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Abstract: N,N′-chelate organoboron compounds have been successfully applied in bioimaging,
organic light-emitting diodes (OLEDs), functional polymer, photocatalyst, electroluminescent (EL)
devices, and other science and technology areas. However, the concise and efficient synthetic
methods become more and more significant for material science, biomedical research, or other
practical science. Here, we summarized the organoboron-N,N′-chelate derivatives and showed the
different routes of their syntheses. Traditional methods to synthesize N,N′-chelate organoboron
compounds were mainly using bidentate ligand containing nitrogen reacting with trivalent boron
reagents. In this review, we described a series of bidentate ligands, such as bipyridine, 2-(pyridin-2-yl)-
1H-indole, 2-(5-methyl-1H-pyrrol-2-yl)quinoline, N-(quinolin-8-yl)acetamide, 1,10-phenanthroline,
and diketopyrrolopyrrole (DPP).

Keywords: organoboron; N,N′-chelate; tetracoordinated; fluorescent materials

1. Introduction

N,N′-chelate tetracoordinated organoboron compounds have been widely applied
in various science and technology areas. For example, boron dipyrromethene deriva-
tives (BODIPY) were developed in luminescent materials [1–5], dyes [6–9], photosen-
sitizers [10–14], molecular switches [15–17], photodynamic therapy [18–22], molecular
probes [23–26], and bioimaging [27–29]. In recent decades, N,N′-chelate compounds
become a popular topic and have gradually attracted the attention of scientists. Four-
coordinated organoboron compounds (BAr2 (N, N)) have interesting luminescent proper-
ties that can be modulated by various substituents in the N, N′-chelating framework [30].
More and more similar structures were explored and exhibited wonderful results in fluo-
rescent materials [30,31], cell bioimaging (A1) [32], organic light-emitting diodes (OLEDs)
(A2) [33], functional polymer (A3) [34], photocatalyst (A8) [35], electroluminescent (EL)
devices [36], and so on, as shown in Figure 1. Herein, various traditional methods for
the formation of N,N′-chelate tetracoordinated organoboron complexes were exhibited in
this review. The main highlights include that (a) the diversified synthetic methods were
provided, (b) readily available trivalent boron compounds were used as boron reagents, (c)
various complex starting materials were designed as good bidentate ligands, and (d) these
reactions showed a wide range of tetracoordinated organoboron complexes and excellent
optical properties. In this paper, we made a conclusion of all articles of the corresponding
organic synthetic routes.

In recent years, the research on their syntheses falls into the following categories.
At first, bipyridine derivatives could be used as bidentate ligand reacting with triph-
enylboron to form the desired products, as shown in Figure 2. The second, an indole
connecting with pyridine derivatives (or other nitrogen heterocyclic molecule) reacted
with triphenylboron to obtain the corresponding compounds, as shown in Figure 2. The
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third, pyridine attaching on pyrrole derivatives (or other nitrogen heterocyclic molecule)
and trivalent boron could produce the fluorescent organoboron compounds, as shown
in Figure 2. The fourth, a quinoline linking with pyrrole derivatives (or other nitrogen
heterocyclic molecule) has been reported as a bidentate ligand to react with boron reagents.
The different fluorescent compounds could be synthesized by N-(quinolin-8-yl)acetamide
derivatives and boron reagents, as shown in Figure 2. The fifth, other bidentate ligands
including 1,10-phenanthroline and diketopyrrolopyrrole (DPP) derivatives could also react
with trivalent boron to obtain tetracoordinated organoboron compounds, as shown in
Figure 2.
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Figure 1. Application of tetracoordinate organoboron complexes in luminescent materials, organic
light-emitting diode (OLED), functional polymer, and photocatalyst [30–36].
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2. Bipyridine-Based Derivatives as Bidentate Ligand

In this section, different traditional methods for the formation of N,N′-chelate
organoboron derivatives will be displayed in detail from the following aspects.

2.1. Bipyridine as Bidentate Ligand

In 1985, Heinrich Noeth and co-workers reported that dibutyl(((trifluoromethyl)
sulfonyl)oxy)borane (1) reacted with bipyridine (2) to complete desired product. The
solution of the diorganylborane should be cooled to −78 ◦C in this reaction. Bipyridine-
dibutylboronium(1+) triflate (3) was confirmed by 11B NMR in their lab [37], as shown
in Scheme 1. This protocol realized the synthesis of bipyridine coordinated organoboron
complex at low temperature. It played a certain role in promoting the deep study of
tetracoordinated organoboron compounds.

Molecules 2021, 26, x FOR PEER REVIEW 3 of 21 
 

 

2. Bipyridine-Based Derivatives as Bidentate Ligand 

In this section, different traditional methods for the formation of N,N’-chelate or-

ganoboron derivatives will be displayed in detail from the following aspects. 

2.1. Bipyridine as Bidentate Ligand 

In 1985, Heinrich Noeth and co-workers reported that dibutyl(((trifluoromethyl)sul-
fonyl)oxy)borane (1) reacted with bipyridine (2) to complete desired product. The solution 

of the diorganylborane should be cooled to −78 C in this reaction. Bipyridine-dibutyl-
boronium(1+) triflate (3) was confirmed by 11B NMR in their lab [37], as shown in Scheme 

1. This protocol realized the synthesis of bipyridine coordinated organoboron complex at 

low temperature. It played a certain role in promoting the deep study of tetracoordinated 

organoboron compounds. 

 

Scheme 1. Reactions of bipyridine with dibutyl(((trifluoromethyl)sulfonyl)oxy)borane [37]. 

2.2. 2,5-Di(Pyridin-2-yl)Pyrazine and 2′, 2′: 4′, 4′: 2″, 2‴-Quaterpyridine as Bidentate Ligand 

In 2002, Matthias Wagner’s group adopted ferrocenylboranes (4) to react with 2,5-

bis(pyridyl)pyrazine (5) and 2, 2: 4, 4: 2″, 2‴ -quaterpyridine (6) to obtain charge-transfer 

complexes, respectively [38]. The organoboron adducts possess green color, which is 

charge transfer from the electron-rich ferrocene skeleton to their electron-poor aromatic 

structures, as shown in Scheme 2. This strategy provided a new route to acquire more 

ferrocenylborane derivatives with high yield and simple operation. 

 

Scheme 2. Reactions of 2,5-di(pyridin-2-yl)pyrazine (or 2, 2: 4, 4: 2″, 2‴-quaterpyridine) with 

FcB(Me)Br [38]. 

2.3. Bipyridine in {Fc(Bbipy)2O}(PF6) and {Fc(Bbipy}2(OH)2}(PF6) 

In 2002, Matthias Wagner’s group studied the synthesis of ferrocene complexes 

{Fc(Bbipy)2O}(PF6)2 (11) and {Fc(Bbipy)2(OH)2}(PF6)2 (12) [39,40], as shown in Scheme 3. 

They successfully synthesized tetracoordinated organoboron compounds with two boron 

centers. All of these compounds have the property of charge transfer. They could realize 

ring-closing and ring-opening products using bromide (FcMeBr) for the formation of 11 

and 12 by adding different amounts of water in the reaction. 

Scheme 1. Reactions of bipyridine with dibutyl(((trifluoromethyl)sulfonyl)oxy)borane [37].

2.2. 2,5-Di(pyridin-2-yl)pyrazine and 2′, 2′: 4′, 4′: 2′′, 2′′′-Quaterpyridine as Bidentate Ligand

In 2002, Matthias Wagner’s group adopted ferrocenylboranes (4) to react with 2,5-
bis(pyridyl)pyrazine (5) and 2′, 2′: 4′, 4′: 2′′, 2′′′-quaterpyridine (6) to obtain charge-transfer
complexes, respectively [38]. The organoboron adducts possess green color, which is
charge transfer from the electron-rich ferrocene skeleton to their electron-poor aromatic
structures, as shown in Scheme 2. This strategy provided a new route to acquire more
ferrocenylborane derivatives with high yield and simple operation.
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Scheme 2. Reactions of 2,5-di(pyridin-2-yl)pyrazine (or 2′, 2′: 4′, 4′: 2′′, 2′′′-quaterpyridine) with
FcB(Me)Br [38].

2.3. Bipyridine in {Fc(Bbipy)2O}(PF6) and {Fc(Bbipy}2(OH)2}(PF6)

In 2002, Matthias Wagner’s group studied the synthesis of ferrocene complexes
{Fc(Bbipy)2O}(PF6)2 (11) and {Fc(Bbipy)2(OH)2}(PF6)2 (12) [39,40], as shown in Scheme 3.
They successfully synthesized tetracoordinated organoboron compounds with two boron
centers. All of these compounds have the property of charge transfer. They could realize
ring-closing and ring-opening products using bromide (FcMeBr) for the formation of 11
and 12 by adding different amounts of water in the reaction.
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2.4. 4,4′-Di(but-3-en-1-yl)-2,2′-bipyridine as Bidentate Ligand

In 2005, Matthias Wagner’s team reported other N,N′-chelate organoboron com-
plexes in this reaction. They used dibromo(phenyl)borane, bromo(methyl)(phenyl)borane,
bromo(ethoxy)(phenyl)borane to give bipyridine adducts with satisfactory yields (15–18,
76–89%) [41], as shown in Scheme 4. This reaction indicated that different N,N′-chelate
organoboron compounds could be obtained by adding distinct boron reagents under
ambient temperature.
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2.5. Bipyridine Reacting with 5-Chloro-5,10-dihydrodibenzo[b,e]borinine

In 2009, Warren E. Piers’s lab prepared a series of neutral radicals, which had signifi-
cant spin density on boron [42]. The scaffold of 2,2′-bipyridyl-stabilized boronium ions
was interesting and demonstrated bipyridine adducts persistent neutral radical. They
added AgBF4 in this reaction and offered moderate yields (20–23, yield 53–77%), as shown
in Scheme 5. It was proved that this protocol could easily get the target 2,2′-bipyridyl
boronium ions and neutral radicals.

2.6. Bipyridine for the Formation of N,N′-Chelate Organoboron and Ferrocene Derivatives

In 2010, Matthias Wagner’s group reported a more powerful synthetic route of fer-
rocene complexes [43]. They used bromide (26) to obtain FcBBr polymers (27, 28) and
continued to form the bipyridine organoboron polymers with main chain charge-transfer
structure (30, 32, 33, 80%, 65%, 76%), as shown in Scheme 6. This method provided a new
opportunity for the synthesis of multifunctional organoboron polymers.
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2.7. Bipyridine Reacting with 5-Bromo-10-mesityl-5,10-dihydroboranthrene

In 2011, Matthias Wagner’s group has been committed to the development of more
diversified N,N′-chelate organoboron chemistry for many years [44]. It always showed
wonderful results in bipyridine organoboron adducts. They realized cleavage of the B-O-B
bridge in this reaction and got the desired product with moderate yield (36, 51%), as shown
in Scheme 7. In this protocol, they prepared 5-bromo-10-mesityl-5,10-dihydroboranthrene
(35) as a boron reagent. This building block revealed a novel synthetic route for us.
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3. Indole-Based Derivatives as Bidentate Ligand
3.1. 2-(Pyridin-2-yl)-1H-indole and 2-(Pyridin-2-yl)-1H-pyrrolo[2,3-b]pyridine

Bipyridine organoboron adducts have been synthesized using various boron reagents.
Except for bipyridine as bidentate ligand, indole skeleton was chosen viably. In 2000,
Suning Wang’s group has synthesized and characterized blue/green luminescent materials,
diphenylboron complex (38, 65%), and complex (40, 71%) [36], as shown in Scheme 8.
2-(pyridin-2-yl)-1H-indole and 2-(pyridin-2-yl)-1H-pyrrolo[2,3-b]pyridine reacted with
commercially available triphenylboron to prepare the target products. The complex (40)
has been developed to function as the light-emitting layer.
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3.2. 2-(Pyridin-2-yl)-1H-indole Derivatives Reacting with BPh3

In 2002, Suning Wang’s group explored more 5-substituted diphenylboron complexes.
In this case, 5-fluoro-2-(pyridin-2-yl)-1H-indole, 5-chloro-2-(pyridin-2-yl)-1H-indole, and
5-methoxy-2-(pyridin-2-yl)-1H-indole could get desired products (42–44) [45], as shown in
Scheme 9. They examined the effect of blue shift to 490 and 487 nm (42, 43, -F, -Cl) and red
shift to 532 nm (44, -OCH3), respectively. They found that compound 42 could be applied
in an electroluminescent device as the emitter and the electron transport material. It was
inferred that different substituted groups could tune the luminescence and the property of
electroluminescence of N,N′-chelate organoboron compounds.
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3.3. 2-(1H-Indol-2-yl)thiazole, 8-(1H-Benzo[d]imidazol-2-yl)Quinoline and Their Derivatives

In 2005, Suning Wang’s group continued to present different indole skeleton bidentate
ligands. Substituted-2-(pyridin-2-yl)-1H-indole (45), 2-(pyridin-2-yl)-1H-benzo[d]imidazole
(46), 2-(1H-indol-2-yl)thiazole (47), 1-(1H-benzo[d]imidazol-2-yl)isoquinoline (48, X = C),
1-(3H-imidazo[4,5-b]pyridin-2-yl)isoquinoline (48, X = N) began with triphenylboron to
generate N,N′ chelate boron complexes (49–56, 59–78%) from blue to red [30], as shown in
Scheme 10. They also found that these complexes could be applied in not only emitters but
also electron transport materials of electroluminescent (EL) equipment.
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3.4. 2-(Pyridin-2-yl)-1H-indole Reacting with FcBMeBr

In 2005, Matthias Wagner’s group achieved reaction of ferrocene bromide and 2-
(pyridin-2-yl)-1H-indole sodium to give rise to the formation of FcBMe(5-F-bipyridine) (58,
51%) and Fc2B(5-F-bipyridine) (59, 23%) in acceptable yields [46], as shown in Scheme 11.
It indicated that N,N′-chelate organoboron compounds containing multiple metals could
be obtained by making use of this simple protocol.
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3.5. 2-(1H-Indol-7-yl)benzo[d]oxazole, 2-(1H-Indol-7-yl)benzo[d]thiazole, and
2-(1H-Indol-7-yl)-1-octyl-1H-benzo[d]imidazole

In 2016, David Curiel’s group described a reaction of 2-(1H-indol-7-yl)benzo[d]oxazole
(60), 2-(1H-indol-7-yl)benzo[d]thiazole (61), and 2-(1H-indol-7-yl)-1-octyl-1H-benzo[d]
imidazole (62) to generate organoboron complexes (63–65) with tuned emission and cell
bioimaging utility [32], as shown in Scheme 12. To synthesize these diphenylboron com-
plexes, they choose triphenylboron as boron reagent. In this paper, they succeeded in
introducing more heteroatoms (S, O, N) in this building block.
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Scheme 12. Reactions of 2-(1H-indol-7-yl)benzo[d]oxazole, 2-(1H-indol-7-yl)benzo[d]thiazole, and
2-(1H-indol-7-yl)-1-octyl-1H-benzo[d]imidazole with BPh3 [32].

4. Pyridine-Based Derivatives as Bidentate Ligand
4.1. 2-(1H-Pyrazol-5-yl)pyridine Reacting with BPh3

In 2003, Yun Chi’s group reported a reaction of 2-(1H-pyrazol-5-yl)pyridine deriva-
tives (67) and triphenylboron to produce pyridyl pyrazolate boron complexes (68–73,
48–90%) [47], as shown in Scheme 13, which exhibited the ability of remarkable dual fluo-
rescence through the photoinduced electron transfer reaction. In this system, it was more
efficient to synthesize the N,N′-chelate organoboron adducts in tetrahydrofuran (THF)
solution for one hour. They found that electron-deficient B(C6F5)3 reagent could be also
feasible in this reaction.
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4.2. Pyridin-2-ylmethanamine Reacting with Hydroxydiphenylborane

In 2005, Noemí Andrade-López’s group provided another method to complete the
N-8-(diphenyl-hydroxy-2-aminomethylpyridine)borane (76, 95%) with high yield when
added 2-pyridylmethylamine (74) and diphenylborinic acid (75) together [48], as shown in
Scheme 14. In this case, they used air-stable boron reagent (diphenylborinic acid). It was
proved that nonrigid bidentate ligand 2-pyridylmethylamine could also be activated.
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4.3. 2-(1H-Pyrazol-5-yl)pyridine Analogs Reacting with BPh3

In 2006, Yun Chi’s group developed 2-(1H-pyrazol-5-yl)pyridine derivatives (77) to
acquire organoboron compound (78) [49], as shown in Scheme 15. It was interesting that
the authors succeeded in introducing crown ether structure for detecting the alkali or
alkaline earth ions.

4.4. 2-(4H-1,2,4-Triazol-3-yl)pyridine Derivatives Reacting with BPh3

In 2014, Wesley R. Browne’s group showed the resulting pyridyl-1,2,4-triazole tetraco-
ordinate organoboron complexes as available and controllable blue emitters [50]. In this
system, they could only obtain the N1-bound isomer (80–83), while N3-bound isomer was
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not found (84), as shown in Scheme 16. It was inferred that the boron atom of triphenyl-
boron preferred to attacking with N1 atom center. The emission quantum yield of the
complex (80) was up to 0.72. Synthesized compounds displayed a great range of emissions
from 397 nm to 494 nm.
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4.5. 2-(3,5-Bis(trifluoromethyl)-1H-pyrrol-2-yl)pyridine as Bidentate Ligand

In 2016, Yun Chi’s group provided a method for the synthesis of pyridyl pyrrolide
boron complexes (88–90, 41–48%), which could be developed to function as organic light-
emitting diodes (OLEDs) [33], as described in Scheme 17. This building block connected
the electron-donating portion with the electron-accepting moieties together and succeed
in generating external quantum efficiency (EQE) of 13.5%. 2-(3,5-bis(trifluoromethyl)-1H-
pyrrol-2-yl)pyridine (85) and boron trichloride resulted in the intermediate compound (86,
57%). Next, it reacts with Grignard reagent (87) to give the final organoboron products
(88–90). This protocol used the easy availability of Grignard reagent to produce pyridyl
pyrrolide boron complexes.

4.6. 2-(5-Methyl-1H-pyrrol-2-yl)pyridine, 2-(Pyridin-2-yl)-1H-Indole, and
(Z)-2-(Phenyl(2H-pyrrol-2-ylidene)methyl)-1H-pyrrole as Bidentate Ligand

In 2017, Kee-In Lee’s group reported a synthetic route for the generation of N,N′-
chelate organoboron complexes with mild condition and easy operation in moderate
yields [51]. In this strategy, they added general phenylboronic acids to react with ligands
using widely available K3PO4 to form desired products (93–96, 72–79%), as shown in
Scheme 18. In this case, 2-(5-methyl-1H-pyrrol-2-yl)pyridine, 2-(pyridin-2-yl)-1H-indole,
and (Z)-2-(phenyl(2H-pyrrol-2-ylidene)methyl)-1H-pyrrole could be able to respond
smoothly.
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5. Quinoline-Based Derivatives as Bidentate Ligand
5.1. 2-(5-Methyl-1H-pyrrol-2-yl)quinoline and 2-(5-Methyl-1H-pyrrol-2-yl)quinoxaline as
Bidentate Ligand

In 2005, Chin-Ti Chen’s group exploited 2-(5-methyl-1H-pyrrol-2-yl)pyridine (97),
2-(5-methyl-1H-pyrrol-2-yl)quinoline (98), and 2-(5-methyl-1H-pyrrol-2-yl)quinoxaline (99)
reacting with triphenylboron to afford diphenylboron complexes (100–102, 63–89%) [52],
as shown in Scheme 19. The complexes [(pyro)BPh2] (100), [(noro)BPh2] (101), and
[(xaro)BPh2] (102) exhibited emission peak maxima of strong photoluminescence at dif-
ferent locations such as 490 nm, 510 nm and 575 nm, respectively. The research group
adopted quinoline linked with pyrrole in one molecule as bidentate ligand to react with
triphenylboron.
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5.2. 2-(1H-Benzo[d]Imidazol-2-yl)quinoline and 2-(Quinolin-2-yl)-1H-naphtho[2,3-d]Imidazole
Served as Bidentate Ligand

In 2006, Tsun-Ren Chen’s group realized 2-(1H-benzo[d]imidazol-2-yl)quinoline (103)
and 2-(quinolin-2-yl)-1H-naphtho[2,3-d]imidazole (104) reacting with triphenylboron to
generate diphenylboron complexes (105–106, 30–35%) [53], as shown in Scheme 20. The
product (105) could be used as organometallic emitting material in organic light-emitting
diodes (OLEDs). They succeeded in the synthesis of target organoboron products and
adopted them (105, 106) as the emitting materials of electroluminescence (EL) device. It was
demonstrated that tetracoordinated organoboron complexes could be selected as organic
light-emitting diodes (OLEDs) as well.
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5.3. 1-(3-(Trifluoromethyl)-1H-pyrazol-5-yl)isoquinoline as Bidentate Ligand

Recently, in 2019, Pi-Tai Chou’s group designed and synthesized 1-isoquinolinyl pyra-
zolate biphenylboron complexes [54]. 1-(3-(trifluoromethyl)-1H-pyrazol-5-yl)isoquinoline
was used to react with various boron reagents (BPh3, BCl3, 9-bromo-9-borafluorene, or
10-bromo-9-oxa-10-boraanthracene) to afford desired products (107–111), as shown in
Scheme 21. The authors measured the time-resolved fluorescence and studied theoretical
calculation, then found these complexes having the phenomenon of photoinduced electron
transfer (PET) from the locally excited (LE) (over the isoquinolinyl pyrazolate moiety) to
charge transfer (CT) states (from isoquinolinyl to aryl appendages).
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Scheme 21. Synthesis of 1-(3-(trifluoromethyl)-1H-pyrazol-5-yl)isoquinoline chelate organoboron
complexes [54].

5.4. N-(Quinolin-8-yl)acetamide as Bidentate Ligand

In 2008, Yoshiki Chujo’s group prepared N,N′-chelate tetracoordinated organoboron
polymers by Sonogashira-Hagihara cross-coupling reaction [34]. They reported a reaction
of N-(quinolin-8-yl)acetamide (112) and triphenylboron (43%), as shown in Scheme 22.
The research group used tri(4-iodinephenyl)boron to synthesize the monomer (114, 53%).
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It continued to react with alkynes to obtain the final polymers (115–117, 40–51%). This
paper showed that the π-conjugated linker unit had a great influence on the fluorescent
quantum efficiencies of the synthesized polymers. Besides, they also observed an obvious
energy transfer.
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5.5. (S)-N-(1-((5-Iodoquinolin-8-yl)amino)-1-oxopropan-2-yl)hexanamide as Bidentate Ligand

In 2010, Yoshiki Chujo’s group used (S)-N-(1-((5-iodoquinolin-8-yl)amino)-1-
oxopropan-2-yl)hexanamide (118) and diphenyl with two boronbromide centers resulting
in organoboron monomer (120, 24%) [55], as shown in Scheme 23. They chose palladium-
catalyzed Sonogashira coupling between iodide (120) and bis-alkyne to prepare lumines-
cent chiral four-coordination organoboron quinoline-based polymers. It was interesting to
see that the quantum yield (ΦF) of the synthesized polymer (122) was up to 0.8.

Molecules 2021, 26, x FOR PEER REVIEW 13 of 21 
 

 

 

Scheme 23. Synthesis of (S)-N-(1-((5-iodoquinolin-8-yl)amino)-1-oxopropan-2-yl)hexanamide chelate organoboron poly-

mer [55]. 

5.6. N-(5-Iodoquinolin-8-yl)Undecanamide as Bidentate Ligand 

In 2010, Yoshiki Chujo’s group developed strong luminescent organoboron polymers 

connected with bifunctional 8-aminoquinolate linkers [56]. They used N-(5-iodoquinolin-

8-yl)undecanamide and bis-alkyne resulting in corresponding polymers (124–127) by So-

nogashira-Hagihara cross-coupling reaction, as shown in Scheme 24. In this case, they in-

troduced long alkyl chains and various aryl groups and finally found the organoboron 

polymer (127, Ar1 = P, Ar2 = F, 85%) (F = 0.65) achieving a higher quantum yield than 

others. Compared with (S)-N-(1-((5-iodoquinolin-8-yl)amino)-1-oxopropan-2-yl)hexana-

mide as starting material to obtain N,N-chelate organoboron complexes, N-(5-iodoquin-

olin-8-yl)undecanamide as bidentate ligand showed different optical properties. It indi-

cated that the fluorescent characteristic of organoboron polymers could be changed by 

different substituted portions. 

 

Scheme 24. Synthesis of N-(5-iodoquinolin-8-yl)undecanamide chelate organoboron polymer [56]. 

Scheme 23. Synthesis of (S)-N-(1-((5-iodoquinolin-8-yl)amino)-1-oxopropan-2-yl)hexanamide chelate
organoboron polymer [55].



Molecules 2021, 26, 1401 13 of 21

5.6. N-(5-Iodoquinolin-8-yl)undecanamide as Bidentate Ligand

In 2010, Yoshiki Chujo’s group developed strong luminescent organoboron polymers
connected with bifunctional 8-aminoquinolate linkers [56]. They used N-(5-iodoquinolin-
8-yl)undecanamide and bis-alkyne resulting in corresponding polymers (124–127) by
Sonogashira-Hagihara cross-coupling reaction, as shown in Scheme 24. In this case, they
introduced long alkyl chains and various aryl groups and finally found the organoboron
polymer (127, Ar1 = P, Ar2 = F, 85%) (ΦF = 0.65) achieving a higher quantum yield than oth-
ers. Compared with (S)-N-(1-((5-iodoquinolin-8-yl)amino)-1-oxopropan-2-yl)hexanamide
as starting material to obtain N,N′-chelate organoboron complexes, N-(5-iodoquinolin-
8-yl)undecanamide as bidentate ligand showed different optical properties. It indicated
that the fluorescent characteristic of organoboron polymers could be changed by different
substituted portions.
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5.7. N-(quinolin-8-yl)acetamide as Bidentate Ligand

Two years later, in 2012, Yoshiki Chujo’s group designed and synthesized 8-aminoquin
olate-based organoboron polymers with rigid structure, which had electron-donating and
electron-accepting structure in the basic skeleton [57]. In order to get the corresponding
starting material, they added tin compound (128) and boron tribromide to give the in-
termediate (130) in two steps, as shown in Scheme 25. Next, it continued to react with
N-(quinolin-8-yl)acetamide to afford adduct monomer in acceptable yield (131, 34%). Final
8-aminoquinolate-based organoboron products were prepared by classical Sonogashira-
Hagihara cross-coupling reaction (132, 133, 84%, 84%). The quantum yield of polymer (132)
was up to 0.53. It was certain that this scaffold with 8-aminoquinolate-based could achieve
more efficient luminescent properties by introducing the -C8F17 group.
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5.8. Quinolin-8-amine as Bidentate Ligand

In 2012, Douglas W. Stephan’s group reported a reaction of readily available quinoline-
8-amine (134) and electron-deficient B(C6F5)2H [58]. Biperfluorophenylboron complex was
synthesized in moderate yield (135, 76%) without any catalyst, as shown in Scheme 26. The
result indicated that tetracoordinated organoboron compounds could also be successfully
obtained from primary amines.
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5.9. 3-Phenyl-N-(quinolin-8-yl)propanamide Derivatives as Bidentate Ligand

In 2020, Xu’s group designed and synthesized a series of 3-phenyl-N-(quinolin-8-
yl)propanamide-based organoboron complexes as photocatalysts [35]. At first, they pre-
pared starting materials 3-phenyl-N-(quinolin-8-yl)propanamide derivatives (136) that
were added in Mn/p-tosyl chloride/Na2CO3 system. Desired 3-phenyl-N-(quinolin-8-
yl)propanamide-based organoboron complexes were acquired with high yields (138–144,
80–96%), as shown in Scheme 27. In this case, they added cheap transitional metal
manganese powder. It was worth noting that they used widely available and air-stable
boron reagents (Ar-BF3K, 137). This protocol provided a useful path for the generation of
aminoquinolate-based organoboron complexes efficiently.
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5.10. 2,2,2-Trifluoro-N-(quinolin-8-yl)acetamide Derivatives as Bidentate Ligand

In 2020, our group almost at the same time reported the reaction of 2,2,2-trifluoro-
N-(quinolin-8-yl)acetamide derivatives (145) and sodium tetraarylborate, resulting in
aminoquinolate-based organoboron complexes (146–168) with high yields using iodine as
catalyst [31], as depicted in Scheme 28. We made a modification from 2,2,2-trifluoro-N-
(quinolin-8-yl)acetamide with various functional groups. In our protocol, we synthesized
successfully a series of cheap and air-stable sodium tetraarylborates. Only a catalytic
amount of iodine was enough to drive this reaction. In addition, we showed that adding
external acids in this system formed the novel N,N′-chelate organoboron aminoquinolate
with moderate yields (159–168, 45–89%). All the complexes were fully characterized and
we found that the quantum yield of organoboron compound (146) reached 0.79 when
dissolved in dichloromethane.

Molecules 2021, 26, x FOR PEER REVIEW 15 of 21 
 

 

reagents (Ar-BF3K, 137). This protocol provided a useful path for the generation of ami-

noquinolate-based organoboron complexes efficiently. 

 

Scheme 27. Synthesis of 3-phenyl-N-(quinolin-8-yl)propanamide derivatives chelate organoboron 

photocatalysts [35]. 

5.10. 2,2,2-Trifluoro-N-(quinolin-8-yl)acetamide Derivatives as Bidentate Ligand 

In 2020, our group almost at the same time reported the reaction of 2,2,2-trifluoro-N-
(quinolin-8-yl)acetamide derivatives (145) and sodium tetraarylborate, resulting in ami-

noquinolate-based organoboron complexes (146–168) with high yields using iodine as cat-

alyst [31], as depicted in Scheme 28. We made a modification from 2,2,2-trifluoro-N-(quin-

olin-8-yl)acetamide with various functional groups. In our protocol, we synthesized suc-

cessfully a series of cheap and air-stable sodium tetraarylborates. Only a catalytic amount 

of iodine was enough to drive this reaction. In addition, we showed that adding external 

acids in this system formed the novel N,N′-chelate organoboron aminoquinolate with 

moderate yields (159–168, 45–89%). All the complexes were fully characterized and we 

found that the quantum yield of organoboron compound (146) reached 0.79 when dis-

solved in dichloromethane. 

 

Scheme 28. Synthesis of 2,2,2-trifluoro-N-(quinolin-8-yl)acetamide-based organoboron fluorescent
complexes [31].

6. 1,10-Phenanthroline and Others as Bidentate Ligand
6.1. 1,10-Phenanthroline as Bidentate Ligand

In 2013, Douglas W. Stephan’s group treated 1,10-phenanthroline with the same
amount of the boron reagent B(C6F5)3 to afford the desired salt (170, 73%) under H2 (4 atm)
condition [59], as shown in Scheme 29. The authors tried to develop an organoboron
catalyst, which has the ability of frustrated Lewis pairs (FLPs) catalyst in practical applica-
tions. In this paper, they developed a new synthetic route of tetracoordinated organoboron
complexes by using 1,10-phenanthroline.
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6.2. 1,10-Phenanthroline as Bidentate Ligand

In 2016, Hiroyuki Higuchi’s group also reported 1,10-phenanthroline as bidentate
ligand to react with 9-borabicyclo[3.3.1]nonan-9-yl trifluoromethanesulfonate to obtain the
organoboron complex (172, 30%) [60], as shown in Scheme 30. Next, it was reacted with
potassium iodide solution to afford the corresponding salt (173, 13%). It was noteworthy
that the synthesized complex (173) displayed photoinduced different color behavior in the
solid-state after UV irradiation.
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6.3. (9E,10E)-N9,N10-Bis(6-methylheptyl)phenanthrene-9,10-diimine as Bitentate Ligand

In 2017, Douglas W. Stephan’s group described an original synthetic strategy to give
rise to (9E,10E)-N9,N10-bis(6-methylheptyl)phenanthrene-9,10-diimine-based organoboron
complex (177), but only found the radical (177) measured by direct analysis in real time
mass spectrometry (DART-MS) and electron paramagnetic resonance (EPR) signal [61], as
shown in Scheme 31. They continued to improve and develop previous work and used
HB(C6F5)2 reagent to react with bidentate ligand (174) to prepare frustrated Lewis pairs
(FLPs) catalyst in this paper.
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6.4. Diketopyrrolopyrrole (DPP) Derivatives as Bitentate Ligand

In 2014, Takaki Kanbara and co-workers disclosed a route for the generation of dike-
topyrrolopyrrole (DPP)-based diphenylboron complexes with moderate yields (184–186,
21–71%) [62], as shown in Scheme 32. In this case, diketopyrrolopyrrole derivatives were
synthesized by using 5-substituted-picolinonitrile (179) and dibutyl succinate (180). Next,
triphenylboron reacted with them to form the diphenylboron complexes (184–186). At
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last, the authors studied the corresponding theoretical calculation in their work, which
indicated that the introduction of the coordinating boron element could lower the band
gap.
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6.5. Diketopyrrolopyrrole (DPP) Derivatives as Bitentate Ligand

In 2014, Takaki Kanbara and co-workers continued to improve this scaffold by intro-
ducing phenylacetylene derivatives [63], by palladium-catalyzed Sonogashira coupling.
Synthesized diketopyrrolopyrrole-based diphenylboron complexes (187–188) showed red-
shift of the location of wavelengths to a near-infrared region, as shown in Scheme 33. This
was a good strategy to extend π-conjugation of diketopyrrolopyrrole-based diphenylboron
complexes by linking with more rigid phenylethynyl groups, which reached red-shift in
near-infrared region and achieved high quantum yields.
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6.6. Reactivity of 1,2,3,4,5-Pentaphenyl-1H-borole with Isocyanates

In 2016, Caleb D. Martin’s group used 1,2,3,4,5-pentaphenyl-1H-borole (189) with
isocyanates to generate a seven-membered ring (194) and it continued to react with another
isocyanate to afford more complex organoboron products (195, 196, 74%, 77%, respec-
tively) [64], as shown in Scheme 34. The boron atom of the complex (191) would attack the
nitrogen atom in the presence of pyridine to form a new adduct (192, 95%).
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7. Conclusions and Outlook

In summary, tetracoordinated organoboron compounds have been widely applied in
cell imaging, organic light-emitting diodes (OLEDs), functional polymer, photocatalyst,
electroluminescent (EL) devices, and other science and technology areas. N,N′-chelate
diarylboron complexes have been successfully synthesized by using a series of bidentate
ligands and diversified boron reagents. Bidentate ligands mainly consist of two parts by
using bipyridine, indole, pyrrole, quinoline, isoquinoline, pyridine, 1H-benzo[d]imidazole,
and others. The boron reagents mainly include triphenylboron, boron trichloride, boron
tribromide, B(C6F5)3, HB(C6F5)2, hydroxydiphenylborane (Ph2BOH), phenylboronic acids,
sodium tetraaylborate, and FcMeBr in this review. However, there is main focus including
exploring wider substrates as bidentate ligand, more diversified boron reagents, simpler
and greener reaction condition, and higher yields. Besides, this N,N′-chelate organoboron
framework should be developed in these fields such as molecular probes, cell imaging,
fluorescent dyes, OLEDs, and so on. We expect with continuous effort more efficient and
greener methods for exploiting more powerful diphenylboron complexes.
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