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Defects in DNA damage repair may cause genome instability and cancer development.
The tumor suppressor gene p53 regulates cell cycle arrest to allow time for DNA repair.
The oncoprotein mouse double minute 2 (MDM2) promotes cell survival, proliferation,
invasion, and therapeutic resistance in many types of cancer. The major role of MDM2 is to
inhibit p53 activity and promote its degradation. In this review, we describe the influence of
MDM2 on genomic instability, the role of MDM2 on releasing p53 and binding DNA repair
proteins to inhibit repair, and the regulation network of MDM2 including its transcriptional
modifications, protein stability, and localization following DNA damage in genome integrity
maintenance and in MDM2-p53 axis control. We also discuss p53-dependent and p53
independent oncogenic function of MDM2 and the outcomes of clinical trials that have
been used with clinical inhibitors targeting p53-MDM2 to treat certain cancers.
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INTRODUCTION

Genomic instability is a hallmark of cancer and is regulated by a balance between DNA damage and
repair (Aguilera and Garcia-Muse, 2013). The consequences of genomic instability include error-
prone DNA synthesis, chromosome copy number variations and chromosomal structural
aberrations (Jasin, 2000; Ganem et al., 2007) (Figure 1). Conversely, unrepaired damage may
cause transcription and replication arrest, inducing cell death and senescence (Hoeijmakers, 2009).

In order to address the threat posed by genome changes, cells have evolved a kinase cascade
signal transduction pathway called DNA damage response (DDR) (Harper and Elledge, 2007). The
initial step in active DDR is a rapid accumulation of DNA repair proteins to damage sites, which
serve as a scaffold to recruit downstream factors (Soutoglou and Misteli, 2010). Mis-regulated DDR
may increase accumulation of unrepaired DNA lesions and trigger aberrant cell proliferation,
leading to malignance diseases (Jackson and Bartek, 2009).

Tumor suppressor p53 accumulates at DNA damage sites directly in both sequence-specific and
non-sequence-specific manner to play a protective role in DDR (Lee et al., 1995; Liu and Kulesz-
Martin, 2001) (Figure 1). P53 deficiency leads to reduced repair activity and decreased cell survival
in.org May 2020 | Volume 11 | Article 6311
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after UV-induced DNA damage, indicating the participation of
p53 in nucleotide excision repair (NER) (Smith et al., 1995). P53
also takes part in both global genome NER and transcription
coupled NER through DNA polymerase d and ϵ, respectively
(Mirzayans et al., 1996). Interaction between p53 with
apyrimidinic endonuclease APE1/Ref-1 and the regulatory
function of OGG1, MUTYH, and 3-methyladenine DNA
glycosylase by p53 all indicate the function of p53 in base
excision repair (BER). Among the two major pathways in
double-strand break repair (DSBR), p53 interacts with both
non-homologous end-joining (NHEJ) proteins and the
promoter of homologous recombination (HR) protein RAD51
to regulate its expression (Williams and Schumacher, 2016).

The E3 ligase MDM2 (murine double minute 2) contains 491
amino acids and is a major negative regulator of p53 (Figure 1).
MDM2 controls activity, subcellular localization, and stability of
p53 (Eischen and Lozano, 2014). Increased MDM2 expression is
commonly observed in different types of cancers, indicating its
oncogenic function (Eischen and Lozano, 2014). MDM2
interacts with large and diverse substrates through complex
structures, post-translational modifications, and diverse
isoforms to function as a significant hub in different signal
pathways (Fahraeus and Olivares-Illana, 2014). The major role
of p53 as a tumor suppressor relies on its transcriptional activity
to regulate target genes in diverse biological pathways (Sullivan
et al., 2018). MDM2 binds p53 directly through N-terminal
transactivation domain to inhibit p53 transactivation
(Momand et al., 1992; Oliner et al., 1993). MDM2 also forms
homodimers to ubiquitinate p53 leading to p53 proteasomal
Frontiers in Pharmacology | www.frontiersin.org 2
degradation (Haupt et al., 1997; Kubbutat et al., 1997). In this
review, we highlight the specific regulation network of MDM2 in
DDR and discuss the potential clinical applications of MDM2
antagonists and the perspective of developing novel
combination strategies.
GENOME INSTABILITY INDUCED
BY MDM2

As the negative regulator of p53, MDM2’s function in cell
survival versus cell death is complex and depends on the
extent of DNA damage and the capacity of repair. The
abnormal MDM2-p53 regulatory loop and its corresponding
delayed DDR provide an additional layer for genomic instability
control. The interaction of MDM2 with p53 and Mre11-Rad50-
Nbs1 complex indicates MDM2 affects genomic instability in
both p53-dependent and p53-independent manner.

MDM2 Affects Genomic Instability in
p53-Dependent Manner
Given that MDM2 binds with p53 to inhibit its transactivation
and that it induces p53 protein degradation, it is reasonable to
assume that MDM2 regulates genome instability through p53
directly. Oncogene Myc activates p19 (ARF)-MDM2 pathway to
coordinate p53-dependent checkpoint and apoptotic program
(Zindy et al., 1998; Eischen et al., 1999). ARF interacts with
MDM2 to guide its degradation and prevents negative feedback
FIGURE 1 | Genome instability and other consequences caused by mouse double minute 2 (MDM2). Oncogene p19 (ARF) interacts with MDM2 to prevent its
function. MDM2 can inhibit both p53 and NBS1 to regulate many physiological processes or/and lead to genome instability, in which ATM plays a central
phosphorylation regulatory role.
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of p53/MDM2, thus preventing p53 degradation (Zhang et al.,
1998; Weber et al., 1999). A high level of MDM2 was identified in
advanced stage breast ductal carcinomas and squamous cell
carcinomas with wild-type p53. Overexpression of MDM2,
and/or p53 deletion or mutation induced centrosome hyper-
amplification and chromosome instability in these cancer cells
(Carroll et al., 1999). A study of lymphoma transformation
showed that MDM2 overexpression in B cells led to a reduced
susceptibility to p53-dependent apoptosis through inhibition of
p53 and p21 (Wang et al., 2008). MDM2 transgenic mice also
showed increased chromosome breaks, chromosome fusions,
aneuploidy, and polyploidy (Lushnikova et al., 2011). It has
also been shown that p53 disruption by MDM2 overexpression
activates the intra S-phase checkpoint to inhibit DNA replication
origin firing, causing replication fork instability (Frum et al.,
2014; Primo and Teixeira, 2019).

MDM2 Affects Genomic Instability in
p53-Independent Manner
MDM2 also affects genomic instability independent of p53. It
was found that mammary epithelial cells underwent multiple
rounds of S phase without cell division to form increased
polyploidy in response to MDM2 overexpression regardless of
p53 expression level in mice (Lundgren et al., 1997). Mre11/
Rad50/NBS1 (MRN) complex is a central sensor in DSBR. Mre11
and NBS1 mutant mice exhibit checkpoint defects and
chromosomal instability (Stracker et al., 2004). MDM2
associates with MRN complex through the direct interaction
with NBS1 independent of p53, thus leads to recruitment of
MDM2 at DNA damage sites with delayed DNA repair and
compromised DNA integrity (Alt et al., 2005). Interaction of
MDM2 with NBS1 inhibits DNA repair and leads to increased
chromosome breaks and transformation efficiency in p53
deficient cells (Bouska et al., 2008). With small molecular
inhibitors targeting the interaction of p53 with MDM2, a p53
independent function of MDM2 in NBS1 regulation is found and
worthy of considering in cancer drug design (Bouska and
Eischen, 2009). In addition to binds NBS1, it has been
reported that MDM2 ubiquitinates transcription factor HBP1
to facilitate its degradation, thus preventing the transcriptional
inhibition role of HBP1 to its target genes to induce genomic
instability like global DNA hypermethylation and histone
hypermethylation (Cao et al., 2019).
INHIBITORY ROLE OF MDM2 IN
DNA REPAIR

MDM2 is regulated downstream of DNA damage by several
mechanisms such as inactivation by post-translational
modification and destruction p53-MDM2 interaction to relieve
p53 inhibition. Increased p53 level leads to cell senescence, cell
cycle arrest, and apoptosis. In the meanwhile, the interaction of
MDM2 with DNA repair complex MRN exists and is
independent of p53 state (Eischen, 2017). The accumulated
unrepaired DNA breaks further activate p53 and facilitate
Frontiers in Pharmacology | www.frontiersin.org 3
alterations such as chromosome translocations, gene fusions,
increased micronuclei, and gene amplification, which are
common causes of cancer malignancy (Morgan et al., 1998;
Bunting and Nussenzweig, 2013). MDM2 is in turn
transcriptionally regulated by p53 to form a feed-back loop to
maintain cellular homeostasis under genetic stress.

Release of p53 After DNA Damage
The regulatory function of MDM2 on p53 after DNA damage is
complex as it depends on the type of damage, p53 substrates, and
various modifications on p53 and MDM2 proteins. The key step
of p53 activation after DNA damage and other genetic stress
results in the disruption of p53-MDM2 interaction and p53
release (Figure 2). The inhibitory role of MDM2 on p53 includes
blocking p53 transcriptional activation and regulating p53
protein level. Disruption of p53-MDM2 interaction alone is
enough for p53 stabilization and activation even without DNA
damage (Bottger et al., 1997). The MDM2 binding sites in p53
amino terminus overlap with the binding sites in p53 that
interact with the transcription machinery. MDM2 competes
with transcription factors such as TFIID and TAFII31 for p53
binding to block p53 mediated transcription (Lin et al., 1994; Lu
and Levine, 1995; Thut et al., 1995). A study also indicated that
MDM2 directly repressed basal transcriptional machinery
through its inhibitory domain (Thut et al., 1997). NEDD8 has
a similar modification with ubiquitination, which can conjugate
with p53 in a MDM2 dependent manner to repress p53
transcription (Xirodimas et al., 2004). MDM2 also leads to a
proteasomal degradation of p53. Moreover, expression of
MDM2 significantly inhibits p53 accumulation after DNA
damage. These results indicate a post-translational regulation
under stress conditions (Haupt et al., 1997; Kubbutat
et al., 1997).

Treatment with DNA damaging agents induce p53
phosphorylation at serine 15 and 37 which causes
conformation changes in p53, resulting in reduced interaction
of p53 with MDM2 (Shieh et al., 1997). P53 acetylation was also
reported to block p53-MDM2 interaction and which enable p53-
dependent cell growth arrest and apoptosis under stress
conditions (Tang et al., 2008). In addition, cells exhibit
increased p53 phosphorylation by ATM, ATR, and other
kinases after DNA damage with UV light and other agents,
leading to p53 stabilization and enhanced DNA binding. The
higher levels of p53 further activate transcription of downstream
targets including MDM2 (Kruse and Gu, 2009). As the repair
process progresses, increased MDM2 decreases p53 expression
and activity through the above mechanisms, forming a
regulatory feedback loop to keep p53 and MDM2 protein at a
basal level (Maltzman and Czyzyk, 1984; Freedman et al., 1999).
The consequences of p53 regulation by MDM2 also depend on
MDM2 activity. Low levels of MDM2 activity lead to p53 mono-
ubiquitination and nuclear export whereas high levels promote
p53 polyubiquitination and nuclear degradation (Li et al., 2003).

Interaction of MDM2 With MRN Complex
Mre11/Rad50/Nbs1 (MRN) complex is essential in the
maintenance of genome, meiosis, and telomere (D’Amours and
May 2020 | Volume 11 | Article 631
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Jackson, 2002). Mre11 exhibits 3′–5′ double strand DNA
exonuclease and endonuclease activity and joints two broken
ends using their microhomology domains (Paull and Gellert,
1999). Rad50 is a structural maintenance of chromosome (SMC)
related protein, which functions in bridging DSB ends together
to facilitate Mre11-dependent DSB end processing (Williams
et al., 2007). NBS1 recognizes DSB ends and transduces cell cycle
checkpoint signals through ATM-induced epigenetic
modification. NBS1 also functions in chromosome remodeling
in response to DSB (Williams et al., 2007). After ATM activation
and HR repair initiation by MRN, nucleases such as CtIP, Exo1,
and Dna2/BLM, cause DSB end resection to form 3′-overhangs,
which are coated by RPA and Rad51 to facilitate strand exchange
(Mladenov et al., 2016).

Although MDM2 promotes genomic instability and cancer
development through the inhibition of p53, studies have also
identified MDM2 function independent of p53 (Bouska and
Eischen, 2009). MDM2 directly interacts with NBS1 through a
31-amino-acid region and is recruited to damage sites
independent of p53 and ARF, a negative regulator of MDM2
(Alt et al., 2005) (Figure 2). MDM2-NBS1 association delays
H2AX and ATM-S/TQ phosphorylation and inhibits DNA
repair (Bouska et al., 2008). Additionally, MDM2 can bind
other proteins involved in DNA replication or repair, such as
DNA polymerase ϵ (Asahara et al., 2003).

Other Regulatory Mechanisms of MDM2
Following DNA Damage
Mice with a hypomorphic allele in MDM2 gene revealed
increased p53 transcriptional activation and apoptosis
(Mendrysa et al., 2003). Increased MDM2 protein level as a
Frontiers in Pharmacology | www.frontiersin.org 4
result of a single nucleotide polymorphism led to a decreased p53
signal transduction and higher tumor risk (Bond et al., 2004). All
these evidences indicate that the amount of MDM2 protein
dictates the physiological consequences of p53 activation.
Further studies found that DNA damage induced MDM2 auto-
degradation, which conversely stabilized and activated p53
(Stommel and Wahl, 2004). The half-life of MDM2 decreased
after treatment with DNA damage agents neocarzinostatin
(NCS), UV irradiation, and BCNU, while p53 stability and
activation increased. This process is reversible and the half-life
of MDM2 increases which corrects with unstable and inactive
p53 when stress was eliminated (Stommel and Wahl, 2005).

Other studies demonstrated that MDM2 modulate DDR
process through its association with and modification of
chromatin, especially the promoter region of p53 target genes.
Histone modification has long been known to affect transcription
and DNA repair by influencing chromatin structure and
accessibility, which is important for the recruitment of
chromatin remodeling factors. MDM2 had been reported to
interact with histones directly and induce monoubiquitylation
of histones H2A and H2B in vitro and of H2B in vivo (Minsky
and Oren, 2004). In addition to that, the p53-MDM2 interaction
may change p53 conformation and inhibit its binding to DNA.
This function of MDM2 is mediated by its central acidic domain
which binds to histone methyl transferase Suv39h1. The
Suv39h1-MDM2 interaction restores p53 conformation
allowing DNA binding of p53-MDM2-Suv39h1 complex
(Cross et al., 2011). On the contrary, MDM2 was also reported
to polyubiquitinate Suv39h1 at lysine 87 and to promote its
degradation (Bosch-Presegue et al., 2011). This could be
attributed to differences in cell context and experimental
FIGURE 2 | The regulation of p53-mouse double minute 2 (MDM2) axis after DNA damage. On the condition of DNA damage, both MDM2 auto-degradation and
the disruption of p53-MDM2 interaction lead to stable and active p53. P53 is also phosphorylated at Ser15 and Ser37, resulting in the reduced p53-MDM2
interaction and increased transcription, activation and stability of p53 protein. MDM2-NBS1 association delays H2AX phosphorylation and inhibits DNA repair. MDM2
induces histones H2A and H2B monoubiquitylation, which affects chromatin structure and accessibility.
May 2020 | Volume 11 | Article 631
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conditions (Wienken et al., 2017). A p53-independent function
of MDM2 in gene repression under stress conditions through
chromatin modification warrants further investigation.
MDM2 REGULATION IN RESPONSE TO
DNA DAMAGE

MDM2 binds N terminal of p53 to inhibit its transcription and
promote its proteasomal degradation. MDM2 is also regulated by
p53 to form an autoregulatory loop. Since MDM2 gene
amplification and protein overexpression are found widely in
human cancers, investigating the MDM2 related regulatory
network under DNA damage is essential to understand its
biological function as an oncogene and to identify novel targets
for cancer therapy.

Regulation of MDM2 Expression
MDM2 gene can be transcribed from two independent
promoters, P1 and P2. The P1 promoter transcribes from the
first exon but without exon 2. P1 promoter carries out basal
transcription and its activation does not need p53. P2 promoter
is located within the first intron which includes two p53-binding
sites and the transcriptional activation of P2 depends on p53
(Barak et al., 1994; Zauberman et al., 1995). Since the
identification of increased expression of MDM2 variant in a
range of human cancers and decreased expression in normal
tissue in 1996, more than 72 kinds of MDM2 splice variants have
been observed in both cancer and normal cells (Sigalas et al.,
1996; Rosso et al., 2014). Some of these variants are specifically
spliced in response to DNA damage (Jeyaraj et al., 2009).
However, their molecular mechanisms remain unknown.

The most common splice variants of MDM2 are MDM2-A
(ALT2), MDM2-B (ALT1), and MDM2-C (ALT3). Compared to
the full length MDM2 (MDM2-FL), which consists of 12 exons,
MDM2-A lacks exon 4–9, MDM2-B lacks exon 4–11, and
MDM2-C lacks exon 5–9. All these three variants lack p53
binding site at N terminal while they retain the C terminal
RING domain, which facilitates their interaction with MDM2-FL
(Huun et al., 2017). Based on such structural features, MDM2-A
has been characterized to be a p53 activator. MDM2-A
expression exhibits enhanced p53 activity and decreased
transformation in p53-null setting (Volk et al., 2009).
Activated p53/p21 pathway and increased cyclins D1 and E
were discovered after MDM2-A expression (Sanchez-Aguilera
et al., 2006). MDM2-B is frequently expressed in various cancer
types including ovarian cancer, bladder cancer, astrocytic cancer,
breast cancer, and giant cell tumors of bone (Sigalas et al., 1996;
Matsumoto et al., 1998; Evdokiou et al., 2001; Lukas et al., 2001).
MDM2-B binds and sequesters full-length MDM2 in the
cytoplasm and promotes p53 transcription by inhibiting
interaction of MDM2-FL with p53 (Evans et al., 2001). Using a
specific human MDM2-C antibody, high expression of
endogenous MDM2-C was detected in cancer cell lines and in
cancer tissues. Unlike MDM2-A and MDM2-B, MDM2-C had
no effect on p53 degradation and transcription regulation but
Frontiers in Pharmacology | www.frontiersin.org 5
showed p53-independent transformation property (Okoro
et al., 2013).

Studies have identified a single nucleotide polymorphism (T/
G SNP309) in MDM2 promoter region. This variant exhibit
increased affinity toward the transcriptional activator Sp1,
resulting in higher levels of MDM2 RNA and protein (Bond
et al., 2004). In MDM2 SNP309 cells, p53 binds chromatin but
cannot be activated (Arva et al., 2005). Overexpressed MDM2
with SNP309 is associated with increased risk of renal cancer
development and worse patient prognosis in esophageal
squamous cell carcinoma and B-cell chronic lymphocytic
leukemia (Hong et al., 2005; Hirata et al., 2007; Gryshchenko
et al., 2008). MDM2 expression can be regulated by miRNAs
induced by p53. Wild type p53 was identified in many multiple
myeloma cases which induced the expression of miR-192, 215,
and 194 leading to the downregulation of MDM2 (Pichiorri
et al., 2010).

Regulation of MDM2 Modification
The structural domains of MDM2 include (1) an N terminal lid
domain (25–100 aa), a hydrophobic pocket controlling p53
binding, (2) a nuclear localization site (179–185 aa, NLS), (3) a
nuclear export site (190–202 aa, NES), (4) a central acidic
domain (243–301 aa), (5) a zinc finger domain (290–335 aa),
and (6) a RING domain (432–491 aa), which is in charge of E3
ligase activity (Fahraeus and Olivares-Illana, 2014) (Figure 3).
MDM2 can be modified multisite phosphorylation/
dephosphorylation, ubiquitination and SUMOylating (Figure 3).

Phosphorylation
MDM2 is frequently phosphorylated especially in the central
acidic domain (Blattner et al., 2002). Many kinases are reported
to regulate MDM2 phosphorylation which controls its
downstream activation or inhibit ion. The multiple
phosphorylation sites within MDM2 can be divided into three
groups (1) serine residues at 157, 166, 186, and 188 all of which
are present near nuclear localization sites and nuclear export
sites, (2) serine residues at 240, 242, 246, 253, 256, 260, 262, and
269 which is the phosphorylated cluster in the absence of any
stress, and (3) serine 17, threonine 216, tyrosine 276, tyrosine
394, and serine at 395 and 407, all of which are phosphorylated
under DNA damage stimulation (Meek and Hupp, 2010).

The most important mediators in DDR are phosphatidylinositol
3-kinase-like protein kinase (PIKKs) family like ATM (ataxia
telangiectasia mutated), ATR (ATM and Rad3-related), and
DNA-PK (DNA-dependent protein kinase). DNA double strand
breaks activate ATM and DNA-PK to induce downstream
transduction. ATR is activated by the recruitment of RPA-
coated single strand breaks with a partner protein ATRIP
(Ciccia and Elledge, 2010). Based on the presence of serine and
threonine residues, which make up about 20% of all amino acids
in MDM2 protein, MDM2 is a suitable phosphorylation
substrate (Meek and Knippschild, 2003). The posttranslational
modification of N-terminal region in both MDM2 and p53 can
disrupt their interaction under cellular stress (Appella and
Anderson, 2001). The 16–24 residues of MDM2 were reported
to form a lid crossing over p53 binding sites. This region
May 2020 | Volume 11 | Article 631
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functions in stabilizing MDM2 protein but weakly inhibits p53
binding (McCoy et al., 2003). Interestingly, phosphorylated
states in this region showed a significant influence in
disrupting MDM2-p53 interaction. Following DNA damage,
DNA-PK phosphorylates MDM2 at serine 17 and inhibits its
interaction with p53, leading to p53 activation and G1 cell cycle
arrest (Mayo et al., 1997). ATM mediated substrate
phosphorylation is an early response to DNA damage. MDM2
is phosphorylated by ATM at serine 395 (serine 394 in mouse)
facilitating p53 release and accumulation in response to ionizing
radiation and radiomimetic agents but not to UV radiation (de
Toledo et al., 2000; Maya et al., 2001). Other residues (Ser386,
Ser395, Ser407, Thr419, Ser425, and Ser429) located in C
terminals of MDM2 have been identified to be phosphorylated
by ATM after DNA damage in a redundant manner (Cheng
et al., 2009). The phosphorylation of these sites inhibits
oligomerization of RING domain resulting in suppression of
p53 poly-ubiquitination and degradation (Cheng et al., 2011).
Activation of a nuclear tyrosine kinase c-Abl is another response
Frontiers in Pharmacology | www.frontiersin.org 6
to ionizing radiation. This kinase is phosphorylated by ATM and
is involved in cell cycle control (Baskaran et al., 1997; Brown and
McCarthy, 1997; Shafman et al., 1997). Following DNA damage,
c-Abl binds MDM2 directly, phosphorylates MDM2 at tyrosine
394, and prevents p53 ubiquitination and its nuclear export. This
c-Abl induced MDM2 tyrosine 394 phosphorylation triggered
increased p53 transcription and decreased degradation leading to
p53-mediated apoptosis (Sionov et al., 2001; Goldberg et al.,
2002). Additionally, tyrosine 276 was found to be
phosphorylated by c-Abl in response to DNA damage in vitro.
This modification enhanced MDM2 interaction with ARF with
an increased expression of nucleolar MDM2 (Dias et al., 2006).
These striking observations pointed out that c-Abl
phosphorylation site is adjacent to ATM phosphorylation site
indicating that ATM regulates MDM2 phosphorylation both in
direct and indirect manner.

Recent studies indicate that many growth factors and
cytokines are involved in cancer progression by regulating cell
proliferation and apoptosis. The serine/threonine protein kinase
FIGURE 3 | Mouse double minute 2 (MDM2) regulation under DNA damage. The upper half part reflects the regulation of MDM2 expression, stabilization,
modification, and location. All the three splice variants can interact with MDM2-FL, leading to the disruption of p53-MDM2 interaction and increased p53 activation.
The single nucleotide polymorphism (T/G SNP309) exhibits increased MDM2 expression and p53 inhibition. P53 induces miR-192, 215, and 194 expression, which
leads to MDM2 downregulation. The PCAF induced ubiquitination or auto-ubiquitination in MDM2 relate to its stability. ARF-induced MDM2 nucleus importation
increases MDM2 mediated p53 response. PML plays the opposite role. MDM2 modification includes its ubiquitination, phosphorylation, and SUMOylation. The
bottom half part indicates domains of MDM2, its phosphorylation and dephosphorylation sites, the related kinases or phosphatases, and the corresponding
consequences. LID, Lid domain; NLS, nuclear localization site; NES, nuclear export site; Acidic Domain, central acidic domain; ZNF, zinc finger domain; RING, RING
domain; ? (question mark), this function is still needed to be confirmed.
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Akt/PKB is an essential signal transducer downstream of
phosphatidylinositol 3-kinase (PI3-kinase) (Lawlor and Alessi,
2001). MDM2 can be phosphorylated at serine 166 and serine
186 by Akt/PKB which results nuclear translocation from
cytoplasm (Mayo and Donner, 2001). In addition to that,
HER-2/neu-mediated Akt activation phosphorylates MDM2 to
enhance p300 interaction and inhibits p19ARF interaction,
resulting in increased degradation of p53 and blocked
cytotoxic effect of DNA damage agents in cancer cells (Zhou
et al., 2001). Following stimulation with growth factors, PI3-kinase
is activated and generates second messenger phosphatidylinositol
(3,4,5)-trisphosphate PIP3 (Vanhaesebroeck and Alessi, 2000). A
lipid phosphatase and tumor suppressor protein PTEN
dephosphorylates PIP3 to disrupt this signal transduction. The
mechanism is illustrated by the fact that high level of PTEN or
PI3-K inhibitor dephosphorylates serine 166 and serine 186 of
MDM2 and blocks its nuclear entry leading to an increased
cellular p53 level and activity. Meanwhile, p53 further promotes
PTEN expression to form a positive feedback loop in response to
cellular stress. The PI3-K-Akt-MDM2 axis connects two
important tumor suppressor PTEN and p53 to regulate cell
survival, drug resistance and tumorigenesis (Mayo and
Donner, 2001; Mayo et al., 2002; Mayo and Donner, 2002;
Ogawara et al., 2002). The protein kinase CK2 (CK2) is
required for cell viability and cell cycle progression. CK2 is
another protein kinase that phosphorylates MDM2 at serine
269 (Gotz et al., 1999; Hjerrild et al., 2001). The investigation of
other kinases targeting MDM2 may further shed light on
MDM2-p53 function.

It is equally important to consider MDM2 dephosphorylation
mechanisms and impact on p53 regulation under cellular stress.
Wild type p53-induced phosphatase 1 (Wip/PPM1D) can
dephosphorylate MDM2 at serine 395, the same site that is
phosphorylated by ATM, to inhibit MDM2 autophosphorylation
and to stabilize MDM2 protein (Lu et al., 2007). Activation of
p53 induces cyclin G1 transcription after DNA damage. Cyclin
G1 interacts with a subunit of protein phosphatase 2A subunit
(PP2A) to dephosphorylate MDM2 at tyrosine 216 site,
promoting the ARF/MDM2 complex formation and p53
degradation (Kimura and Nojima, 2002; Meek and
Knippschild, 2003). In another study, Cyclin G1/PP2A
dephosphorylated MDM2 at both tyrosine 216 and serine 166
to activate it and to negatively regulate p53. However, the
downstream functions of cyclin G1-p53 are complicated under
various cellular stress. Exploring these issues should lead to a
further understanding of p53-MDM2 regulation network
(Okamoto et al., 2002).

Ubiquitination
During the ubiquitin conjugation modification process, the E3
ligase interacts specifically with target proteins to transfer
ubiquitin. As a ubiquitin E3 ligase, MDM2 not only
ubiquitinates p53 to guide its proteasomal degradation but also
exhibits auto-ubiquitination function via C terminal RING finger
domain (Fang et al., 2000; Honda and Yasuda, 2000). Multiple
monoubiquitin sites exist in p53 which requires MDM2
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isomerization (Lai et al., 2001). MDM2 auto-ubiquitination
facilitates E2-conjugating enzymes accumulation and increased
ubiquitination activity of MDM2 substrates, nevertheless the
auto-ubiquitination is not required for MDM2 degradation
(Itahana et al., 2007; Ranaweera and Yang, 2013). The choice
between auto-ubiquitination and substrate-ubiquitination is
regulated by other MDM2 posttranslational modifications
including phosphorylation and SUMOylation (Meek and
Knippschild, 2003). Other proteins are also found in the
regulation of MDM2 ubiquitination. Transcription factor Yin
Yang 1 (YY1) promotes p53 ubiquitination and degradation,
which relays on enhanced p53-MDM2 interaction but not on its
transcriptional activity (Sui et al., 2004).

SUMOylation
SUMO is a small ubiquitin-related modifier that modulates
downstream gene expression in a ubiquitination-like pathway
to influence protein stability, localization, DNA binding, and
activation (Gill, 2003). Sumo conjugating enzyme Ubc9
mediated SUMOylation shows different consequences
according to its substrates and the type of DNA damage.
Residues 40–59 on MDM2 are responsible for Ubc9-MDM2
interaction and MDM2 SUMOylation, which is decreased
following UV treatment (Buschmann et al., 2001). In response
to radiation, the SUMOylation of MDM2 decreased in a dose-
and time-dependent manner to enhance MDM2 auto-
ubiquitination and to abrogate substrate-ubiquitination,
resulting in increased p53 level (Buschmann et al., 2000).
SUMOylation of MDM2 modulates MDM2 E3 ligase activity.
SUMO-specific protease 2 (SENP2) removes SUMO
modification from MDM2 and decrease p53 level (Chiu
et al., 2008).

Regulation of MDM2 Stabilization
MDM2 exhibits auto-ubiquitination function to promote protein
degradation by ubiquitin-proteasome pathway in response to
cellular stress or DNA damage (Chang et al., 1998). The half-life
of MDM2 is short and the ubiquitin-related regulation balance
shifts to MDM2 auto-ubiquitination and degradation to relieve
p53 inhibition after exposure to these stressors (Stommel and
Wahl, 2004). The histone acetyltransferase (HAT) p300-CBP-
associated factor (PCAF) was reported to control MDM2
stability and p53 function through its ubiquitination activity
(Linares et al., 2007).

Regulation of MDM2 Localization
The structural property of MDM2 enables it to shuttle between
the nucleus and the cytoplasm. Subcellular location of MDM2 is
important for regulating p53 transcriptional activity and
degradation. In addition to the nuclear entry regulated by
MDM2 phosphorylation, MDM2 mediated p53 nuclear export
is also required for p53 degradation. MDM2 overexpression
promotes p53 cytoplasmic location and this function relies on
the RING finger domain in MDM2 and the NES signal in p53
(Boyd et al., 2000; Geyer et al., 2000). By contrast, the export
protein CRM1 mediated p53 nuclear export did not cause p53
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degradation indicating that the export of p53 is not essential for
its degradation (Lohrum et al., 2001). The translocation of
MDM2 into nucleus through ARF is needed for MDM2-
mediated p53 response (Weber et al., 1999). Another tumor
suppressor promyelocytic leukemia (PML) interacts with MDM2
and promotes p53 activity by enhancing the accumulation of p53
at PML nuclear bodies (Wei et al., 2003). Following DNA
damage, PML localizes at nucleoli and sequesters MDM2
nucleolar localization to increase p53 stability (Bernardi
et al., 2004).
MDM2 IN CANCER DEVELOPMENT

The overexpression of MDM2 inhibits p53 activity. Highly
expressed MDM2 attenuates p53 stress response and promotes
cancer progression. Study in sarcomas identified MDM2 gene
amplification together with a decreased growth control by p53
(Oliner et al., 1992). MDM2 overexpression was also found in
head and neck squamous carcinomas, indicating its contribution
in cancer development (Valentin-Vega et al., 2007). An efficient
strategy would be to target MDM2 by improving p53 activity in
some cancer types (Vazquez et al., 2008). Since MDM2 functions
in p53 dependent and independent manner, studies of the roles
of MDM2 in cancer development need to be considered in
both situations.
Frontiers in Pharmacology | www.frontiersin.org 8
P53 Dependent Oncogenic Function
of MDM2
The most important oncogenic function of MDM2 comes from
its binding with transcriptional activation domain and
abrogating the antiproliferation effects of tumor suppressor
protein p53 (Haupt et al., 1997). MDM2 SNP309 is associated
with high risk of cancer development, largely because of
increased MDM2 protein level and inhibition of p53 activation
(Bond and Levine, 2007). As a common feature of solid tumors,
the hypoxia microenvironment is important in tumor growth,
progression and metastatic potential. Hypoxia was reported to
induce MDM2 up-regulation leading to a decreased p53 function
(Zhang and Hill, 2004). Alternative splice forms of MDM2 have
been found in various human cancers, indicating diversified
regulatory mode of MDM2 and its transcriptional variants
(Jeyaraj et al., 2009). Both MDM2 overexpression and/or p53
mutation are exhibited in human cancers (Figure 4). Over half of
human cancers showed deficient or mutant p53 protein whereas
the remaining harbor other kinds of alterations like MDM2
overexpression (Senturk and Manfredi, 2012). Mice homozygous
for p53 null allele developed spontaneous tumors with high
probability, and most of the tumors were lymphomas
(Donehower et al., 1992; Jacks et al., 1994; Purdie et al., 1994).
MDM2 plays an essential role in p53 regulation in vivo. The
evidence came from MDM2 single knockout and MDM2/p53
double knockout mice. It was found that MDM2 loss triggered
FIGURE 4 | The function of mouse double minute 2 (MDM2) in cancer development. In p53 dependent manner, MDM2 SNP309, hypoxia microenvironment and
alternative splice forms all induce MDM2 up-regulation, leading to p53 degradation or inactivation. Both lesions cooperation with other oncogenes like MDM2
overexpression and loss of tumor suppressor genes like p53 can promote cancer development. In p53 independent manner, FOXO3a is phosphorylated by ERK,
becoming the ubiquitination target of MDM2. MDM2 binds E-cadherin to facilitate its ubiquitination and degradation. Meanwhile, MDM2 inhibits pRb function.
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embryonic lethality in mice. In contrast, mice deficient in both
MDM2 and p53 were rescued from this phenotype leading to
normal development and survival. These results suggest the
function of MDM2 in negative regulating p53 activity (Jones
et al., 1995; Montes et al., 1995)

The oncogenic feature of MDM2 only manifests in a
background of pre-existing genetic lesions in cell-based studies.
Because on the short half-life of MDM2 and the toxic cellular
response to MDM2 overexpression, it is difficult to increase
MDM2 expression to induce p53 inactivity and trigger
transformation or tumorigenesis (Wade et al., 2013). Both
lesions cooperate with other oncogenes and loss of tumor
suppressor genes can promote tumorigenesis (Wade et al., 2013).

P53 Independent Oncogenic Function
of MDM2
The p53 independent oncogenic function of MDM2 was
identified in MDM2 transgenic mice in which mammary gland
were prone to spontaneous cancer formation both in the
presence or absence of p53 (Lundgren et al., 1997; Jones et al.,
1998). One of the underlying mechanisms of this effect may be
the MDM2-NBS1 interaction which leads to inhibition of DNA
repair and increased transformation efficiency (Bouska et al.,
2008). Several MDM2 spliced variants have been found in
different cancer types which are absent in normal tissues. All
the variants can transform NIH3T3 cells. Moreover, some of
them were unable to bind p53 but were still expressed in late-
stage and high-grade ovarian and bladder cancer, suggesting a
p53-independent oncogenic function (Sigalas et al., 1996).
Considering the E3 ligase activity of MDM2, it is reasonable to
assume that MDM2 ubiquitinates other targets involved in
proliferation and tumorigenesis. The RAS–RAF–MEK–ERK–
MAP kinase pathway is the most characterized signal
transduction pathway regulating cell cycle arrest, cell
proliferation, differentiation, and apoptosis. A wide range of
mutations in these genes have been found in human cancers
(Davies et al., 2002). ERK was reported to interact with and
phosphorylate transcription factor FOXO3a at serine 294, 344,
and 425. Phosphorylated FOXO3a is a ubiquitination target of
MDM2 and is degraded by MDM2 mediated proteasome
pathway in response to oncogenic growth factor signals (Yang
et al., 2008). Southern blot and PCR methods have identified
more frequent MDM2 gene amplification in metastatic or
recurrent osteosarcomas than the corresponding primary
cancer (Ladanyi et al., 1993). This can be attributed to E-
cadherin, an epithelial-to-mesenchymal transition associated
cell-adhesion protein which interacts with MDM2 to facilitate
its ubiquitination and degradation (Yang et al., 2006).
Paradoxically, Slug (SNAI2), which belongs to Snail
transcriptional repressor family, can be downregulated by
MDM2 to enhance E-cadherin expression and repress cancer
invasiveness (Wang et al., 2009). In addition, enhanced MDM2
expression correlates with increased vascular endothelial growth
factor (VEGF) expression which may facilitate vascularity,
metastasis, and tumor growth (Takahashi et al., 1995; Zietz
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et al., 1998). Other than p53, another tumor suppressor gene
retinoblastoma protein (pRb) is frequently mutated in human
cancers. MDM2 was identified to interact with pRb directly to
inhibit its cell cycle and apoptosis regulatory function (Xiao
et al., 1995).
MDM2 AS A TARGET FOR
CANCER THERAPY

The regulation functions of MDM2 on p53 focus on
ubiquitinating p53 through the E3 ligase activity, blocking the
binding of p53 to its target transcription sites and exporting p53
from nucleus, all suggests the necessity to design inhibitors
targeting the interaction sites between MDM2 and p53.
Considering the deficiency of single target drugs in therapeutic
effect maintenance over time as well as the conduciveness to
activate alternative signaling pathways facilitating drug
resistance, dual or multi-targeting MDM2 inhibitors are
emerging. Here, we review inhibitors which have been
successfully developed for the clinical trials (Table 1).

Inhibitors Targeting MDM2-p53 in Clinical
Trials
Nutlins was a series of cis-imidazoline analogs identified to bind
MDM2 in the p53-binding pocket, leading to cell cycle arrest and
apoptosis in cancer cells, as well as growth inhibition of human
tumor xenografts in nude mice (Vassilev et al., 2004). Several
inhibitors targeting MDM2-p53 such as RG7112, RG7388,
RG7775, SAR405838, HDM201, APG-115, AMG-232, and
MK-8242 have recently been developed to treat human cancers
with clinical trials. However, more clinical data is required to
verify if these inhibitors can effectively block MDM2 or activate
p53 and further improve the clinical efficacy in patients.

RG7112
RG7112 was the first small-molecule MDM2 inhibitor to enter
human clinical trials and which was derived from structural
modification of Nutlin-3a (Liu et al., 2019). RG7112 was
designed to target MDM2 in p53-binding pocket (Vu et al.,
2013) and restored p53 activity inducing robust p21 expression
and apoptosis in p53 wild-type glioblastomas cell (Verreault
et al., 2016). So far, seven clinical studies on RG7112 have been
completed (http://www.clinicaltrials.gov/; NCT01677780,
NCT01605526, NCT01143740, NCT01164033, NCT00559533,
NCT00623870 , NCT01677780) . S tudy of NP25299
(NCT01164033) was an open-label, randomized, cross-over
study in patients with solid tumors. It evaluated the effects of
food on the pharmacokinetics of single oral doses of RG7112.
This study included two parts: the first one comprised an initial
single-dose, while the other comprised four different treatment
schedules of increased doses. The results indicated that RG7112
was generally well tolerated with GI toxicities, the most common
AEs, making it treatable with anti-emetics (Patnaik et al., 2015).
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TABLE 1 | Overview of small-molecules targeting mouse double minute 2 (MDM2) in clinical trials.

Drug Phases NCT Number Status Conditions

RG7211 Phase 1 NCT00559533 Completed Neoplasms
RG7211 Phase 1 NCT00623870 Completed Hematologic neoplasms
RG7211 Phase 1 NCT01143740 Completed Sarcoma
RG7211 Phase 1 NCT01164033 Completed Neoplasms
RG7211 Phase 1 NCT01605526 Completed Sarcoma
RG7211 Phase 1 NCT01635296 Completed Myelogenous leukemia, acute
RG7211 Phase 1 NCT01677780 Completed Myelogenous leukemia, chronic, neoplasms, myelogenous

leukemia, acute
RG7388 Phase 1 NCT01462175 Completed Neoplasms
RG7388 Phase 1 NCT01773408 Completed Myelogenous leukemia, acute
RG7388 Phase 1 NCT01901172 Completed Neoplasms
RG7388 Phase 3 NCT02545283 Recruiting Leukemia, myeloid, acute
RG7388 Phase 1|phase 2 NCT02633059 Recruiting Loss of chromosome 17p|recurrent plasma cell myeloma
RG7388 Phase 1|phase 2 NCT02670044 Recruiting Leukemia, myeloid, acute
RG7388 Phase 1|phase 2 NCT03135262 Active, not recruiting Follicular lymphoma|lymphoma, large B-cell, diffuse
RG7388 Phase 1|phase 2 NCT03158389 Recruiting Glioblastoma, adult
RG7388 Phase 1|phase 2 NCT03337698 Recruiting Carcinoma, non-small-cell lung
RG7388 Phase 1 NCT03362723 Completed Solid tumors
RG7388 Phase 1|phase 2 NCT03555149 Recruiting Colorectal cancer
RG7388 Phase 1|phase 2 NCT03566485 Active, not recruiting Stage III breast cancer|stage IIIA breast cancer|stage IIIB breast

cancer|stage IIIC breast cancer|stage IV breast cancer|estrogen
receptor-positive|HER2/Neu negative

RG7388 Phase 1|phase 2 NCT04029688 Recruiting AML|ALL|neuroblastoma|solid tumors
RG7775 Phase 1 NCT02098967 Completed Neoplasms, myelogenous leukemia, acute
SAR405838 Phase 1 NCT01636479 Completed Neoplasm malignant
SAR405838 Phase 1 NCT01985191 Completed Neoplasm malignant
HDM201 Phase 1 NCT02143635 Active, not recruiting Advanced solid and hematological TP53wt tumors
HDM201 Phase 1|phase 2 NCT02343172 Active, not recruiting Liposarcoma
HDM201 Phase 1 NCT02601378 Active, not recruiting Uveal melanoma
HDM201 Phase 1 NCT02780128 Recruiting Neuroblastoma|cancer
HDM201 Phase 1 NCT02890069 Recruiting Colorectal cancer, non-small cell lung carcinoma

(adenocarcinoma), triple negative breast cancer, renal cell
carcinoma

HDM201 Phase 1 NCT03714958 Recruiting Colorectal cancer|advanced cancer|metastatic cancer
HDM201 Phase 1|phase 2 NCT03760445 Recruiting Leukemia, myeloid, acute
HDM201 Phase 1 NCT03940352 Recruiting AML|high-risk MDS
HDM201 Phase 2 NCT04116541 Not yet recruiting Malignant solid tumor
APG-115 Phase 1 NCT02935907 Recruiting Patients with advanced solid tumor or lymphoma
APG-115 Phase 1|phase 2 NCT03611868 Recruiting Unresectable or metastatic melanoma or advanced solid tumors
APG-115 Phase 1|phase 2 NCT03781986 Not yet recruiting Malignant salivary gland cancer
AMG-232 Phase 1 NCT01723020 Completed Advanced malignancy|advanced solid tumors|cancer|oncology|

oncology patients|tumors|glioblastoma|multiple myeloma
AMG-232 Phase 1 NCT02016729 Completed Advanced Malignancy|cancer|oncology|oncology Patients|AML
AMG-232 Phase 1|phase 2 NCT02110355 Completed Advanced malignancy|advanced solid tumors|cancer|oncology|

oncology patients|tumors|melanoma
AMG-232 Phase 1 NCT03031730 Recruiting Hypercalcemia|plasmacytoma|recurrent plasma cell myeloma|

refractory plasma cell myeloma
AMG-232 Phase 1 NCT03041688 Recruiting AML|recurrent AML|refractory AML|secondary AML
AMG-232 Phase 1 NCT03107780 Recruiting Glioblastoma|gliosarcoma|recurrent glioblastoma
AMG-232 Phase 1 NCT03217266 Recruiting Soft tissue sarcoma
AMG-232 Phase 2 NCT03662126 Recruiting PMF|Post-PV-MF|Post-ET-MF
AMG-232 Phase 2 NCT03669965 Recruiting Polycythemia vera
AMG-232 Phase 2 NCT03787602 Recruiting Merkel cell carcinoma
AMG-232 Phase 1|phase 2 NCT04113616 Recruiting AML|AML, secondary to MPN
AMG-232 Phase 1 NCT04190550 Not yet recruiting AML|AML arising from previous MDS
MK-8242 Phase 1 NCT01451437 Terminated AML
MK-8242 Phase 1 NCT01463696 Terminated Solid tumors
Frontiers in Pharmac
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AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; PMF, primary myelofibrosis; Post-PV-MF, post-polycythemia vera MF; Post-ET-MF, post-essential thrombocythemia MF;
MPN, myeloproliferative neoplasms.
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RG7388
RG7388, a second-generation Nutlin, was developed to improve
the potency and toxicity profile of earlier Nutlin. RG7388
induced p21 expression and effective cell cycle arrest in three
cell lines MCF-7, U-2OS and SJSA-1, which proved the strong
activation of p53 (Skalniak et al., 2018). RG7388 is currently
undergoing several clinical examinations, including the only III
clinical trial of MDM2 inhibitor (MIRROS/NCT02545283). The
results of phase I clinical trial showed that RG7388 improved
clinical outcomes by modulating p53 activity in AML patients
with high levels of MDM2 expression (Reis et al., 2016).
MIRROS is a randomized phase III clinical trial to evaluate the
efficacy of RG7388 combined with cytarabine in the treatment of
recurrent and refractory acute myeloid leukemia (AML). As of
April 2019, the study has recruited approximately 90% of patient
population and is still ongoing. If 80% of deaths are observed in
p53-WT population of this study, an interim efficacy analysis can
be obtained by 2020. MIRROS may obtain the first phase III
clinical trial data of MDM2 inhibitors and provide a new
treatment option for patients with AML (Montesinos
et al., 2020).

RG7775
RG7775 is an inactive pegylated prodrug of AP (idasanutlin),
which cleaves the pegylated tail of esterases in the blood. AP is a
potent and selective inhibitor of p53-MDM2 interaction to
activate p53 pathway and associates with cell-cycle arrest and/
or apoptosis. In a preclinical trial, intravenous (IV) RG7775
(RO6839921) showed anti-tumor effects in osteosarcoma and
AML in immunocompromised mice model (Chen et al., 2019).
In a phase I study (NCT02098967), RG7775 was investigated for
its safety, tolerability, and pharmacokinetics in patients with
advanced malignancies (Abdul et al., 2019). The result showed
that RG7775 had a safety profile comparable to oral idasanutlin.

SAR405838
SAR405838 is an oral selective spirooxindole small molecule
derivative antagonist of MDM2, which targets MDM2-p53
interaction (Wang et al., 2014). In the treatment of
dedifferentiated liposarcoma cells, SAR405838 effectively
stabilized p53, activated p53 pathway, block cell proliferation,
promoted cell-cycle arrest and induced apoptosis (Bill et al.,
2016). SAR405838 has been used in two clinical trials in cancer
patients (NCT01636479, NCT01985191). Study of TED12318
(NCT01636479) was a phase I, open-label, dose-ranging, dose
escalating, safety study administered orally in adult patients with
advanced solid tumor. In this trial, 74 patients were treated with
SAR405838 which showed best response in 56% patients with a
32% 3-month progression free rate. This study indicated that
SAR405838 had an acceptable safety profile in patients with
advanced solid tumors (de Jonge et al., 2017). Another clinical
trial on SAR405838 was the study of TCD13388 (NCT01985191),
which analyzed safety and efficacy of SAR405838 combined with
pimasertib in cancer patients. In this study, 26 patients with locally
advanced or metastatic solid tumors, who were documented to
have wild-type p53 and RAS or RAF mutations, were enrolled in
this study. The aim of this study was to explore maximum
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tolerated dose (MTD). Patient response was observed with
SAR405838 at 200 or 300 mg QD plus pimasertib 60 mg QD
or 45 mg BID. The most frequently occurring adverse events
observed were diarrhoea (81%), blood creatine phosphokinase
(77%), nausea (62%) and vomiting (62%). This study indicated
that the safety profile of SAR405838 combined with pimasertib
was consistent with the safety profiles of both the drugs (de
Weger et al., 2019).

HDM201
HDM201 is a potent and selective small molecule that inhibits
the interaction between MDM2 and p53, leading to tumor
regression in preclinical models with both low and high dose
regimen (Seipel et al., 2018). HDM201 had a specific and effective
killing effect on p53 wild-type cells with positive-ITD when used
in combination with midotaline (Seipel et al., 2018). HDM201
has been used in clinal trial (NCT02143635). NCT02143635
determined and evaluated a safe and tolerated dose of HDM201
in patients with advanced tumors with wild type p53. At the time
of data cut-off (April 1, 2016), 74 patients received HDM201
(Reg 1 with 38 patients and Reg 2 with 36 patients still receiving
treatment). The results showed that the common grade 3/4
adverse events (AEs) in both regimens (Reg 1 and Reg 2) were
anemia (8%; 17%) , neutropenia (26%; 14%) , and
thrombocytopenia (24%; 28%). Preliminary data indicated that
hematological toxicity was delayed and dependent on regimen
and that the Reg 1 regimen allows for higher cumulative dose
(Jeay et al., 2018).

APG-115
APG-115 is a novel, orally active small-molecule MDM2
inhibitor. APG-115 restores p53 expression after binding with
MDM2 and activates p53 mediated apoptosis in tumor cells with
wild-type p53 (Aguilar et al., 2017). APG-115 has been used in
clinical trials for treating solid tumor (NCT02935907), metastatic
melanoma (NCT03611868), and salivary gland carcinoma
(NCT03781986). Study NCT02935907 was a phase I study of
the safety, pharmacokinetic and pharmacodynamic properties of
orally administered APG-115 in patients with advanced solid
tumors or lymphomas. Different dose levels (Including 10 mg, 20
mg, 50 mg, 100 mg, 200 mg and 300 mg) were tested in this
study. The result showed the optimum dose of APG-115 to be
100 mg with no dose-limiting toxicities (Tolcher et al., 2019). In
recent studies, APG-115 mediated the anti-tumor immunity of
tumor microenvironment (TME). APG-115 activated p53 and
p21 on bone marrow-derived macrophages in vitro, and reduced
the number of immunosuppressive M2 macrophages by down-
regulating c-Myc and c-Maf. In addition, APG-115 showed
costimulatory activity in T cells and increased the expression
of PD-L1 in tumor cells. This evidence suggests the combination
of APG and immunotherapy may be a new anti-tumor regimen
(Fang et al., 2019).

AMG 232
AMG 232 is an investigational oral, selective MDM2 inhibitor
that restores p53 tumor suppression by blocking MDM2-p53
interaction (Sun et al., 2014). The activity of AMG 232 and its
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effect on p53 signal were characterized in several preclinical
tumor models. AMG 232 bind MDM2, strongly induced p53
activity, lead to cell cycle arrest and inhibit tumor cell
proliferation (Canon et al., 2015). Several clinical trials of the
AMG 232 such as NCT01723020 , NCT02016729 ,
NCT02110355, NCT03031730, NCT03041688, NCT03107780,
and NCT03217266 have been ongoing to treat human cancers.
NCT02016729 was an open-label phase I study that evaluated the
safety, pharmacokinetics, and MTD of AMG 232. In this study,
AMG 232 was administered in two regimens (arm 1 and arm 2).
Patients were treated with AMG 232 at 60, 120, 240, 360, 480, or
960 mg as monotherapy once daily for 7 d every 2 weeks in arm 1
or at 60 mg combined with trametinib at 2 mg in arm 2. The
results exhibited common treatment-related AEs included
nausea (58%), diarrhea (56%), vomiting (33%), and decreased
appetite (25%). However, the MTD of AMG 232 was not
reached. Dose escalation was discontinued because of its
unacceptable gastrointestinal AEs at higher doses (Erba
et al., 2019).

MK-8242
MK-8242 is a potent, small-molecule inhibitor which targets
MDM2-p53 interaction (Kang et al., 2016). MK-8242 induced
tumor regression of various solid tumor types and complete or
partial response in most acute lymphoblastic leukemia
xenografts (Kang et al., 2016). MK-8242 has been used in two
Phase I clinical trials (NCT01451437 and NCT01463696). Study
of NCT01451437 was a study of MK-8242 alone and in
combination with cytarabine in adult participants with
refractory or recurrent AML. In this study MK-8242 was
administered at 30–250 mg (p.o;QD) or 120–250 mg (p.o;BID)
for 7 d on/7 d off in a 28-d cycle and optimized regimen was
administered at 210 or 300 mg (p.o;BID) for 7 on/14 off in 21-d
cycle. Twenty-six patients were enrolled in this study, out of
which 5 discontinued because of AEs and 7 patients died. This
study showed the 7 on/14 off regimen had a more favorable
safety profile than the 7 on/7 off regimen (Ravandi et al., 2016).
NCT01463696 was aimed at evaluating the safety and
pharmacokinetic profile of MK-8242 in patients with advanced
solid tumors. In this study, drug dose was escalated to determine
the MTD in part 1 and the MTD was confirmed and the
recommended Phase 2 dose (RPTD) was established in part 2.
Finally, 47 patients were enrolled in this study and treated with
MK-8242 at eight level doses that ranged from 60 to 500 mg. The
result showed that MK-8242 activated p53 pathway with an
acceptable tolerability profile at 400 mg (BID) (Wagner
et al., 2017).

MDM2-Based Multi-Target Inhibitors
Along with the development of MDM2 inhibitors, searching for
multi-target inhibitors may be a new research direction. MDM2-
based multi-target inhibitors could improve the efficacy and
reduce the side effects (de Lera and Ganesan, 2016). Dual
inhibitors that have been reported to be co-inhibit with
MDM2 include MDM4, NF-kB, histone deacetylases (HDAC),
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translocator protein (TSPO), XIAP, and integrins (McCormack
et al., 2012; Daniele et al., 2016; Gu et al., 2016; Shirai et al., 2016;
Giustiniano et al., 2017; Merlino et al., 2018), which achieved
excellent in vitro and in vivo antitumor potency. Considering
MDM2 andMDM4 dual inhibitors had been well reviewed in the
recent literature (Teveroni et al., 2016; Espadinha et al., 2018), we
summarize other dual inhibitors.

Dual Inhibitors of MDM2 and NF-kB
Nuclear transcription factor (NF-kB) is a class of key nuclear
transcription factors exist in the cytoplasm of almost all types
cells in the form of homologous or heterodime. NF-kB family
includes five DNA-binding proteins that are usually
overexpressed in mammalian cancer cell (Pahl, 1999). Previous
studies found that NF-kB inhibit p53 stability by directly up-
regulating MDM2 (Dey et al., 2008). The cross-talk between p53
and NF-kB showed that simultaneous activation of p53 and
inhibition of NF-kB would provide a synergistic effect on anti-
tumor activity. Zhang et al. designed a series of pyrrolo[3,4-c]
pyrazole derivatives and synthesized as the first-in-class
inhibitors for both p53-MDM2 interaction and NF-kB. These
compounds effective targeted p53-MDM2 interaction and inhibit
cell growth in A549 xenograft model (Zhuang et al., 2014). In
addition, dual-target inhibitors enhanced the anti-tumor effect of
radiotherapy in pancreatic cancer (Shirai et al., 2016).

Dual Inhibitors of MDM2 and HDAC
Histone deacetylase (HDAC) is a kind of epigenetic enzyme
plays an important role in the regulation of tumor suppressor
genes (Kouzarides, 2007). In recent years, more HDAC
inhibitors have been approved by FDA such as romidepsin and
vorinostat (Mann et al., 2007). Most of the inhibitors used in
clinic are not effective in the treatment of solid tumors, and they
are also limited in the treatment of hematological malignant
tumors (Tan et al., 2010). Recent studies showed that HDAC
inhibitors cooperated with MDM2 inhibitors to suppress the
proliferation of tumor cells (McCormack et al., 2012). Inhibition
of HDAC not only lead to the accumulation of activated p53, but
also modified the hyperacetylation of p53 to enhance the anti-
tumor activity of MDM2 inhibitors (Xu et al., 2007; McCormack
et al., 2012). He et al. designed and synthesized the first MDM2/
HDAC dual inhibitor according to the known binding model of
MDM2 and HDAC inhibitors. These synthetic compounds
showed excellent targeted inhibitory effects on HDAC and
MDM2 in analysis of biochemical evaluation and structure-
activity relationship as well as good anti-tumor activity in the
xenograft model of A549 in vivo (He et al., 2018). These studies
suggest that inhibitors targeting both HDAC and MDM2 may be
a new way to treat cancer.

Dual Inhibitors of MDM2 and TSPO
The translocation protein (TSPO) is an 18 kDa transmembrane
protein, which mainly exists in the outer membrane of
mitochondria and constitutes a key part of the mitochondrial
permeability transition pore (MPTP) (Austin et al., 2013). MPTP
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could affect apoptosis by regulating mitochondrial outer
membrane permeabilization (MOMP) (Tait and Green, 2010),
suggesting TSPO as a useful target to trigger cellular apoptosis
(Chelli et al., 2005).Welsch.et al confirmed that multi-target single
molecules of TSPO and MDM2 would enhance the antitumor
efficacy (Welsch et al., 2010). A 2-phenylindolylglyoxylyl
dipeptide was designed to bind TSPO, leading to the disruption
of MDM2-p53 interaction, cell-cycle arrest, and apoptosis in
human GBM cells (Daniele et al., 2016).

Dual Inhibitors of MDM2 and XIAP
XIAP belongs to IAP family, which can down-regulate the
mitochondrial apoptosis by inhibiting caspase3, 7, and 9. XIAP
is highly expressed in various types of cancer and is related to
poor outcome (Tamm et al., 2004; Berezovskaya et al., 2005;
Mizutani et al., 2007). The binding between IRES region of XIAP
and MDM2 induced translation enhancement of XIAP and
stability of MDM2 (Candeias et al., 2008; Liu et al., 2015).
Zhou et al. developed a protein-RNA fluorescence polarization
(FP) assay for high-throughput screening (HTS) of chemical
libraries and identified eight inhibitors blocking the MDM2
protein-XIAP RNA interaction. The compound-induced
MDM2 downregulation resulted in inhibition of XIAP
expression and in activation of p53, which contributed to cell
apoptosis and proliferation inhibition (Gu et al., 2016).

Dual Inhibitors of MDM2 and Integrins
Fibronectin is a gene cluster related to highly malignant
glioblastoma and includes main receptors a5b1, avb6, avb8,
and avb3 integrins (Dechantsreiter et al., 1999; Mas-Moruno
et al., 2010). A selective antagonist of integrin receptors
perturbed a5b1 function, provoked cell cycle arrest and
decreased cell aggressiveness (Maglott et al., 2006). An effective
a5b1/avb3 integrin binding agent was identified to inhibit
MDM2/4 activity and reactivated p53 pathway. In addition, this
compound can induce cell cycle arrest, reduce the invasiveness of
GBM cells and block the proliferation of p53 wild-type GBM cells
(Merlino et al., 2018). The novel class of integrin/MDM2
inhibitors is useful in the subpopulation of patients with
glioblastoma expressing functional p53 concomitantly with a
high level of a5b1 integrin (Merlino et al., 2018).
Frontiers in Pharmacology | www.frontiersin.org 13
CONCLUSION

Genotoxic attacks are a huge threat to genomic stability. With
the major role of p53 in maintaining genome integrity, it is a big
challenge to dissect out diverse regulatory roles of p53. Since
the first identification of MDM2 cDNA repeats in transformed
mouse 3T3 cells, evidence has increasing supported the
functions of MDM2 in regulating cell proliferation,
senescence, DNA repair, and apoptosis through p53-
dependent and p53-independent pathways. MDM2 forms a
large protein interactome to participate in different signal
pathways, with the consideration of its changed protein
conformations, modulated protein isoforms, tightly regulated
post-translational modifications and subcellular localization.
MDM2 keeps p53 content to a basal level in normal
conditions. In response to stress signals like DNA damage,
both MDM2 and p53 undergo diverse post-translational
modifications, resulting in p53 stability and activation to
regulate target genes transcription. One of the strategies for
drug discovery is to improve p53 activity by inhibiting MDM2-
p53 interaction. Further studies are needed to clarify the cell
fate determination by MDM2-p53 axis after DNA damage and
other regulatory pathways of MDM2 protein, especially the
diverse isoforms of MDM2 in DNA repair process.
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