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Abstract
Smokers experience aberrant gene promoter methylation in their bronchial cells, which may predispose to the
development of neoplasia. Hydralazine is a DNA demethylating agent, and valproic acid is a histone deacetylase
inhibitor, and both have modest but synergistic anticancer activity in vitro. We conducted a phase I trial combining
valproic acid and hydralazine to determine the maximally tolerated dose (MTD) of hydralazine in combination with a
therapeutic dose of valproic acid in patients with advanced, unresectable, and previously treated solid cancers.
Twenty females and nine males were enrolled, with a median age of 57 years and a median ECOG performance
status of 0. Grade 1 lymphopenia and fatigue were the most common adverse effects. Three subjects withdrew
for treatment-related toxicities occurring after the DLT observation period, including testicular edema, rash, and an
increase in serum lipase accompanied by hyponatremia in one subject each. A true MTD of hydralazine in
combination with therapeutic doses of valproic acid was not reached in this trial, and the planned upper limit of
hydralazine investigated in this combination was 400 mg/day without grade 3 or 4 toxicities. A median number of
two treatment cycles were delivered. One partial response by Response Evaluation Criteria In Solid Tumors criteria
was observed, and five subjects experienced stable disease for 3 to 6 months. The combination of hydralazine and
valproic acid is simple, nontoxic, and might be appropriate for chemoprevention or combination with other cancer
treatments. This trial supports further investigation of epigenetic modification as a new therapeutic strategy.
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Introduction
Epigenetics is the study of a stably heritable phenotype resulting from
changes in a chromosome without alterations in the DNA sequence
[1]. DNA methylation and histone modifications are essential
epigenetic processes of normal cellular differentiation and function.
Dysregulation of epigenetic modifications can lead to neoplasia [2]. In
cancer, aberrant regulation of DNA methylation leads to global
hypomethylation, though many gene promoters, including those of
tumor suppressor genes are abnormally hypermethylated. Silencing of
tumor suppressors by hypermethylation of their gene promoters,
which inhibits transcription, is nearly universal in neoplasia. Genes
encoding proteins that modify histones have emerged to be some of
the most commonly mutated sequences associated with neoplasia [3].
These various epigenetic changes are targetable. Efforts have focused
on DNA-demethylating drugs and inhibitors of histone deacetylases
(HDACs). Cytidine analogs such as 5-azacytidine (azacitidine) and 5-
aza-deoxycytidine (decitabine) are demethylating agents, which
inhibit DNA methyltransferases (DNMTs) [4]. These drugs have
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been approved for the treatment of myelodysplastic syndrome and are
currently under investigation in solid tumors [5]. Their potential
mutagenic properties prevent use for cancer prevention. HDACs
remove acetyl groups from the histone lysine residues (as well as other
nonhistone proteins), leading to the formation of a condensed and
transcriptionally silenced chromatin. HDAC inhibitors that are used
for cancer therapy include romidepsin and vorinostat, both of which
have been approved for cutaneous T cell lymphoma. Belinostat is
currently under review by the United States Food and Drug
Administration (US FDA) for various indications.

Of interest to the current trial, multiple older drugs have activity as
DNMT or HDAC inhibitors. The antihypertensive drug hydralazine
is a demethylating agent [6,7]. Reversal of promoter hypermethyla-
tion in vitro can be achieved at pharmacological concentrations of
hydralazine [8]. Valproic acid is an HDAC inhibitor with modest
anticancer activity. The combination of hydralazine and valproic acid
demonstrates synergistic in vitro antineoplastic activity and increases
the cytotoxicity of several chemotherapy agents, such as gemcitabine,
cisplatin, and doxorubicin [9]. We conducted a phase I trial
combining valproic acid and hydralazine. The primary end point
was to determine the maximally tolerated dose (MTD) of hydralazine
in combination with a therapeutic dose of valproic acid, on the basis
of observed adverse events in patients with advanced, refractory, and
previously treated solid cancers.
Table 1. Dose Cohort Strategy.

Dosing Cohort Hydralazine Dose No. of Patients Treated

0 25 mg 3
1 50 mg 6
2 100 mg (25 mg QID) 3
3 200 mg (50 mg QID) 3
4 300 mg (75 mg QID) 9
5 400 mg (100 mg QID) 3
Methods
The trial was approved by the University of NewMexico Institutional
Review Board, and patients were enrolled after signing an informed
consent. This trial was registered with ClinicalTrials.gov (Identifier
No. NCT0096060) (United States National Institutes of Health,
Bethesda, MD).

Patient Population
Eligible patients included those with solid tumors who were

previously treated, for whom no acceptable standard treatment
regimen was available, and could not be cured with either surgery or
radiotherapy. All patients had to be able to provide informed consent,
be ≥18 years old, have an Eastern Cooperative Oncology Group
(ECOG) performance status of ≤2 at the time of the initiation of
therapy, have adequate end-organ function, have a life expectancy
N8 weeks, and have no severe comorbidities.

Study Design
The study was an open-label, nonrandomized, dose-escalation

phase I trial that enrolled patients in sequential cohorts. The drugs
were given in 28-day cycles. Valproic acid was initiated at day −14 of
the first cycle to achieve a steady state level, and subsequently, both
drugs were given continuously for the subsequent cycles. The initial
dose of valproic acid was 250 mg orally three times a day for days −14
through −8, then 500 mg orally three times each day daily for days −7
through 28, with the dose titrated to keep the serum level between 0.4
and 0.7 μg/ml. Hydralazine (immediate-release formulation) was
initiated at 25 mg per day in the first dosing cohort and then dose-
escalated in divided doses through the day in subsequent cohorts of
patients as long as the blood pressure values were tolerated by
patients. Table 1 shows the cohorts representing hydralazine dose
escalation. To avoid neurotoxicity and excessive sedation, there was
no plan to escalate the dose of valproic acid to achieve a steady state
level higher than 0.7 μg/ml. A 3 + 3 design was followed for transition
from one cohort to the next. If none of the first three patients in one
cohort experienced dose-limiting toxicity (DLT) by day 28 of cycle 1,
then the dose was escalated in the next cohort to the next higher
hydralazine dose level. A DLT consisted of one or more grade 3 or
greater nonhematologic toxicities or any grade 4 or greater
hematologic toxicities lasting longer than 10 days during the first
cycle and must have been at least possibly attributed to the treatment
regimen. If one of the three patients experienced DLT by day 28 of
cycle 1, then the cohort was expanded to six patients. If none of these
three additional patients experienced DLT, then the dose was
escalated to the next higher dose level in the subsequent cohort. The
MTD was the dose level at which none of six or one of six patients
experienced a DLT during the first 4-week cycle with the next higher
dose having at least two of six patients experiencing a DLT. At the
MTD, a total of six additional patients were enrolled to better assess
potential toxicities. A standard 3 + 3 design was used in this setting
with toxicity end points rather than pharmacodynamic end points
due to the potential differences in the panel of epigenetically silenced
tumor suppressors between the various tumor types, as well as within
tumor types. A pharmacodynamic end point was deemed to be more
appropriate for evaluation in a controlled phase II trial.
Results

Patients Characteristics
A total of 29 patients were enrolled, and 27 were treated. One

withdrew consent before initiating any therapy, and one never
received therapy due to a rapid decline in performance status. Of
those treated, there were 19 females and 8 males, with a median age of
57 years (range = 29-75 years), and a median ECOG performance
status of 0. These subjects had received a median of four prior
regimens (range = 1-12). The data are summarized in Table 2.

Toxicity
This combination was largely well tolerated. Twenty-seven patients

received the combination through six consecutive cohorts with
increasing doses of hydralazine. The potential toxicities associated
with hydralazine are known to be associated with formulation and
acetylator phenotype; whereas the formulation was controlled
(immediate vs sustained release preparations), the limited number
of subjects involved in this study precluded adequate stratification or
assessment by acetylator phenotype (slow vs fast). Each subject was
able to take the valproic acid at therapeutic levels. Lymphopenia and
fatigue were the most common adverse effects (Table 3A, B, C, D),
and adverse effects required reducing the dose of valproic acid in three
patients; subsequent serum levels were not recorded. Hydralazine
caused edema in five subjects but resulted in treatment discontin-
uation in only one of the subjects who experienced testicular edema at
the dose level of 50 mg per day (the other four experienced lower



Table 2. Subject Demographics (N = 27).

Age (Years)
Median 57
Range 29-75
Gender
Males 8
Females 19
ECOG Performance Status
0 21
1 5
2 1
No. of Prior Chemotherapy Regimens
Median 4
Range 1-12
Tumor Histology
Colorectal 4
Cutaneous melanoma 4
Ovary 4
Breast 4
Soft-tissue sarcoma 3
Non–small cell lung 2
Head and neck 2
Cervix 2
Ocular melanoma 1
Gastric 1
TOTAL 27

Table 3B. All Related Laboratory Value Adverse Events.

Adverse Event Grade 1 Grade 2 Grade 3 Grade 4 Total Events

Hyperglycemia 5 0 0 0 5
Hyponatremia 4 0 0 0 4
Hypokalemia 3 0 0 0 3
Hypocalcemia 2 0 0 0 2
Hypomagnesemia 2 0 0 0 2
Increased aspartate aminotransferase 2 0 0 0 2
Increased alkaline phosphatase 1 0 0 0 1
Increased lipase 1 0 0 0 1
Increased alanine transaminase 1 0 0 0 1
Hypoalbuminemia 1 0 0 0 1

Table 3C. All Related Systemic Adverse Events.

Adverse Event Grade 1 Grade 2 Grade 3 Grade 4 Total Events

Fatigue 7 5 0 0 12
Edema (leg) 4 0 0 0 4
Nausea 2 2 0 0 4
Vomiting 3 0 0 0 3
Headache 1 2 0 0 3
Heartburn 2 1 0 0 3
Rash 2 1 0 0 3
Decreased level of consciousness 1 1 0 0 2
Tremor 0 2 0 0 2
Somnolence 0 2 0 0 2
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extremity edema). Two other subjects withdrew for treatment-related
toxicities occurring after the DLT observation period, including rash
in the one subject (dose level of 25 mg per day) and hyponatremia and
an increase in serum lipase in the other subject (dose level of 300 mg
per day). Although hypotension was anticipated to be a DLT at
higher doses, the patients in the highest planned dosing cohort
tolerated hydralazine at a dose of 400 mg per day with no clinically
relevant hypotension. No MTD of hydralazine was observed in this
trial, but as the maximum recommended dose of hydralazine for the
treatment of hypertension or congestive heart failure is 300 mg per
day, the phase II dose of hydralazine in combination with valproic
acid at therapeutic doses was defined as 300 mg per day; six additional
patients were enrolled at this dose level (total of nine) to better define
any potential toxicities, without any DLTs observed.

Responses
A median number of two treatment cycles were administered on

this protocol (range = 1 -29). There were no complete responses. One
partial response by Response Evaluation Criteria In Solid Tumors
(RECIST) criteria was observed in a patient who had metastatic
mutant B-RAF V600E-positive melanoma (before the availability of
vemurafenib). They received this regimen as a second-line systemic
therapy after a combination of temozolomide, paclitaxel, and
carboplatin and remained on therapy for 29 months. They initially
had stable disease for 4 months, which slowly evolved into a partial
response. They developed vitiligo on this experimental combination.
On disease progression, they received ipilimumab without response.
Five additional subjects experienced stable disease for 3 to 6 months:
two with soft-tissue sarcoma (3 and 4 months), ovarian cancer
Table 3A. All Related Hematologic Adverse Events.

Adverse Event Grade 1 Grade 2 Grade 3 Grade 4 Total Events

Lymphopenia 9 4 2 0 15
Anemia 6 0 1 0 7
Thrombocytopenia 6 0 0 0 6
Decreased leukocytes 3 0 0 0 3
Hemolysis 1 0 0 0 1
(3 months), squamous cell cancer of the head and neck (4months), and
breast cancer (6 months). At the time of this report, 24 of the 27
subjects have died, with a median overall survival of 3 months (range =
1-18 months); the three survivors are alive at 16, 18, and 18 months.
Discussion
Although the primary objective of this phase I study was to identify
the MTD of the combination of escalating doses of hydralazine with a
fixed, steady-state concentration of valproic acid, the significance of
the study was to design and test a tolerable combination of agents that
may subsequently be evaluated as a regimen for the chemoprevention
of lung cancer. Chromatin-modifying agents have demonstrated
activity in vitro and in vivo against non–small cell lung cancer.
However, the adverse event profiles of current FDA-approved
chromatin-modifying agents are not justifiable for chronic delivery
in healthy patients at risk for lung cancer. In our trial, the
recommended dose for further study is hydralazine at 300 mg per
day and valproic acid with a target serum concentration of 0.4 to 0.7
μg/ml. Although the dose of 400 mg per day of hydralazine did not
exceed DLT as defined, the rates of mild, symptomatic hypotension
and edema were considered unacceptable for the purpose of
prolonged administration. This study demonstrates that pharmaco-
logical doses of hydralazine and valproic acid may be delivered to
patients with heavily pretreated malignancies, with evidence of
potential clinical activity in melanoma, soft-tissue sarcoma, and
carcinomas of the breast, ovary, and head and neck. The study was
Pruritis 0 1 0 0 1
Anorexia 1 0 0 0 1
Hypopigmentation 1 0 0 0 1
Neuropathy 0 1 0 0 1
Constipation 1 0 0 0 1
Edema (testicles) 0 0 1 0 1
Bruising after fall 1 0 0 0 1
Hypotension 1 0 0 0 1
Rhinitis 1 0 0 0 1
Confusion 1 0 0 0 1



Table 3D. Related Adverse Events, All Grades, by Cohort.

Cohort 0 Adverse Event Grade 1 Grade 2 Grade 3 Grade 4 Total
Events

Hyperglycemia 5 0 0 0 5
Lymphopenia 4 1 0 0 5
Fatigue 2 1 0 0 3
Hypokalemia 2 0 0 0 2
Hypomagnesemia 2 0 0 0 2
Increased aspartate
aminotransferase

2 0 0 0 2

Increased alanine
transaminase

1 0 0 0 1

Edema (leg) 2 0 0 0 2
Nausea 1 1 0 0 2
Anemia 1 0 0 0 1
Hyponatremia 1 0 0 0 1
Hypoalbuminemia 1 0 0 0 1
Increased lipase 1 0 0 0 1
Muscle twitch 0 1 0 0 1
Neuropathy 0 1 0 0 1
Vomiting 1 0 0 0 1
Constipation 1 0 0 0 1
Headache 1 0 0 0 1

Cohort 1 Adverse Event Grade 1 Grade 2 Grade 3 Grade 4 Total
Events

Lymphopenia 2 2 0 0 4
Fatigue 0 3 0 0 3
Edema (leg) 2 0 0 0 2
Hypocalcemia 2 0 0 0 2
Thrombocytopenia 2 0 0 0 2
Hypokalemia 1 0 0 0 1
Increased alkaline
phosphatase

1 0 0 0 1

Edema (testicles) 0 0 1 0 1
Vomiting 1 0 0 0 1
Bruise after fall 1 0 0 0 1

Cohort 2 Adverse Event Grade 1 Grade 2 Grade 3 Grade 4 Total
Events

Anemia 2 0 0 0 2

Cohort 3 Adverse Event Grade 1 Grade 2 Grade 3 Grade 4 Total
Events

Decreased level
of consciousness

0 1 0 0 1

Confusion 1 0 0 0 1
Hyponatremia 1 0 0 0 1
Rhinitis 1 0 0 0 1

Cohort 4 Adverse Event Grade 1 Grade 2 Grade 3 Grade 4 Total
Events

Lymphopenia 2 1 2 0 5
Fatigue 4 0 0 0 4
Rash 2 1 0 0 3
Hyponatremia 2 0 0 0 2
Headache 0 2 0 0 2
Leukopenia 2 0 0 0 2
Thrombocytopenia 2 0 0 0 2
Hypokalemia 0 0 1 0 1
Decreased level
of consciousness

0 0 1 0 1

Hypotension 1 0 0 0 1
Heartburn 1 0 0 0 1
Pruritis 1 0 0 0 1
Anemia 1 0 0 0 1
Hemolysis 1 0 0 0 1

Table 3D (continued)

Cohort 5 Adverse Event Grade 1 Grade 2 Grade 3 Grade 4 Total
Events

Fatigue 1 2 0 0 3
Nausea 2 1 0 0 3
Somnolence 0 2 0 0 2
Anemia 2 0 0 0 2
Thrombocytopenia 2 0 0 0 2
Heartburn 1 1 0 0 2
Leukopenia 1 0 0 0 1
Vomiting 0 1 0 0 1
Anorexia 1 0 0 0 1
Tremor 0 1 0 0 1
Hypopigmentation 1 0 0 0 1
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limited by absence of a correlative pharmacodynamic surrogate of
epigenetic reprogramming. Zambrano et al. conducted a phase I trial
hydralazine in women with cervical cancer and were able to
demonstrate partial reversal of a panel of aberrantly silenced genes
at all dose levels tested, with gene re-expression in three-quarters of
the informative cases [8].

Epigenetics are the processes that modulate DNA expression without
changing the DNA code. At the DNA level, epigenetic changes
modulate the genome through the covalent addition of a methyl group
to the 5-position of the cytosine ring within the context of cytosine and
guanine (CpG) dinucleotides. Although the majority of the genome is
CpG poor, about three-quarters of the CpG residues in the mammalian
genome are methylated. These areas of the genome are called CpG
islands and are often found at the 5′ ends of genes. DNA methylation
can promote oncogenesis through an increased mutation rate or by
silencing transcription of tumor suppressor genes [10-12]. For example,
some colorectal carcinomas with microsatellite instability have a high
frequency of promoter region hypermethylation of the mismatch repair
gene hMLH1. Colon cell lines containing a hypermethylated hMLH1
gene re-express hMLH1 when treated with 5-aza-2′-deoxycytidine and
show restoration of mismatch repair ability, indicating that hyper-
methylation of the hMLH1 CpG island could be the primary
inactivating event [13]. In patients with heterozygous mutations in
tumor suppressor genes, the second hit can occur by hypermethylation
of the wild-type allele, leading to tumorigenesis. Five-methylcytosine
itself may be mutagenic by undergoing spontaneous deamination to
form thymine, leading to a C→T transition [10-12]. Hydralazine
reverses aberrant gene promoter methylation in vitro at concentrations
that are achieved clinically [6].

At the histone level, posttranslational modification of amino acids
can alter the histone conformation. Modification of histones ensures
that a differentiated cell remains differentiated and does not convert
back into a stem cell. Histone recognition by protein complexes called
readers, writers, and erasers of the histone code helps shape the
structural determinants of histone functions. Although histone
modifications occur throughout the entire sequence, the “histone
tails” (unstructured N termini) are the targets of most modifications.
These include acetylation, methylation, ubiquitylation, phosphory-
lation, and sumoylation. Of particular interest to the current study
design, acetylation leads to transcriptional competence. HDAC
inhibitors represent a novel class of therapeutic agents that increase
histone acetylation to maintain the chromatin structure in a more
open conformation. This conformational change may lead to
restoration of transcriptionally silenced pathways or suppression of
aberrantly expressed genes through recruitment of repressor proteins
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[14]. Thus, the balance of acetylation and methylation plays an
important regulatory role in the transcription of a number of genes.
Nonhistone proteins, including p53, p63, and GATA-1, are also
influential substrates of HDACs [15-20]. HDAC inhibitors block
proliferation of transformed cells in culture by inducing cell cycle
arrest, differentiation, and/or apoptosis and inhibit tumor growth in
animal models. Various mechanisms of actions are continuously
being discovered. Approximately 2% of genes are functionally altered
after exposure to HDAC inhibitors; some genes, like the cell cycle
inhibitors p21WAF1/CIP1, gelsolin, p27Kip, p16INK4a, and
p15INK4b are induced after exposure to HDAC inhibitors, whereas
other genes, such as cyclin D1 and NFκB, are repressed [21-32].
Valproic acid, a short-chain fatty acid that has been in clinical use

for more than three decades for the therapy of seizures and bipolar
disorder, also inhibits HDAC. At therapeutic levels, valproic acid
directly inhibits class I and II HDACs (except HDAC6 and
HDAC10), with resultant hyperacetylation of histones H3 and H4.
After treatment with valproic acid, there is altered expression of
multiple genes, including the cyclin-dependent kinase inhibitor
p21Cip1, glycogen synthase kinase-3ß, and peroxisome proliferator-
activated receptors, and down-regulation of the expression of the
antiapoptotic protein kinase C α and ε isoforms [33-39]. Valproic acid
has displayed potent in vitro and in vivo antitumor activities against
neuroblastoma, glioma, leukemia, breast cancer, multiple myeloma,
and prostate cancer lines [9,40-47]. Even though valproic acid is a
potent teratogen in noncommitted cell lineages, it is otherwise usually
well tolerated; in fact, it may even protect against neurotoxicity
observed with some drugs. However, although it has been incidentally
used in some patients with malignancies, to date, there are no
reported trials of valproic acid alone or with other agents in a
controlled clinical trial setting. In vitro, the cytotoxicity of valproic
acid is potentiated by hydralazine, a noncytotoxic drug.
Clinical efforts to evaluate epigenetic modulation in solid tumors

are in very early stages. Juergens et al. reported the outcome of a phase
I-II trial in heavily pretreated patients (more than three lines of
chemotherapy) with non–small cell lung cancer treated with a
combination of the DNMT and HDAC inhibitors 5-azacytidine and
entinostat, respectively, and noted a 35% clinical benefit rate, with
two objective responses and ten subjects with disease stabilization
[48]. As in most phase I trials, the current investigation was
conducted in heavily pretreated patients with limited standard
therapeutic options, and nonetheless, intriguing activity was seen. In
smokers, the risk for development of non–small cell lung cancer is
associated with a promoter methylation signature that is detectable in
sputum [49]. Given the potential for synergistic epigenetic
modulation between hydralazine and valproic acid, as well as the
safety track record for long-term administration in nononcology
patients, we conducted this trial to identify a dose appropriate for
chronic administration for lung cancer chemoprevention.
The results of our trial support further investigation of epigenetic

modification as a new therapeutic strategy. The combination of
hydralazine and valproic acid is simple, nontoxic, and lends itself to
chemoprevention or combination with other treatments. Future
studies will need to be conducted with pharmacodynamic end points,
such as the re-expression of defined panels of tumor suppressor genes
as a function of therapy. Furthermore, if hydralazine is used, then
study patients will need to be stratified by acetylator phenotype, as it
is possible that toxicity, and even efficacy, may be determined by such
phenotypic expression. Prospective trials will need to assess the role of
epigenetic modification through newly discovered epigenetic mech-
anisms of action that could be used as biomarkers of efficacy.
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