708 D hsa-mir-144 D

D, dbDEMC 2.0 database; M, miR2Disease database.
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results demonstrate the effectiveness of WVMDA in predicting
unknown interactions between miRNA and disease.

Prediction of Unknown Disease
Predicting potential miRNAs associated with unknown diseases is a
huge challenge. For the convenience of experiment and verification,
we selected a disease and cleared its association nodes with all
miRNAs, so as to make the disease as an unknown disease.
Subsequently, we put all the remaining associations into the
WVMDA and observe whether its prediction results can restore
themiRNAs associatedwith this disease.We took breast neoplasms as
the case andHMDD2.0 as the database for the experiment to find out
whether the 30 miRNAs with the highest prediction rank were true
associations. If not, we found out whether such associations existed in
other databases.

The experimental results show that 28 associations were found
in the HMDD dataset, and the remaining two associations were
also found in the dbDEMC dataset (Table 3).

DISCUSSION

The study of the possible relationship between miRNA and
disease is helpful to understand the pathogenesis of disease
and provide the basis for the prevention and treatment of
disease. Therefore, we constructed a new miRNA–disease
association prediction model based on weighted voting

(WVMDA). By proposing credibility, we construct
credibility similarity and use it to fill in the inadequacy of
existing datasets. By designing a similarity filter, we filter the
similarity to retain the reliable data and eliminate the noise. In
the final weighted voting model, we mainly regulate the
rationality and performance of the model based on three
kinds of voting weights. It is worth mentioning that our
method only needs positive samples to complete the
prediction, which is very convenient for model
construction and also reduces the requirements on datasets.

Under the framework of 5CV and global LOOCV, the AUC of
WVMDA is 0.9537 and 0.9683, respectively, which is higher than
the other methods. Furthermore, a case study on prostate
neoplasm was implemented to evaluate the WVMDA model.
Therefore, WVMDA can be used as a reliable biological tool for
predicting potential disease-related miRNAs, and it can
contribute to the discovery, prevention, and diagnosis of
complex diseases. What is more, the WVMDA model still has
room for improvement, and integrating more effective datasets
will certainly bring great progress to future research.
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