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Introduction

What is big data?

“Big data” is a term that was introduced in the 1990s to 
include data sets too large to be used with common software. 
In 2016, it was defined as information assets characterized 
by high volume, velocity, and variety that required specific 
technology and analytic methods for its transformation into 
use.1 In addition to the three attributes of volume, velocity, 
and variety, some have suggested that for big data to be 
effective, nuances including quality, veracity, and value need 
to be added as well.2,3Big data reveals health patterns, and 
promises to provide solutions that have previously been out 
of society’s grasp; however, the murkiness of international 
laws, questions of data ownership, public ignorance, and pri-
vacy and security concerns are slowing down the progress 
that could otherwise be achieved by the use of big data. In 
this descriptive review, we highlight the roles of big data, the 

changing research paradigm, and easy access to research 
participation via the Internet fueled by the need for quick 
answers.

Universally, data volume has increased, with the collec-
tion rate doubling every 40 months, ever since the 1980s.4 
The big data age, starting in 2002, has generated increasing 
amounts of alphanumeric data; in addition, social media has 
generated large amounts of data in the form of audio and 
images. The use of Internet-based devices including smart 
phones and computers, wearable electronics, the Internet of 
things (IoT), electronic health records (EHRs), insurance 
websites, and mobile health all generate terabytes of data. 
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Sources that are not obvious include clickstream data, 
machine to machine data processing, geo-spatial data, audio 
and video inputs, and unstructured text. In general, the total 
volume of data generated can only be estimated. For exam-
ple, the usual personal computer in the year 2000 held 10 
gigabytes of storage; recently, Facebook analyzed more than 
105 terabytes of data every 30 min, including shared items 
and likes, which allows for optimization of product features 
for its advertising performance; additionally, in its first year 
Google images used up 13.7 petabytes of storage on users 
devices.5,6 It is clear that all four domains of big data: acqui-
sition, storage, analysis, and distribution have increased over 
the data life cycle.7

Besides being statistically powerful and complex, data 
need to be available in real time, which allows it to be ana-
lyzed and used immediately. Big data has immense volume, 
dynamic and diverse characteristics, and requires special 
management technologies including software, infrastructure, 
and skills. Big data shows trends from shopping, crime sta-
tistics, weather patterns, disease outbreaks, and so on. 
Recognizing the power of big data to effect change, the 
United Nations (UN) Global Working Group on big data was 
created under the UN Statistical Commission in 2014. Its 
vision was to use big data technologies in the UN global plat-
form to create a global statistical community for data sharing 
and economic benefit.8

Methods

We aimed to write a descriptive review to inform physicians 
about use of big data (biological, biometric, and electronic 
health records) in both the commercial and research fields. 
Pubmed-based searches were performed, and in addition, since 
many of the topics were outside the scope of this data base, 
general Internet searches using Google search engine were per-
formed. Searching for “Big data and volume and velocity and 
variety” in the Pubmed data base resulted in 45 articles in 
English. Papers were deemed to be appropriate by the consen-
sus of at least two authors. Pubmed search for “artificial intel-
ligence in clinical decision support” resulted in two relevant 
review articles, and the addition of “randomized control trials” 
resulted in 11 randomized control studies, of which only one 
was relevant. For non-Pubmed indexed scholarly articles, two 
authors determined relevance by the frequency of the paper 
being cited or accessed online. As some content was to be 
informative rather than conclusive, commercial websites, such 
as those dealing with DNA testing for ancestry, were accessed. 
The Food and Drug Administration (FDA) website was 
accessed when searching for the “oldest biobank,” which 
revealed the HIV registry. Landmark trials were selected for 
changes in research design and use of big data mining.

Big data in medicine

The major fields predicted to increasingly use big data by 
2025 include astronomy, social media (Twitter, YouTube, 

etc.) and medicine-Genomics, which will be measured in 
zetta-bytes/year (zetta = 1021). Big data in medicine 
includes biologic, biometric, and electronic health data 
(Figure 1).

Biological banks, also called biobanks, may be present 
at the local, national, or international levels. Examples 
include local academic institutions, the National Cancer 
Institute, United Kingdom Biobank, China Kadoorie 
Biobank, and the European Bioinformatics Institute, among 
others.9 Non-profit organizations may perform biological 
data collection during a health fair with screening of blood 
pressure, or urine and blood tests. Commercial biobanks 
include those that provide services like saliva testing for 
ancestry determination.10

Before the data can be converted to digital form, bio-
logical specimens need to be processed and preserved. 
Biospecimen preservation standards in the past varied 
based on the organization. In 2005, in an effort to stand-
ardize biospecimen preservation, the National Cancer 
Institute contributed to the creation of the Office of 
Biobanking and Biospecimen Research (OBBR) and the 
annual symposium for Biospecimen Research Network 
Symposia.11 In 2009, with international support, there was 
the publication of the first biobank-specific quality stand-
ard, which has since been applied to many biobanks. 
Biobanking has evolved with regulatory pressures, 
advances in medical and computational information tech-
nology, and is a crucial enterprise to biological sciences. 
One of the longest existing biobanks is the University of 
California at San Francisco AIDS specimen bank, which 
has functioned for the past 30 years.12

One thing in common that all biobanks have is the need 
for significant resources to manage, analyze, and use the 

Figure.1.  Big data in medicine.
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information in a timely manner.13 Commercial biobanks 
include multinational companies that collect biological spec-
imens from subjects for verification of ancestry. Subjects 
pay for the DNA analysis kit, which is collected by them and 
mailed to the companies where they are analyzed and stored. 
The company then can sell the data to third parties for 
research based on legislation.

The shifting paradigm in medical research

The clinical research paradigm has changed to match an 
increasingly older population’s needs. This has been fueled 
by large-scale biological data harvesting (biobanks), which 
is developed, analyzed, and managed by cheaper computing 
technology (big data), supported by greater flexibility in 
study design and the relationships between industry, govern-
ment regulators, and academics. With easy access to infor-
mation via the Internet, citizen science had allowed many 
non-scientists to participate in research.14 Biological speci-
mens collected via Internet-based projects may be sold to 
third parties for research; these may be as data of healthy 
controls or as part of a specific medical condition.

Historical precedent and its difficulties

In the past, drug development may have started in serendip-
ity.15 Subsequent to the Second World War, the therapeutic 
research approach became long and expensive. The initial 
step was the search into possible therapies, followed by in 
vitro and in vivo testing via multiple phases: the first phase 
for safety, the second for efficacy and the third to compare 
the treatment to the existing standard of care. In addition, 
hurdles for new drugs included FDA approval, randomized 
control trials (RCTs), and finally post-release studies. In 
some unfortunate cases, once the drug was released in the 
market, rare, but serious, adverse events would bankrupt the 
company and patients who needed the therapy would still not 
have effective treatment choices. This was particularly hard 
for patients suffering from rare diseases, where the small 
population needed a large investment of money and time, 
which was less attractive to industry to attempt a repeat 
study. In patients who had limited life spans, the long process 
precluded them from beneficial therapies. Understanding 
this need, when there was an urgency for rapid treatments, 
the FDA worked to expedite the release of new drugs, such 
as the release of new medications to treat HIV during its 
epidemic.16,17

In the case of oncology, the historical approaches in 
research and development (R&D) of a new drug followed by 
the usual phases to RCTs have been expensive. In 2018, 
pharmaceutical companies invested approximately 50 bil-
lion dollars in R&D for a 3% probability of success from 
individual projects. A 3% probability of success, despite the 
investment of financial and human effort, is too low for 
patients who may not have any treatment options.18

Changes in research

Changes in study design.  At present, a more purposeful and 
organized approach for determining the responsible cause as 
a starting point for subsequent therapy is being used.

After completion of the Human Genome Project, technol-
ogy for pinpointing mutations increased.19 Broad sweeps of 
the human genome with more than 3000 genome-wide asso-
ciation studies (GWAS) have examined about 1800 dis-
eases.20 Following GWAS or Quantitative trait locus (QTL) 
determination, microarray data allowed identification of 
candidate genes of interest.21 For allelic variants to be cor-
related to disease, large biobanks that have both patient and 
control data are compared. If a mutated allelic frequency cor-
relates at a significantly higher rate in those with the disease, 
that variant can be targeted for therapy.

In a tumor, once a driver mutation that promotes abnor-
mal growth is identified, therapy targeting the specific 
genetic alteration can be attempted.22 In the presence of mul-
tiple mutations, driver mutations are differentiated from 
bystander or passenger mutations, as tumors may have a het-
erogeneous molecular signature.

Pharmaco-genomics is the foundation for precision medi-
cine, which is now being clinically practiced in oncology 
and is being adapted in other fields. The introduction of 
molecular pathological epidemiology (MPE) allows the 
identification of new biomarkers using big data to select 
therapy23,24 (Table 1). Based on an individual’s cellular 
genetics, drugs that target the desired mutation can be stud-
ied and effective doses determined, which can result in safe 
and efficient treatments.

Big data technology allows large cohorts of biological 
specimens to be collected, and the data can be stored, man-
aged, and analyzed. At the point of analysis, machine learn-
ing algorithms (a subset of artificial intelligence (AI)) can 
generate further output data that may be different from the 
initial input data. AI can create knowledge from big data25,26 
(Table 1). For example, Beck et al.,25 using a computation 
pathology model in breast cancer specimens with AI, found 
prior unknown morphologic features to be predictive of neg-
ative outcomes.

Rapid learning health care (RLHC) models using AI may 
discover data that are of varying quality which need to be 
compared to validated data sets to be truly meaningful.29 
Subsequently, the information extracted can be processed 
into decision support systems (DSS), which are software 
applications that can eventually apply knowledge-driven 
healthcare into practice.

AI can be classified into knowledge-based or data-driven 
AI. Knowledge-based AI starts with information entered by 
humans to solve a query in a domain of expertise formalized 
by the software. Data-driven AI starts with large amounts of 
data generated by human activity to make a prediction. Data-
driven AI needs big data and, with inexpensive computing, is 
a promising economic choice.30,31
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The combination of AI and DSS is a clinically powerful 
one to improve health care delivery. For example, in a small 
study of 12 patients with type one diabetes, using AI and 
DSS allowed for quicker changes in therapy rather than the 
patients waiting for their next caregiver appointment, with-
out an increase in adverse events.32

New study designs.  With new technology for diagnosing, 
managing, and treating diseases, modifying the RCT design 
was essential. The development of master clinical trial proto-
cols, platform trials, basket/bucket designs, and umbrella 
designs has been seen over the last decade.33

Basket design: A basket trial is a clinical trial where 
enrollment eligibility is based on the presence of a specific 
genomic alteration, irrespective of histology or origin of cell 
type, and includes sub-trials of multiple tumor types. To 
qualify for the study, thousands of patients’ data need to be 
screened to find the suitable genomic alteration to get a small 
number of patients into a sub-trial.

Usually, sub-trials may be designed as early phase and 
single arm studies, with one or two stages having an option 
of stopping early if the study is considered futile. The study 
design is based on determining tumor pathophysiology/
activity and matching the target mutation with a hypothe-
sized treatment. Analogous to a screening test, a responsive 
sub-study would require a larger confirmatory study. For 
example, although rare cancers are uncommon on an indi-
vidual basis, the total sum of these cases make “rare cancers” 
the fourth largest category of cancer in the United States and 

Europe.34 These are challenging to diagnose and treat and 
have a worse 5-year survival rate as compared to common 
cancers. One option to help these patients would be to make 
them eligible for a clinical trial based on genetic dysregula-
tion of the tumor rather than organ histology.

Drugs have been studied for a signature driver mutation 
rather than for an organ-specific disease. With enough infor-
mation about the molecular definitions of the targets, the 
focus on the site of origin of the cancer is diminishing, for 
example, the study drug Larotrectinib was noted to have sig-
nificant sustained antitumor activity in patients with 17 types 
of Tropomysin Receptor kinase fusion–positive cancers, 
regardless of the age of the patient or of the tumor site of 
origin.35,36 This landmark drug was the first which was FDA 
approved for tumors with a specific mutation and not a 
disease.

Basket trials may also test off-label use of a drug in 
patients who have the same genomic alteration for which the 
drug was initially approved, or it could test a repurposed 
drug.37

Umbrella design: The umbrella design looks at a single 
disease by testing various therapies on a variety of muta-
tions, such as lung cancer. (Ferrarotto et al.;28 Table 1.)

Platform trials: Big data allows the pooling of resources. 
Data captured about biomarker status can allow patients to 
have access to various trials. Compared to a traditional RCT 
with a control and experimental arm, a platform trial uses a 
single control arm, which can be compared to many experi-
mental arms, and which may not need to be randomized at 

Table 1.  Examples of big data and new research designs trials.

Input data Population Possible prediction/conclusion

PIK3CA mutation used as a molecular 
pathology marker.23

Patients with colorectal cancer. Candidate for aspirin therapy.

DNA and RNA collected to determine early 
biomarkers, in addition to any over-the-
counter or prescription drugs, vitamins, or 
herbs taken by the participant.24

Family of those with Alzheimer’s 
disease (AD).

To determine who would have early onset 
AD.

A computational pathology model of 
breast cancer analyzed with AI found 6642 
quantitated morphological features.25

Patients with breast cancer Accurately predicted negative outcomes; 
in addition, found prior unknown negative 
prognostic determinants, that is, stromal 
morphologic structure

99,693 documents related to suicides from 
163 social media sites. Taken from 2.35 billion 
posts over 2 years. Other additional variables 
including quality of life were used.26

Korean adolescents Researchers concluded that academic 
pressure was the biggest contributor to 
Korean adolescent suicide risk.

A nonrandomized real-world data study used 
propensity score (PS) matching to balance 
>120 confounders and determined 24,131 
PS-matched pairs of linagliptin and glimepiride 
initiators.27

Type 2 diabetes patients at risk for 
cardiovascular disease collected 
from Medicare and two other 
commercial insurance data sets.

Researchers concluded that linagliptin 
has noninferior risk of a composite 
cardiovascular outcome compared with 
glimepiride.

Lung-MAP is an umbrella design trial protocol 
for phase II/III.28 Allocations to sub-studies are 
based on genomic screening.

Patients with recurrent or 
metastatic lung small cell cancer.

To determine optimal therapy for either 
matched targeted or non-matched therapy.

AI: artificial intelligence.
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the start of the trial; therefore, a platform trial may be seen as 
a prolonged screening process.38

Even if the traditional RCT is planned, matching various 
data sets with AI to run various configurations can result in 
determining possible therapy choices, and can eliminate time 
and investment outlay. In the end, this could speed up the 
process of drug testing and result in a quicker arrival to the 
RCT stage.

Adverse Drug Events (ADE): ADE reporting is a continu-
ous process. Big data in medicine includes literature searches 
for ADE; using data mining with AI can yield better results 
than traditional methods in regards to accuracy and preci-
sion.39 In addition, big data can visualize ADE interactions 
between medications and can be updated on a daily basis.

Real-world evidence.  Real-world evidence (RWE), is infor-
mation obtained from routine clinical practice and it has 
increased with the use of the EHR. RWE in the digital format 
can be significantly furthered by big data. Clinical practice 
guidelines that have been using RWE-based insights include 
the National Comprehensive Cancer Network. In addition, 
the American Society of Clinical Oncology suggests using 
RWE in a complementary nature to randomized controlled 
trials.40 Big data in RWE allows for more rapid evaluation of 
therapy in the clinical setting, which is a key element in the 
cost of R&D of drugs. The 21st Century Cures Act (signed 
into law 13 December 2016) resulted in the FDA creating a 
framework for evaluating the potential use of RWE to help 
support the approval of a new indication of a drug, or to help 
support post-approval study requirements.41 Focusing on 
EHR data, industry is starting to generate interest in a new 
pathway to drug approvals. An example would be using nat-
ural language processing and machine learning systems to 
provide observational clinical studies with adequate quality 
to attempt justification of approval for the new indication of 

drugs. Another example includes using AI technology to 
identify the effect of comorbidities on therapy outcomes and 
subgroups in single disease entity all of which will enhance 
personalized medicine. RWE data that are collected include 
demographics, family history, lifestyle, and genetics, and 
can be used to predict probabilities of diseases in the future. 
Once marketed, RWE along with RCT could speed up the 
FDA requirements to get the therapy to the patient or to com-
pare drugs. A recently published study that used RWE to 
compare cardiovascular outcomes between different thera-
pies was the Cardiovascular Outcome Study of Linagliptin 
versus Glimepiride in Type 2 Diabetes (CAROLINA) trial. 
(Patorno et al.;27 see Table 1.)

Big data: technology and security

Computing technology has gotten cheaper which allows for 
the extensive use of big data. Examples of big data technol-
ogy can be characterized by its function: either operational 
or analytic (Table 2). Both systems have specific advantages, 
formats, data forms, and computer network capabilities 
(Figure 2). 

Big data security should include measures and tools that 
guard big data at all points: data collection, transfer, analysis, 
storage, and processing. This includes the security needed to 
protective massive amounts of dynamic data and faster crea-
tive processing like massive parallel processing systems. 
The risk to data may be theft, loss, or corruption either 
through human error, inadequate technology (example crash 
of a server), or malicious intent. Loss of privacy with health-
related information adds to the need for greater security and 
exposes involved organizations to financial losses, fines, and 
litigation.

Processes to prevent data loss and corruption at each 
access point needs to be in place, for example, during data 

Table 2.  Big data technology with examples of systems in use.

Operational Analytical

Advantages Allows for real-time capture and 
storage of data.

Allows data to undergo complex analysis rapidly 
to provide answers.

System format NoSQLa works well for concurrent 
data requests and has low latency of 
response time.42

Systems are designed for high throughput 
(measured in results/unit of time).

Data forms May not be in the usual tabular 
relationship form. It is faster and 
less expensive than usual relational 
data bases, and can use the cloud 
to perform quicker big-volume 
computations, making big data 
implementation practical.

Examples include:
MPPb—specialized analytic data systems that 
can aggregate and analyze huge data sets across 
many nodes,43 this allows functions concurrently 
while minimizing time and cost of computation.
MapReduce—a new method of analyzing data 
complementary to that provided by SQLc and 
other secure analytic systems like Hadoop.44

Computer network capability Works across many clusters. Works across many clusters.

aNon-structured query language.
bMassively parallel processing.
cStructured query language.
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collection, there needs to be interruption to incoming threats. 
Security measures include encrypting data at input and output 
points, allowing only partial data volume transfers and analy-
sis to occur, separating storage compartments on cloud com-
puting, limiting access with firewalls, and other filters.45 For 
example, Block chain technology is a security device that can 
authenticate users, track data access, and, due to its decentral-
ized nature, can limit data volume retrieval.46 Standardizing 
big data security continues to be an area where further 
research and development is required. A review of 804 schol-
arly papers on big data analytics to identify challenges, found 
data security to be a major challenge while managing a large 
volume of sensitive personal health data.47

Concerns

With changes in the scientific method, difficulties are to be 
expected. Examples of big data with non-traditional research 
techniques and negative consequences are listed in Table 3. 
These include preemptive release of drugs to the market as in 
the Bellini trial, loss of privacy of the relatives of criminals 
who underwent ancestry determination, and questions of 
ownership of data. Whether the developing research systems 
will justify the trust invested in it by altruistic participants, 
patients and physicians need to be seen. Government regula-
tors are included in the struggle as a shifting legal framework 
could challenge everyone involved (Table 3).

Changing cultural context and the physician

All hospitals have collected biological specimens as part of 
their routine workflow, an example being routine blood 
tests. In the ideal world, many doctors would like to do 

some research; however, in the real world, research is per-
formed by the minority of physicians. A survey of physi-
cians across two hospitals in Australia found physicians 
interested in having biobanks in hospitals;64 however, large 
biobanks may be more efficient and financially viable. 
Rather than discounting the routinely collected specimens, 
consideration to capture this potential resource should be 
explored. One option is to explore how to close the gap 
between those who routinely prepare the specimens, those 
who store it, and those who use the information for research. 
One such project, Polyethnic-1000 includes the collection 
of biological specimens from minority populations via com-
munity and academic hospitals in New York City.65

Correlations between genetics and disease, and connec-
tions that were not obvious in the past, can become visible 
as the data set increases in size. Instead of starting with peo-
ple who have the disease in whom the new drug is tested in 
a RCT and then waiting to determine post-marketing study 
outcomes, large data collections of genetic and demographic 
information (including family history, lifestyle, etc.) can be 
used to show the risk of disease in a population and predict 
if risk modification can prevent illness. The shift toward 
prevention rather than cure may get a big boost from big 
data. In those with the disease, cellular specifics (receptors, 
cytokines, along with gene variants) can predict what sites 
to target (increasing or decreasing effects) in order to 
develop therapies that are personalized in that subset of the 
same disease.

The growth of the Internet over the last 20 years and crea-
tion of open access to scientific literature has resulted in the 
availability of unlimited medical information to patients.66 It 
has led to the direct use of products and practices by the gen-
eral public, at times eliminating the need for the clinician’s 

Figure 2.  Big data security.
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input. Lack of transparency has created an inconsistently 
safe environment, and this is especially true among those 
who participate in social media research. Minimally invasive 

activities like mailing a saliva swab for genetic testing, while 
done for reasons of curiosity like determining one’s ancestry, 
contribute to the collection and sale of large amounts of 

Table 3.  Weaknesses and consequences faced by big data in the changing research landscape.

Weakness Consequences Examples

Big data is 
heterogeneous in nature.

Information may not be readily accessible. Health fair data, local hospital data, non-electronic 
data, wearable monitoring devices, and specimens.48

Limited insight into 
content and procedures

Imbalance in power between large complex 
systems international technology firms and 
the public.

In Internet-based genetic studies, the participants 
think the product they are paying for the test kit 
and services, and could be unaware that the real 
product is the data from their DNA.49

Data systems may not be 
compatible or integrated 
with others.

Information silo: data remains isolated within 
a data set and is not adequately shared. RCT, 
regulators, biobanks, and participants may be 
disconnected.

Repeated consent may be needed for the same 
goals. In internet based studies informed consent 
forms may not be ideal.50,51

Big data is vast and is 
not yet regulated under 
privacy laws.

Loss of privacy for participants or providers. An encryption breach of provider data in an 
Australian study occurred.52,53

Loss of privacy for biological relatives Indirect loss of privacy was noted in the case of a 
relative of an ancestry seeker who was arrested 
for a serious crime. His discarded DNA was 
matched to his relative’s DNA, which has been sold 
to a third party, and which was accessed by law 
enforcement legally without a court order.54,55

Rushed preemptive 
release of drugs

The results of the interim phase 3 BELLINI 
trial, which had a greater risk of death in 
the treatment arm compared to the placebo 
arm Venetoclax, a BCL-2 inhibitor with 
bortezomib and steroids for the treatment 
of multiple myeloma, was inferior to the 
placebo in regards to mortality, and the FDA 
stopped clinical trial enrollment.

Highlighted the need for caution in use of a therapy 
in specific clinical use; the drug was safely used for 
other cancers.56

Insufficient vetting 
process of technology

Theranos example where use of technology 
for laboratory testing was not verified 
instead direct consumer advertising attracted 
investors.

Need for testing the product /technology 
adequately re-emphasized.57

AI can predict patterns 
and associations.

An ethical question of whether health 
insurance companies can charge those at risk 
from these predictions more for insurance.

Including labeling those at risk as having a 
preexisting condition.

Data ownership 
ambiguity

HeLa cells used for decades; supreme court 
rules no one can own a patent for the human 
genome.58,59

Myriad Genetics cannot patent technology involving 
genes that affected breast cancer, which were 
held as a trade secret; question who regulates 
ownership and unclear if government intervention 
may partially repudiate the Bayh Dole Act of 1982, 
which allowed non-government agencies, including 
universities, to own patents on discoveries made 
with federal funding.60

Finances Questions about finances and bankruptcy 
challenged ownership of genetic material. 
After many successful studies, deCODE 
Genetics company in Iceland which had the 
country’s biobank went bankrupt and unclear 
ownership of data.61

Understanding that creation and maintenance of 
a biobank need to include a fundamentally sound 
economic model, including understanding the 
market and the value chain for sustaining cost for a 
“total life cycle cost of ownership model” (TLCO) 
has been put forth by the National cancer institute 
for the human biobank.62,55

Biobanks need publicity Lack of public awareness Limited general public information seems to be 
the norm, despite the presence of as many as 280 
biobanks in Europe.63

RCTs: randomized control trials; FDA: Food and Drug Administration; AI: artificial intelligence.
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genetic information to third parties. The loss of privacy is a 
clear risk outlined in the several pages of online consent that 
most subjects will probably not read.67,68 There are collec-
tions of large data banks with more than a million biospeci-
mens in many private organizations. In the past, medical big 
data may have seemed more aspirational than practical with 
both physicians and the general public unaware of its risks 
and benefits.

For physicians, researchers, and the general public, flexi-
bility to find answers rapidly is vital for our well-being today 
more than ever before. For example, in the coronavirus dis-
ease of 2019 (COVID-19) pandemic, the FDA has engaged 
directly with more than 100 test developers since the end of 
January 2020. This unprecedented policy by the FDA is 
attempting to get rapid and widespread testing available. 
According to the policy update, responsibility for the tests, 
including those by commercial manufacturers, is being 
shared with state governments and these laboratories are not 
required to pursue emergency use authorization (EAU) with 
the FDA.69

An example of big data with an alternate research para-
digm using public participation in the COVID-19 pandemic 
could be as follows: direct-to-consumer marketing of a quan-
tifiable antibody home test for COVID-19. The FDA is 
working with the Gates foundation to produce a self-test kit 
for COVID-19 as a nasopharyngeal swab.70 If a biobank reg-
istry is subsequently created for COVID-19, it would pro-
vide us with tremendous information, including, but not 
limited to, an accurate mortality rate and identification of 
those who have high antibody levels. The identification of 
participants with high antibody levels may then allow them 
to donate antibodies to those at risk for worse outcomes.

Limitations of the article

The article is about the various aspects of data and medical 
research and is limited to being a relevant analysis of litera-
ture rather than an exhaustive review. The most cited or elec-
tronically accessed articles have been used as references. 
Changes in the many aspects of data collection to security 
are based on rapidly changing technology. Information 
which had physical restrictions and was located in controlled 
physical premises have migrated to the cloud with digital 
transformation. In addition, dynamic factors like enterprise 
mobility or even the current COVID-19 lock down has 
changed the way people work. A comprehensive review and 
in-depth analysis would be out of the scope of a review 
article.

Final thoughts

The increasing use of big data and AI with heterogeneous 
large data sets for analysis and predictive medicine may 
result in more contributions from physicians, patients, and 
citizen-scientists without having to go down the path of an 

expensive RCT. The formative pressures between altruistic 
public participants, government regulators, Internet-using 
patients in search of cures, clinicians who refer patients, and 
industries seeking to reduce cost, all supported by cheaper 
technology, will determine the direction of how new thera-
pies are tried out for use. Increased government interest and 
funding in this aspect is noted with programs like the “All of 
Us initiative.”71 At present, pressing needs in the COVID-19 
pandemic force flexibility between all interested parties to 
conduct investigations and find answers quickly.

Conclusion

Personalized health care is expanding rapidly with more 
clues for cures than ever before. Each solution presented 
brings its own set of problems, which in turn needs new solu-
tions. Collaboration across silos, like government agencies, 
commercial manufacturers, researchers, and the public needs 
to be flexible to help the greatest number of patients. Big 
data and biobanks are tools needed for basic research, which, 
if successful, may lead to new therapies and clinical trials, 
which will ultimately lead to new cures. Data that are col-
lected, analyzed, and managed still needs to be converted 
into insight with the goal of “first do no harm.” All involved 
must have the common goal of data security and transpar-
ency to continue to build public trust.
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