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Abstract

MicroRNA target sites are often conserved during evolution and purifying selection to maintain such sites is expected. On
the other hand, comparative analyses identified a paucity of microRNA target sites in coexpressed transcripts, and novel
target sites can potentially be deleterious. We proposed that selection against novel target sites pervasive. The analysis of
derived allele frequencies revealed that, when the derived allele is a target site, the proportion of nontarget sites is higher
than expected, particularly for highly expressed microRNAs. Thus, new alleles generating novel microRNA target sites can
be deleterious and selected against. When we analyzed ancestral target sites, the derived (nontarget) allele frequency
does not show statistical support for microRNA target allele conservation. We investigated the joint effects of microRNA
conservation and expression and found that selection against microRNA target sites depends mostly on the expression
level of the microRNA. We identified microRNA target sites with relatively high levels of population differentiation.
However, when we analyze separately target sites in which the target allele is ancestral to the population, the proportion
of single-nucleotide polymorphisms with high Fst significantly increases. These findings support that population differ-
entiation is more likely in target sites that are lost than in the gain of new target sites. Our results indicate that selection
against novel microRNA target sites is prevalent and, although individual sites may have a weak selective pressure, the
overall effect across untranslated regions is not negligible and should be accounted when studying the evolution of
genomic sequences.
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Introduction
MicroRNAs are small endogenous RNAs that can regulate
virtually any type of biological process. Following their discov-
ery in humans this century (Pasquinelli et al. 2000), there are
now over 2,500 human microRNA precursors annotated in
miRBase (Kozomara and Griffiths-Jones 2014), although<900
are classified with high confidence. Soon after microRNAs
were found in multiple animal species (Lagos-Quintana
et al. 2001; Lau et al. 2001; Lee and Ambros 2001), the first
target prediction tools became available (Enright et al. 2003;
Lewis et al. 2003; Stark et al. 2003). Only in the last few years
have these developments permitted the evolutionary analysis
of target sites (Farh et al. 2005; Grün et al. 2005; Lewis et al.
2005; Stark et al. 2005; Sood et al. 2006) revealing that many
microRNA target sites are highly conserved among species. In
contrast, although some microRNA families have been con-
served for millions of years, their targets appear to differ be-
tween species (Hui et al. 2013). Indeed, evidence from
vertebrates suggests that gains and losses of target sites
may be more important than changes in the microRNAs
themselves during the evolution of microRNA-based gene
regulation, as microRNA genes are usually highly conserved
(see Discussion in Marco 2018a).

Several studies have found that gene transcripts are de-
pleted of target sites for coexpressed microRNAs (Farh et al.
2005; Stark et al. 2005; Sood et al. 2006). In particular long 30-
UTRs might accumulate microRNA target sites by random
mutation, yet they actually have a lower frequency than
expected by chance, suggesting that there has been selection
against these sequences (Farh et al. 2005). These missing sites
have been called “anti-targets” (Bartel and Chen 2004; Farh
et al. 2005). Interestingly, target sites for the same microRNAs
tend to be conserved in transcripts expressed in neighboring
tissues (Stark et al. 2005). These studies have shown that
selection against microRNA target sites can be inferred
from comparisons among distantly related species.
However, the relative impact of selection against microRNA
target sites in human populations is not known.

Analysis of human populations has suggested purifying
selection was particularly strong at microRNA target sites,
even in nonconserved sites (Chen and Rajewsky 2006;
Saunders et al. 2007). Negative selection against gaining
microRNA target sites has also been described in Yoruban
populations, but the pattern was not detected in other pop-
ulations (Chen and Rajewsky 2006). Correspondingly, we have
previously found evidence of selection against microRNA tar-
get sites in a study in Drosophila populations (Marco 2015).
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Specifically, we found selection against target sites of maternal
microRNAs in maternally deposited transcripts within the
egg and early ambryo. More recently it has been shown
that this effect is particularly strong for the mir-309 cluster,
whose microRNAs are abundant in the egg and almost absent
in the zygote (Zhou et al. 2018). Characterizing this type of
selection in humans would reveal to which extent it shapes
our genomes. However, the strength and prevalence of selec-
tion against target sites is human populations is still un-
known. Here we investigate single-nucleotide
polymorphisms (SNPs) at human microRNA target sites
and evaluated the impact of selection against target sites.
To do so, we consider pairs of segregating alleles in which
one of the allele as a target site and the other was not. Then
we compare the allele frequency distributions with that of
estimated background distributions to quantify the strength
of selection for or against microRNA target sites.

Results

Bias toward MicroRNA Nontarget Alleles in Human
Populations
In order to investigate the selective pressures on microRNA
target sites in human populations, we first mapped human
SNPs to putative canonical microRNA target sites such that
one allele is a target site and the alternative allele is not a
target site (see Materials and Methods for details). The non-
target allele in this pair is called a “near-target” (Marco 2018b).
We first compared the derived allele frequency (DAF) distri-
bution of target sites for highly expressed microRNAs with a
background (expected) distribution obtained by conducting
the same analysis on the reverse complement sequences of
30-UTRs (see Materials and Methods). We considered those

SNPs for which the derived allele is the target allele. If the
overall selective pressure is to fix new target sites (positive
selection favoring new interactions), DAF values should be
the higher than expected. On the other hand, if there is se-
lection against microRNA target sites, the DAF distribution
should be skewed toward smaller values (fig. 1). We observe
an overall excess of low frequency derived alleles (fig. 2A;
P¼ 0.009, one-tailed Kolmogorov–Smirnov test).

It is expected that a selective pressure on coexpressed
microRNA/mRNA pairs will be tissue-specific. Therefore, we
compared the DAF distributions as above for ten specific
tissues, considering only interactions in which the
microRNA and the potential target are coexpressed. For in-
stance, for lung coexpressed microRNA/transcripts we found
a DAF distribution significantly skewed toward the nontarget
allele, indicating selective pressures against the target allele
(one-tailed Kolmogorov–Smirnov test, P¼ 0.00012; fig. 2B).
For all tissues analyzed we observe a shift in the DAFs toward
the nontarget allele (supplementary fig. 1, Supplementary
Material online), all but breast within a 10% False Discovery
Rate (less than one expected false positive; fig. 2C and sup-
plementary table 1, Supplementary Material online). The
poor statistical signal in breast tissue can be easily explained
by a very small sample size (42 SNPs in total).

Genes can have alternative polyadenylation in different
tissues, affecting microRNA target sites. However, in the con-
text of microRNAs, this has been explored mostly in cell lines
(Nam et al. 2014). We found alternative polyadenilation in-
formation for two of the tissues here investigated: blood and
kidney (Müller et al. 2014). When we consider target sites
whose 30-UTR has been experimentally detected in those
tissues, the shift to the nontarget allele is significant

FIG. 1. Analysis of derived allele frequencies at target sites. Pairs of alleles where one allele is a target site and the other is not are identified, and only
those where the nontarget allele was the ancestral state were further considered. The derived (not ancestral) allele frequency distribution will be
skewed toward the target allele (right) if selection favors the emergence of new microRNA target sites, or to the nontarget allele (left) if selection
acts against new targets.
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(supplementary table 1 and supplementary fig. 1,
Supplementary Material online).

Alternatively, we can compare the allele frequency distri-
butions between target sites for highly expressed microRNAs
versus target sites for nonexpressed (nondetected)
microRNAs in a given tissue. To do so we identified
microRNAs with no read counts detected across multiple
expression experiments (see Materials and Methods) and
used their target sites as our background (expected) frequen-
cies. Consistently with the results above, we found that for
most analyzed tissues the DAF distribution when the ances-
tral allele is a nontarget is skewed to the nontarget allele
(supplementary fig. 2 and supplementary table 2,
Supplementary Material online). In summary, the distribution
of allele frequencies shows evidence of selection against
microRNA target sites in human populations. Again, the
results are consistent when taking into account alternative
polyadenylation in blood and kidney (supplementary table 2
and supplementary fig. 2, Supplementary Material online).

Wobble pairing has been also observed in microRNA/tran-
script interactions. Under our hypothesis, selection against
target sites will be weaker at sites in which the nontarget
allele is a potential target with a wobble pairing (GU).
Hence, we partitioned the data set of targets in those whose
near-target allele is a wobble paired position and those which
are not. We observed that for near-target-wobble the shift to
the nontarget allele is not significant (0.682), whereas for the
nonwobble there was a significant shift (0.009; supplementary
fig. 3, Supplementary Material online). These results furthers
strengths the evidence for selection against microRNA target
sites.

The Effect of MicroRNA Expression Levels and
Evolutionary Conservation
We next considered the potential impact of microRNA con-
servation. On the one hand, evolutionarily conserved
microRNAs may have a weaker effect on selection against

microRNA targets, as partly deleterious target alleles may
have been cleared from the population. On the other hand,
evolutionarily conserved microRNAs tend to be highly
expressed, and therefore it is expected that the selective pres-
sure to avoid targets for such microRNAs should be stronger.
In other words, expression and conservation are not indepen-
dent to each other. We therefore included both factors in the
analysis: the level of expression of the microRNA and a mea-
sure of the phylogenetic conservation of the microRNA
sequence.

We analyzed cases where the derived allele is a target site
(as in the previous section); testing whether frequency spectra
were different across different levels of microRNA conserva-
tion (human-primate specific, conserved in mammals, and
conserved in animals) and different levels of expression
(low, mid, and high as described in Materials and Methods).
To evaluate the joint effect of conservation and expression,
we build a linear model of ranked independent variables with
interactions (this is equivalent to the Scheirer–Ray–Hare test
[Sokal and Rohlf 1995, pp. 445; see Materials and Methods]).
The interaction term was not statistically relevant in any of
the models (supplementary table 3, Supplementary Material
online). In general, from the fitted model it is evident that
expression has a significant impact in the microRNA selective
avoidance, whereas conservation has no detectable impact,
once the expression level has been taken into account (fig. 3
and supplementary table 3, Supplementary Material online).

More specifically, in figure 3 the contribution of expression
and conservation to the ranks in the linear model are plotted
for all ten tissues. The smaller the rank, the greater the shift to
the ancestral nontarget allele in a comparison of DAFs.
Overall, we observe that as the expression level increases
the rank decreases, whereas the rank is similar for all three
conservation levels (fig. 3). The effect is particularly clear in
lung, liver and kidney. For brain and breast, we did not find
such an association (fig. 3 and supplementary table 3,
Supplementary Material online). From these analyses we

FIG. 2. Derived allele frequencies (DAF) at microRNA target sites. (A) Derive allele frequency distribution of microRNA target sites, where the
derived allele is a target site, compared with a background distribution for the whole data set. (B) As in (A) but for interactions between
coexpressed microRNA/transcript pairs in lung tissue. (C) Significance levels for differences in the DAF distribution for ten tissues expressed as
–log 10[q-value] (see Materials and Methods). The vertical line indicates the threshold for one expected false positive.
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concluded that expression level, rather than microRNA evo-
lutionary conservation, determines the selective pressure
against microRNA target sites.

Population Differentiation at Target Sites
If a microRNA target site is under selective constraints, we
should expect differentiation among populations at these
sites to be relatively low. To investigate this prediction, we
grouped SNPs at target sites for highly expressed microRNAs
according to their Fst and compared the relative frequency of
these SNPs compared with the background (see Materials
and Methods). However, in figure 4A we observed an enrich-
ment in high Fst values. To further explore the relative con-
tribution of microRNA target gains and losses during
population differentiation we split the data set in two groups,
depending on whether the target allele was ancestral or de-
rived. Strikingly, polymorphic microRNA target sites where
the ancestral allele is the target show high levels of population
differentiation (fig. 4A, red line). In contrast, for novel
microRNA target sites there is a deficit of high Fst SNPs com-
pared with the background expectations (fig. 4A, blue line).
When we repeated the analysis for moderately expressed
microRNA we found a similar pattern (fig. 4B). This may re-
flect that positive selection driving the generation of novel
microRNA target sites is negligible. Also, evolution by
microRNA target site loss seems important in human pop-
ulations. In table 1, we show SNPs in microRNA target sites
with a Fst >0.6. As suggested in figure 4A and B, in a majority
of target sites with a high degree of population differentiation

the target allele was ancestral (21 out of 35), many being
probably target losses in out-of-Africa populations (12 out
of 21). Predicted target sites for microRNAs with no detect-
able expression level did not show any significant level of
population differentiation (fig. 4C).

One of the SNPs in table 1 has been recently associated
with skin color variation in Indian populations: rs2470102
(Sarkar and Nandineni 2018). Interestingly, this is in a pre-
dicted a target site for miR-1180-3p in MYEF2. This gene has
been associated with skin color as well, although the func-
tional relationship is not clear (Mishra et al. 2017). We inves-
tigated a potential relationship between absolute latitude
(distance to the Ecuador) and the frequency of the target
allele and we found a strong association (fig. 4D; P¼ 0.0015,
R-squared adjusted¼ 0.4223). Given that the microRNA itself
originated in primates (Arcila et al. 2014), and that the target
allele is ancestral and conserved, the emergence of a new
microRNA may have imposed a selective pressure to loss
the target site in populations with less exposure to UV light.
However interesting, these associations remain speculative at
the moment, and demographic differences between popula-
tions may also have an impact in this observed association.

These results further suggest that loss rather than conser-
vation of targets may be more frequent in population dy-
namics. Thus, we revisited the analysis of DAFs in figure 2 and
considered this time target sites where the ancestral allele was
a target site. If there is a detectable selective pressure to main-
tain target sites we will expect the DAF to be biased toward
the target (ancestral) allele. In figure 5, we plot the bias (as the

FIG. 3. The effect of microRNA conservation and expression level on the frequency of target alleles. Rank differences in our linear model (see
Materials and Methods) explained by expression (solid lines) and conservation (dashed lines) levels for ten different tissues. Highly expressed and
conserved in animals microRNAs were taken as the intercept of the model (rank zero).
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D-statistic in a Kolmogorov–Smirnov test) and the signifi-
cance (as the log 10 of the P-value) and we observe that in
this set the bias was not significant (blue dots). On the con-
trary, if we compare these results with those obtained for
nontargets as ancestral sequences we observe a clear and
significant biased toward the nontarget allele (fig. 5).

In one case we found a microRNA with an SNP within its
seed sequence (the region that determines the targeting
property of the microRNA), which shows some evidence of
population differentiation (rs7210937; Fst ¼ 0.3314). In this
case, the Fst value between African and European populations
is remarkably high (Fst ¼ 0.6129; Nei’s estimate [Nei 1986;
Bhatia et al. 2013]). In European populations, 92.5% of se-
quenced individuals present the ancestral form of miR-
1269b, whereas in African population, the derived version is
more frequent (59.8%). As a shift in the seed sequence may
have an impact on the evolution of 30-UTRs, we further stud-
ied target sites whose ancestral form is a target for the derived
miR-1269 microRNA (344 in total). Then we compared the
frequency of the target site allele between European and
African populations. We found that in African populations
the frequency of target alleles is lower than in European
populations at these sites (Wilcoxon nonparametric test for
paired samples; P¼ 0.021), whereas for the ancestral miR-

1269b we did not find any significant difference. These results
suggest that a shift in the allele frequencies affecting the seed
sequence of a microRNA can have an effect on the allele
frequencies at the novel target sites, specifically toward the
nontarget allele.

Discussion
The study of allele frequencies has been extensively used to
detect selective pressures in human populations (Chen and
Rajewsky 2006; Barreiro et al. 2008; Enard et al. 2014). Here, we
show that the patterns of allele frequencies at 30-UTRs show
evidence of selection against most microRNA target sites.
First, the allele frequencies at target sites are biased toward
the nontarget allele when the derived allele is a target se-
quence. These effects are strongest in the cases where the
corresponding microRNAs are highly expressed, suggesting
that interaction between the microRNA and the target is a
key is the source of selection against target sequences. The
microRNAs that have been conserved over longer periods of
vertebrate evolution did not impose detectably greater selec-
tion against their target sequences, once the effect of expres-
sion levels had been taken into account. On the other hand
we failed to detect any noticeable effect when the target sites

FIG. 4. Fst enrichment in polymorphic microRNA target sites. Comparisons of the Fst values for SNPs within microRNA target sites with control sites
(background sites, see Materials and Methods). For each range of Fst values, the proportion of sites in that range was calculated for the microRNA
target sites (Pt) and for the background sites (Pb). The value plotted is the log(Pt/Pb). (A) All targets sites for highly expressed microRNAs (black,
dashed line); target sites where the target allele is ancestral (red) and targets sites where the target site is not ancestral (blue). (B and C) As in (A) but
for moderately expressed and zero expressed microRNAs, respectively. (D) Regression between absolute latitude in samples human populations
and the target allele frequency associated to SNP rs2470102.
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was ancestral, and therefore we did not find statistical signal
supporting selection to maintain existing microRNA target
sites. Than doesn’t mean that there is no purifying selection
to keep functional sites, but that this is comparably small
compare to selection to avoid new, potentially deleterious,
microRNA target sites. As a matter of fact, novel microRNA
target sites has been identified in various studies as disease
causing mutations (Abelson et al. 2005; Dusl et al. 2015).

The most popular microRNA target prediction programs
rely on target site conservation to reduce the number of false
positives (Agarwal et al. 2015) and/or do not provide a stand-
alone version to run on custom data sets (Paraskevopoulou
et al. 2013). Therefore, we used a naive microRNA target
prediction method that reports canonical targets and near-
target sites (Marco 2018b). That allowed us to study pairs of
alleles segregating at target sites without any other constraint.
On the other hand, we would expect a high number of false
positive in target predictions (reviewed in Alexiou et al. 2009).
Remarkably, we found a significant pattern of selection
against microRNA target sites. This reinforces our initial

hypothesis and suggests that, if we would be able to restrict
the analysis to bona fide target sites, the signal might be
stronger. One possibility is to evaluate experimentally vali-
dated target sites. However, these experiments are based on
reference genomes, so segregating target sites whose target
allele is not in the reference genome will be lost from the
analysis. The way forward may be to perform high-
throughtput microRNA target experiments, like HITS-CLIP
(Chi et al. 2009), in cells derived from different populations.
The continuous drop in the costs of sequencing and high-
throughput experiments may allow this in the near future.
Indeed, high-throughput experimental evaluation of segregat-
ing alleles at regulatory motifs (transcription factor binding
sites, RNA binding sites, etcetera) is a promising area of re-
search which will help us to move from a typological (refer-
ence genome) to a population view of gene regulation.

Another way to study the effect of selection in populations
is to evaluate the population differentiation (Coop et al. 2009;
Li et al. 2012). We found that, at microRNA target sites in
general, there is an enrichment in high population

Table 1. Target Allele Frequencies at Polymorphic Sites with a High Fst Values.

Target Allele Frequencies

miRnamea Gene snpName Targetb EASc AMR AFR EUR SAS ALL Fst

miR-92a-3p PTK6 rs186332 d 0.964 0.873 0.047 0.928 0.593 0.630 0.849
miR-518d-5p MTAP rs7868374 a 0.008 0.048 0.684 0.005 0.118 0.213 0.824
let-7a-5p MTAP rs7875199 a 0.054 0.058 0.796 0.007 0.129 0.256 0.800
miR-202-5p ATP1A1 rs1885802 a 0.043 0.127 0.811 0.034 0.045 0.256 0.791
miR-1180-3p MYEF2 rs2470102 a 0.753 0.339 0.925 0.006 0.272 0.497 0.773
miR-24-3p SCN2B rs624328 d 0.941 0.891 0.252 0.951 0.967 0.760 0.767
miR-21-3p C4orf46 rs11544037 a 0.025 0.262 0.854 0.130 0.169 0.326 0.745
miR-130a-3p SLC30A9 rs12511999 a 0.049 0.236 0.913 0.250 0.222 0.377 0.730
miR-513a-3p TCERG1 rs3822506 d 0.718 0.117 0.033 0.092 0.220 0.231 0.722
miR-1296-5p BCL7C rs11864054 a 0.088 0.455 0.976 0.618 0.841 0.628 0.714
miR-192-5p C12orf65 rs1533703 a 0.998 0.726 0.149 0.769 0.795 0.651 0.707
miR-221-5p FZR1 rs10155 d 0.798 0.473 0.015 0.294 0.302 0.348 0.692
miR-7-5p ENAM rs7665492 a 0.023 0.133 0.744 0.058 0.055 0.242 0.685
miR-514a-3p EXOC5 rs3742577 a 0.114 0.125 0.845 0.119 0.121 0.311 0.683
miR-769-5p ARIH1 rs11072379 a 0.235 0.212 0.894 0.095 0.097 0.351 0.674
miR-769-5p MPHOSPH9 rs1727314 a 0.977 0.726 0.142 0.768 0.741 0.634 0.668
miR-381-3p PLXNA4 rs6968754 a 0.166 0.445 0.920 0.285 0.361 0.466 0.658
miR-520d-3p UBE2Q1 rs11265634 a 0.098 0.221 0.870 0.186 0.199 0.356 0.649
miR-513c-5p CYB5R4 rs6912739 d 1.000 0.932 0.381 0.954 0.994 0.818 0.646
miR-335-3p PLCB2 rs4257181 a 0.446 0.899 0.987 0.991 0.911 0.853 0.643
miR-19b-3p TRNT1 rs60884103 d 0.699 0.242 0.054 0.024 0.360 0.264 0.643
miR-22-3p OPLAH rs28475718 d 1.000 0.957 0.437 0.989 0.969 0.838 0.641
miR-335-3p ANGEL2 rs41277158 a 0.997 0.950 0.412 0.963 0.949 0.821 0.641
miR-103a-3p HEXA rs11629508 d 0.774 0.839 0.179 0.946 0.943 0.694 0.631
miR-34a-5p CDPF1 rs1053332 a 0.001 0.169 0.746 0.194 0.082 0.276 0.631
miR-144-3p CFAP61 rs1410937 a 1.000 0.954 0.412 1.000 1.000 0.839 0.626
miR-144-5p RSU1 rs6977 d 0.895 0.921 0.275 0.982 0.932 0.760 0.625
miR-223-3p PCDH15 rs11003862 d 0.055 0.591 0.731 0.764 0.440 0.526 0.625
miR-145-5p C3orf85 rs56027044 d 0.164 0.392 0.879 0.590 0.441 0.524 0.622
miR-509-5p PKDREJ rs6007729 a 1.000 0.937 0.421 0.963 0.964 0.825 0.621
miR-197-3p GP2 rs12444232 d 0.682 0.157 0.032 0.047 0.190 0.214 0.616
miR-200b-3p PCDH15 rs11003861 a 0.810 0.339 0.048 0.179 0.454 0.347 0.612
miR-124-3p CPSF4 rs1043466 d 0.660 0.716 0.055 0.833 0.618 0.535 0.608
miR-381-3p INAFM2 rs2289333 d 0.554 0.308 0.007 0.090 0.153 0.204 0.607
miR-377-3p OGDHL rs6816 a 0.105 0.529 0.933 0.553 0.582 0.566 0.607

aRepresentative microRNA of the family.
bThis column indicates if the target allele is ancestral (“a”) or derived (“d”).
cTarget allele frequency for the five superpopulations analyzed (see Materials and Methods for definitions).
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differentiation. This result was observed by Li et al. (2012).
However, we found that this trend only holds for those sites
at which the ancestral allele was a microRNA target site and
the derived allele is a nontarget. The loss of a microRNA target
(as in the examples reported in a previous work [Li et al.
2012]) may be relatively frequent. It follows that the nontar-
get allele might be neutral or even advantageous in some of
these cases. It is noticeable that in the examples in which the
derived allele reaches a high frequency, that occurs in the
non-African populations, which is the pattern that would
be expected if a neutral derived allele spread by genetic drift
during founder events. Loss of target sites could also have
advantageous effects, though the complex interactions that
occur in regulatory networks. For example, it has been pro-
posed that in the human lineage the loss of microRNA target
sites contributed to an increase in the expression levels of
some genes (Gardner and Vinther 2008). We also recently
reported the loss of multiple target sites in Out-of-African
populations (Helmy et al. 2019). Our work suggests that this
loss of targets may be continuing now in human populations.
Selection in favor of new target sites appears to be rarer: we
found a strong signal of purifying selection against novel
microRNA target sites.

It is worth mentioning that our result as well as other
works are based on precomputed Fst values that may be
affected by systematic biases in allele imputation. As more
genome sequences of high quality are released, and new Fst

estimations become available, it will be important to re-
evaluate the impact of population differentiation in
microRNA target sites. In general, our results also depend

on the ability to predict microRNA target sites from primary
sequences. As the number of polymorphic microRNA target
sites experimentally validated is very limited, at the moment
our approach is the only possible. However, it’ll be important
to re-evaluate our results in due course as more data sets
become available. Also, our statistical analysis relies on two
types of null models: microRNAs with not detected expres-
sion, and the analysis of the reverse complement sequence of
30-UTRs. It is possible that microRNAs expressed in only a few
cells are wrongly attributed to the “null” class. Likewise, the
reverse complement of 30-UTR could also be potentially tran-
scribed (antisense transcripts) and, hence, wrongly selected as
“null” class. In any case, the use of complementary null mod-
els leading to similar results supports our hypothesis, and
indicates that the use of better annotated data sets in the
future may even increase the statistical evidence in favor of
selection against microRNA target sites.

Our results suggest that new microRNA target site gener-
ating mutations (the derive allele is the target) are selected
against. This is a case of the classic selection–mutation bal-
ance in which the mutations are deleterious. Selection against
deleterious mutations has been extensively studied in popu-
lation genetics (reviewed in Charlesworth 2012). For instance,
strong purifying selection produces a phenomenon called
background selection, in which loci linked to the selected
site experience a reduction in their effective population size
(Charlesworth et al. 1993). That is, purifying selection reduces
the influence of selection at linked sites. For weakly selected
sites, a similar process has been described: weak selection
Hill–Robertson interference (wsHR [Hill and Robertson
1966; McVean and Charlesworth 2000]). Under wsHR, mul-
tiple alleles are under a weak selective force, very close to-
gether so that recombination is small or negligible between
sites, interfering with other selective pressures in the area.
Multiple weakly deleterious mutation at transcription factor
binding sites has been reported indeed (Abecasis et al. 2012).
We believe that this is the case for the selection against
microRNA target sites here described: weak selection against
multiple target/near-target sites will shape the evolutionary
landscape of the entire untranslated region.

Our study suggests that the mutation rate in humans may
be high enough to produce a significant selective pressure
against novel microRNA target sites. New target sites will
emerge at a significant rate because many mutations can
potentially introduce a new site for one of the many
microRNAs. More specifically, there are �2,000 microRNA
families described in TargetScan (see Materials and
Methods), defined by 7-nt seed sequences. Assuming that
30-UTRs are composed of nonoverlapping 7-mers (a simpli-
fying yet conservative assumption) the expected number of
near-target sites per kilobase (kb) is �75. With a mutation
rate of 2.5� 10�5 per kb (Nachman and Crowell 2000) and a
total length of the genome that encode 30-UTRs of 34 Mb, it
can be shown that there will be on average one novel
microRNA target site on a 30-UTR per genome per genera-
tion. That is, one potential deleterious microRNA target site
per person per generation.

FIG. 5. Allele preference for ancestral targets and nontargets. The shift
of the distribution of derived allele frequencies is measured as the D
statistic form the Kolmogorov–Smirnov test (x-axis). When the dis-
tribution is biased toward the derived allele the D statistic is negative
(–D–), and if the bias is to the ancestral allele the D value is Dþ. The y-
axis plots the –log 10 of the P-value obtained from the corresponding
one-tailed Kolmogorov–Smirnov test. For each tissue, the graph rep-
resents the DAF bias when the ancestral allele is a target (blue circles)
and when it is a nontarget (red circles).
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It is expected that other regulatory motifs influence the
evolution of 30-UTRs. For instance, Savisaar and Hurst (2017)
have described selection against RNA-binding motifs. The
selective avoidance of transcription factor binding sites
(Hahn et al. 2003; Babbitt 2010) and of mRNA/ncRNA regu-
latory interactions in bacteria (Umu et al. 2016) have been
also described. These works are based on comparative geno-
mics between different species and not on variation within
populations. However, some theoretical models take into ac-
count the selective pressure against regulatory motifs (Berg
et al. 2004; Stewart et al. 2012). It is likely that on top of all the
selective forces that are usually taken into account, there is a
layer of selection against weakly deleterious regulatory motifs
that will be influencing the evolution of the genome. In con-
clusion, selection against microRNA target sites in prevalent
in human populations, and it may constrain other selective
forces in posttranscriptional regulatory regions.

Materials and Methods
MicroRNA mature sequences were downloaded from
miRBase v.22, considering only sequences annotated with
“high confidence” (Kozomara et al. 2018). MicroRNA target
and near-target sites were predicted with seedVicious (v.1.1
[Marco 2018b]) against 30-UTR as annotated in Ensembl ver-
sion 96 (Kinsella et al. 2011) for the human genome assembly
hg38. SNPs for the 1000 Genomes project (1000 Genomes
Project Consortium et al. 2015) were retrieved from dbSNP
(build 151) (Sherry et al. 2001) and mapped to our target
predictions. Ensembl sequences and polymorphism data
were downloaded using the BiomaRt R package (Durinck
et al. 2009). By mapping SNPs to targets and to near-targets
(as described in Marco 2018b) we are able to identify pairs of
alleles in which only one of the allele is a target site, so allele
frequencies can be computed as target allele frequencies
(Hatlen et al. 2019). When plotting allele frequencies (fig. 2)
we only considered segregating alleles in which the minor
allele is present in at least 1% of the sampled population, as
reported dbSNP (see Hatlen et al. 2019 for details). The an-
cestral allele status was also retrieved from the precomputed
values available from dbSNP. To compute the background
(randomly expected) allele distributions we repeated the pro-
cess but finding targets in the reverse complement strand of
the 30-UTR, to control for sequence length and composition.
In the analysis of allele frequencies we used a second
microRNA target prediction program based on a different
principle, miRanda (Enright et al. 2003), which takes into ac-
count the binding energy of the RNA: RNA duplex, and we
use the default parameters. About 25% of polymorphic ca-
nonical target sites were also predicted as targets by miRanda.

Expression information for microRNAs was obtained our
own database PopTargs (https://poptargs.essex.ac.uk; Hatlen
et al. 2019). In summary, high-throughput experiments from
Meunier et al. (2013) and miRMine (Panwar et al. 2017) were
downloaded, reads were mapped to miRBase mature
microRNA sequences and the average reads per million for
each microRNAs was consider to measure the expression
level in a tissue. Coding genes were considered to be

expressed in a given tissue as precomputed in the Bgee data-
base (“gold” set, version 14; Bastian et al. 2008). We studied
the following tissues: lung, blood, placenta, liver, heart, brain,
kidney, cerebellum, breast, and testis. Importantly, most
microRNA and mRNA extractions were done in the same
commercial samples by the same lab (Brawand et al. 2011;
Meunier et al. 2013), which suggest that coexpressed
microRNA/mRNA pairs were present in the same tissue.
MicroRNAs with >50 RPM (reads per million) were consid-
ered moderately expressed, and those with over 500 RPM
were labeled as highly expressed. For transcripts, we did not
make distinctions between different expression levels as tran-
script levels are affected by the action of microRNAs (Nam
et al. 2014). Coexpressed microRNA: gene pairs were those
whose microRNA was moderately or highly expressed in a
tissue (depending on the analysis described) and the tran-
script targeted is detected in the same tissue. For “blood” and
“liver” tissues we perform additional analysis considering the
tissue specific polyadenilation signals as reported in APADB
version 2 (Müller et al. 2014). MicroRNAs were grouped into
evolutionary conservation categories depending on the spe-
cies spread (primates, mammals, and animals) of the seed
family in TargetScan 7.2 (Agarwal et al. 2015).

Fst values were retrieved from the 1000 Genomes Selection
Browser 1.0 (Pybus et al. 2014). In figure 4, the fold enrichment
was computed as the logarithm of the ratio between the
proportion of SNPs at target sites and the proportion of
SNPs at a background site for each Fst bin. The latitude of
specific populations was computed as in Helmy et al. (2019).
First, the geographical locations of the studied populations
were obtained from the sample descriptions at https://www.
coriell.org/1/NHGRI/Collections/1000-Genomes-Collections/
1000-Genomes-Project, using the location of the capital of the
country in cases where the location was ambiguous or non-
specific. For multiple collection points we computed the cen-
troid middle point. Populations that migrated in recent times
were discarded (CHD, CEU, ASW, ACB, GIH, STU, and ITU as
described at IGSR: The International Genome Sample
Resource [http://www.internationalgenome.org/category/
population/]).

All statistical analyses were done with R (v. 3.4.3, R
Development Core Team 2009). All processed data sets and
online tools to compute the tests here reported are available
at our dedicated web server PopTargs (https://poptargs.essex.
ac.uk; Hatlen et al. 2019). All the code use for the generation
of the results, figures and tables is freely available from
FigShare at https://doi.org/10.6084/m9.figshare.9539645.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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