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Abstract: Individuals with alcohol use disorder (AUD) may manifest an array of neural and behav-
ioral abnormalities, including altered brain networks, impaired neurocognitive functioning, and
heightened impulsivity. Using multidomain measures, the current study aimed to identify specific
features that can differentiate individuals with AUD from healthy controls (CTL), utilizing a random
forests (RF) classification model. Features included fMRI-based resting-state functional connectivity
(rsFC) across the reward network, neuropsychological task performance, and behavioral impulsivity
scores, collected from thirty abstinent adult males with prior history of AUD and thirty CTL individ-
uals without a history of AUD. It was found that the RF model achieved a classification accuracy of
86.67% (AUC = 93%) and identified key features of FC and impulsivity that significantly contributed
to classifying AUD from CTL individuals. Impulsivity scores were the topmost predictors, followed
by twelve rsFC features involving seventeen key reward regions in the brain, such as the ventral
tegmental area, nucleus accumbens, anterior insula, anterior cingulate cortex, and other cortical and
subcortical structures. Individuals with AUD manifested significant differences in impulsivity and
alterations in functional connectivity relative to controls. Specifically, AUD showed heightened im-
pulsivity and hypoconnectivity in nine connections across 13 regions and hyperconnectivity in three
connections involving six regions. Relative to controls, visuo-spatial short-term working memory was
also found to be impaired in AUD. In conclusion, specific multidomain features of brain connectivity,
impulsivity, and neuropsychological performance can be used in a machine learning framework to
effectively classify AUD individuals from healthy controls.

Keywords: alcohol use disorder (AUD); random forests (RF); resting-state functional connectivity
(FC); reward network (RN); functional MRI (fMRI); neuropsychological tests; impulsivity

1. Introduction

The drugs of abuse, including alcohol, exert and maintain their reinforcing effects through
the reward circuitry of the brain [1,2]. Neuroimaging studies have documented the disruption
of reward processing in addiction [3] and implicated brain reward circuitry in different
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stages of alcohol use disorder (AUD) [4]. The reward network, in the context of addiction,
primarily includes structures from the midbrain (i.e., ventral tegmental area, VTA), basal
ganglia (i.e., nucleus accumbens, NAc; caudate nucleus; and putamen), limbic system (i.e.,
amygdala, hippocampus, and thalamus), and cerebral cortical regions (i.e., prefrontal cortices,
insula, cingular cortices, and superior and inferior parietal lobules) [1,2,5–7]. Deficient reward
processing due to abnormalities in the reward network in individuals with chronic AUD
has been widely reported for both monetary and drug-related rewards [8–16]. For instance,
an fMRI finding reported by Wrase et al. [10] showed that the ventral striatum (VS), a key
reward region, showed increased activation for alcohol-related cues, but decreased activation
for monetary gain in detoxified alcoholics, relative to healthy controls, suggesting differential
activation of VS in response to the type of reward. Both animal and human studies have
revealed that chronic administration of addictive substances results in neuroadaptations in
reward structures, especially in the midbrain dopaminergic areas (e.g., VTA, substantia nigra),
as well as the structures to which they project (e.g., NAc) [17,18].

Nevertheless, brain network interactions between mesocorticolimbic regions and other
subcortical and cortical structures, especially in human participants with chronic AUD,
have not been well-understood [19]. Historically, dysregulation in brain dopaminergic
system has been postulated as the primary mechanism underlying substance use disor-
ders (SUD) [20,21], and, therefore, studies have attempted to elucidate alterations in the
reward network in human patients with SUD (cf. Sutherland et al. [19]). The integrity
and communication strength of neural networks have been measured using functional
connectivity [22], which is defined as the temporal dependency of neuronal activation
patterns of anatomically separated brain regions [23]. Resting-state functional connectivity
(rsFC) provides a reliable approach for studying various networks underlying ongoing
cognitive and emotional processes [24]. Since the phenomenon was first reported by Biswal
et al. [25], a growing number of studies have examined rsFC and elucidated brain func-
tioning, in terms of neural communication in both healthy subjects and patients with
various neurological and psychiatric [24,26,27] and substance use disorders (SUD) [28,29],
including AUD [30–36]. However, to our knowledge, there have been no studies exploring
both cortical and subcortical reward networks during resting state in abstinent individuals
with past history of AUD, and who manifest a variety of neurocognitive deficits [37]. Since
studying detoxified and abstinent AUD individuals relative to healthy controls without
past AUD has an advantage in determining the brain impacts due to chronic past drinking
without the confounding effects of current drinking [8,38,39], the current study provides an
important opportunity to investigate the resting-state functional connectivity of the reward
network in abstinent individuals with past AUD.

Studies have also shown that abstinent individuals with AUD often manifest poor neu-
ropsychological performance [40–45] and heightened impulsivity [46–48], and, therefore, it
is important to include these domains in the models exploring concomitants and/or deter-
minants of alcohol-related outcomes. In our previous study, we reported that a random
forest algorithm was highly useful for classifying AUD individuals from controls using
multi-modal measures, including fMRI functional connectivity of the default mode net-
work, neuropsychological performance, and impulsivity. Since AUD and other addiction
traits are shown to be associated with reward networks [49,50] and as substance induced
neuroadaptation primarily involves reward structures [51], the current study aimed to
examine the functional connectivity across the reward network, along with measures of
neuropsychological performance and impulsivity, to differentiate abstinent AUD individ-
uals from healthy controls. Similar to our previous study, we computed the predictive
power of these multi-domain measures in terms of classification accuracy in a machine
learning framework and evaluated the utility of these phenotypic features, especially the
reward network connectivity measures. Since recent studies have proposed that resting
state fMRI connectivity can potentially serve as one of the key neuroimaging biomarkers
for quantitative clinical evaluation of AUD [36,52,53], the findings from the current study
may elucidate specific connectivity patterns across reward regions of the brain in abstinent
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AUD individuals, along with key neuropsychological and impulsivity features, which are
distinctly different from healthy controls.

2. Materials and Methods

The study protocol is illustrated in Figure 1. The sample consisted of 30 abstinent
individuals with past diagnosis of AUD and 30 healthy volunteers (CTL) (see Section 2.1 for
details). The analytic measures included rs-fMRI (Sections 2.4–2.6), self-rated impulsivity
scores (Section 2.3), and neuropsychological test scores (Section 2.2). Major analyses
employed in the study were (i) feature selection to extract relevant features that will be used
in classification analysis (Section 2.7), (ii) random forest method to identify the key features
that significantly contribute to classifying AUD from the CTL participants (Section 2.8),
(iii) zero-order correlations were used to compute associations of the key variables identified
by the random forest classification model, (a) among themselves (Section 3.2) and (b) with
age in each group (Section 3.3). Partial correlations were employed to identify associations
between age and the key variables of classification by controlling the group effects in the
total sample (Section 3.3).
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Figure 1. The study protocol listing the sample, measures, and analytic techniques. The sample con-
sisted of two groups of 30 individuals each, viz., AUD and CTL. The measures used in the prediction
model included rs-fMRI functional connectivity (reward network), impulsivity assessed with Barratt
impulsiveness scale (BIS), and neuropsychological performance scores. Major analyses were features
selection for selecting FC variables, random forest classification method, and correlational analyses,
including zero-order and partial correlations.

2.1. Sample

The sample characteristics are presented in Table 1, and a detailed description is also
available in Pandey et al. [54]. All participants in the current study were drawn from the
sample of a larger study on brain dysfunction in chronic alcoholism conducted at the SUNY
Downstate Health Sciences University, Brooklyn, NY, USA. Thirty currently abstinent adult
males with past AUD (mean age (SD) = 41.42 (7.31) years) and thirty unaffected male
controls (mean age (SD) = 27.44 (4.74) years), who had undergone multimodal assessments,
including structural and functional MRI and neuropsychological tests, were selected for
the present study. The “race/ethnic” distribution of the sample was: African Ancestry = 25;
European Ancestry = 9; Asian = 21; American Indian = 1; More than one race = 2; and
Unknown = 2. Participants with AUD were recruited from alcohol treatment centers in and
around New York City after they had been detoxified and abstinent for at least 30 days prior
to testing. As shown in Table 1, some of the participants from the AUD group had consumed
tobacco (N = 20) and/or marijuana (N = 10) during the last 6 months (but not at least 5 days
before testing). None of the participants were in withdrawal for alcohol or any other drugs
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(including nicotine) at the time of testing. Individuals for the control group (CTL) were
recruited through advertisements and screened to exclude any personal or family history
of major medical, psychiatric, or substance-related disorders. The CTL participants did not
have any past or present history of substance dependence or abuse (DSM-IV), although
some of them (N = 12) were light/regular drinkers and had used alcohol in the last 6 months
(N = 18) (see Table 1 for details). All participants were asked to abstain from alcohol and
other drugs for 5 days prior to MRI scans. Clinical information regarding substance use,
psychiatric disorder, and family history were assessed using a modified version of the
semi-structured assessment of genetics of alcoholism (SSAGA) [55]. The majority of subjects
were right-handed, with only a few who were either left-handed (5 in AUD and 2 in CTL
group) or bi-dexterous (2 in AUD and 1 in CTL group). Clinical and psychometric data
were collected at the SUNY Downstate Health Sciences University, while the fMRI data
were acquired at the Nathan Kline Institute (NKI) for Psychiatric Research. Standard MRI
safety protocols and exclusion criteria (implants, tattoos, cosmetics, claustrophobia, etc.)
were followed to ensure subjects’ safety and data quality. Individuals with hearing/visual
impairment, a history of head injury, or moderate and severe cognitive deficits (<21)
on mini-mental state examination (MMSE) [56] were also excluded from the study. All
participants provided informed consent and the Institutional Review Boards of both centers
approved the research protocols (IRB approval ID: SUNY–266893; NKI–212263).

Table 1. Demographic and clinical characteristics of the sample.

Variable
AUD CTL

N * Mean SD N * Mean SD

Age (in years) 30 41.42 7.31 30 27.44 4.74

Education (in Years) 30 11.93 2.35 30 15.77 1.87

Age of onset (regular alcohol use) 30 15.77 2.58 12 20.50 3.80

Alcohol: Drinks/day
(heavy alcohol use period) 30 12.08 10.02 12 2.88 1.93

Alcohol: Days/month
(heavy alcohol use period) 30 20.30 9.01 12 3.35 3.64

Alcohol: Drinks (last 6 months) 30 2.68 6.61 18 2.61 1.98

Alcohol: Days (last 6 months) 30 3.97 8.02 18 2.94 3.62

Length of Abstinence (in months) 30 22.43 28.16 18 1.9 4.99

Tobacco: Times/day (last 6 months) 20 9.90 5.80 6 2.33 1.63

Tobacco: Days/month (last 6 months) 20 28.35 4.83 6 14.17 13.82

Marijuana: Times in last 6 months 10 98.80 91.38 4 18.75 27.61
* N refers to the number of subjects included in these mean and SD calculations for each variable. Individuals
who did not consume alcohol or drugs were not included in the respective calculations.

2.2. Neuropsychological Assessment

Participants were administered two computerized tests from the Colorado assessment
tests for cognitive and neuropsychological assessment [57], namely, the Tower of London
Test (TOLT) [58], and the visual span test (VST) [59,60].

2.2.1. Tower of London Test (TOLT)

The TOLT assesses planning and problem-solving ability of the executive functions. In
this test, participants were asked to solve a set of puzzles with graded difficulty levels by
arranging a number of colored beads one at a time from a starting position to the desired
goal position in as few moves as possible. The test consisted of 3 puzzle types, with 3,
4, and 5 colored beads placed on the same number of pegs, with 7 problems/trials per
type and a total of 21 trials. The following performance measures from the sum total



Behav. Sci. 2022, 12, 128 5 of 26

of all puzzle types were used in the analysis: (i) excess moves, which is the additional
moves beyond the minimum moves required to solve the puzzle (“ExcMovMade_All”);
(ii) average pickup time, which is the initial thinking/planning time spent until picking up
the first bead to solve the puzzle (“AvgPicTime_All”); (iii) average total time, which is the
total thinking/planning time to solve the problem in each puzzle type (“AvgTotTime_All”);
(iv) total trial time, which is the total performance/execution time spent on all trials
within each puzzle type (“TotTrlTime_All”); and (v) average trial time, which is the mean
performance/execution time across trials per puzzle type (“AvgTrlTime_All”).

2.2.2. Visual Span Test (VST)

The VST measured visuospatial memory span from the forward condition and work-
ing memory from the backward condition. In this test, a set of randomly arranged squares,
ranging from 2 to 8 squares per trial, flashed in a predetermined sequence depending on
the span level being assessed. Each span level was administered twice, with a total of
14 trials in each condition. During the forward condition, subjects were required to repeat
the sequence in the same order by clicking on the squares using a computer mouse. In the
backward condition, subjects were required to repeat the sequence in the reverse order
(starting from the last square). The following performance measures were collected during
forward and backward conditions: (i) total number of correctly performed trials (“Tot-
Cor_Fw” and “TotCor_Bw”); (ii) maximum span or sequence-length achieved (“Span_Fw”
and “Span_Bw”); (iii) total average time, which is the sum of mean time-taken across
all trials performed (“TotAvgTime_Fw” and “TotAvgTime_Bw”); and (iv) total correct
average time, which is the sum of mean time-taken across all trials correctly performed
(“TotCorAvgTime_Fw” and “TotCorAvgTime_Bw”).

2.3. Impulsivity Scores

Barratt Impulsiveness Scale—Version 11 (BIS-11) [61], a 30-item self-administered tool
with excellent psychometric properties [62], was used to assess aspects of impulsivity. All
three subscales, viz., motor impulsivity (BIS_MI), non-planning (BIS_NP), and attentional
impulsivity (BIS_AI), were included in the random forest model.

2.4. MRI Data Acquisition

The details of fMRI data acquisition on the same sample have been described previ-
ously by our group [63]. Briefly, MRI scanning was performed at the Nathan Kline Institute
using a 3.0 Tesla Siemens Tim Trio scanner (Erlangen, Germany). The resting-state fMRI
data, used in the current study, were collected during eyes closed alert state for 6.11 s. A
series of T2*-weighted gradient echo single-shot echo-planar imaging (EPI) volumes with the
following sequence parameters was acquired: TR = 2750 ms; TE = 30 ms; flip angle = 80◦;
voxel size = 2.5 × 2.5 × 3.5 mm3; matrix size = 96 × 96; number of slices = 50; number
of volumes = 130; FOV = 240 mm; and Grappa acceleration factor = 3. The sequence was
carefully optimized to minimize the effects of magnetic susceptibility inhomogeneities (such as
distortions and signal dropouts), as well as the effects of mechanical vibrations, which elevate
Nyquist ghosting levels. In addition, a magnetization-prepared rapid gradient-echo (MPRAGE)
high-resolution three-dimensional T1-weighted structural image served as an anatomical
reference for the fMRI data, as well as for the non-linear registration of imaging data be-
tween subjects. The sequence parameters for the MPRAGE were: TR = 2500 ms; TE = 3.5 ms;
TI = 1200 ms; flip angle = 8◦; voxel size = 1 × 1 × 1 mm3; matrix size = 256 × 256 × 192;
FOV = 256 mm; and number of averages = 1.

2.5. Image Processing

The details of image processing for the resting state fMRI are available in our previous
study [63]. Briefly, the intra-subject inter-modality linear registration module [64] of the
automatic registration toolbox (ART; www.nitrc.org/projects/art (accessed on 20 December
2019) was used to register the structural (MPRAGE) and functional MRI volumes. The

www.nitrc.org/projects/art
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brainwash program within the ART toolbox was used for skull-stripping the MPRAGE
volumes. Motion detection and correction were performed using the 3dvolreg module
of the AFNI software package [65]. Furthermore, the non-linear registration module of
the ART [66] was used to correct for the geometric distortions of the fMRI images due to
magnetic susceptibility differences in the head, particularly at brain/air interfaces. The
skull-stripped MPRAGE images from all subjects were non-linearly registered to a study-
specific population template using ART’s non-linear registration algorithm, which is one of
the most accurate inter-subject registration methods available [67]. The population template
was formed using an iterative method [68], and the motion-corrected fMRI time-series were
detrended using PCA [69]. Finally, fMRI images from all subjects were normalized to a
standard space.

2.6. Reward Network Seed Regions and rsFC Calculations

The regions of interest (ROIs) for the reward network were identified from the pub-
lished literature of review and meta-analyses of reward processing, e.g., [6,70,71]. These
included 34 ROIs from 17 bilateral structures involving nine bilateral subcortical structures
and eight bilateral cortical regions (Table 2 and Figure 2). The ROIs were marked using
ITK-SNAP, an image processing application [72]. The diameters of subcortical and corti-
cal ROIs were 7 mm and 11 mm, respectively, from the MNI coordinates (Table 2). The
ROI-to-ROI connectivity [73], the most commonly used method to derive rsFC across brain
regions [74], was computed using Pearson correlation coefficients between all unique pairs
(N = 561) of BOLD time series data of all 34 ROIs listed in Table 2. The resulting correlation
coefficients were Fisher Z-transformed for further statistical analyses. All 561 connections
derived from unique combinations of the ROIs were used in the feature selection process
(see Section 2.7), which provided the subset of features to be used in the random forest
model (see Section 2.8).

Table 2. Brain regions of interest (ROI) analyzed for reward network functional connectivity.

ROI Brain Region Notation Location
MNI Coordinates

X Y Z
1 L. Ventral Tegmental Area L.VTA Subcortical −4 −16 −14
2 R. Ventral Tegmental Area R.VTA Subcortical 4 −16 −14
3 L. Nucleus Accumbens L.NAc Subcortical −8 10 −10
4 R. Nucleus Accumbens R.NAc Subcortical 8 10 −10
5 L. Amygdala L.Amg Subcortical −24 −2 −14
6 R. Amygdala R.Amg Subcortical 24 −2 −14
7 L. Hippocampus L.Hip Subcortical −28 −10 −22
8 R. Hippocampus R.Hip Subcortical 28 −10 −22
9 L. Caudate L.Cdt Subcortical −13 15 9
10 R. Caudate R.Cdt Subcortical 13 15 9
11 L. Pallidum L.Pal Subcortical −18 −2 −4
12 R. Pallidum R.Pal Subcortical 18 −2 −4
13 L. Thalamus L.Tha Subcortical −8 −12 6
14 R. Thalamus R.Tha Subcortical 8 −12 6
15 L. Insula (anterior) L.Ins Subcortical −30 17 −15
16 R. Insula (anterior) R.Ins Subcortical 30 17 −15
17 L. Parahippocampal Gyrus L.PHG Cortical −24 −39 −12
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Table 2. Cont.

ROI Brain Region Notation Location
MNI Coordinates

X Y Z
18 R. Parahippocampal Gyrus R.PHG Cortical 27 −39 −12
19 L. Anterior Cingulate Cortex L.ACC Cortical −6 44 10
20 R. Anterior Cingulate Cortex R.ACC Cortical 6 44 10
21 L. Mid-Cingulate Cortex L.MCC Cortical −6 2 40
22 R. Mid-Cingulate Cortex R.MCC Cortical 6 2 40
23 L. Posterior Cingulate Cortex L.PCC Cortical −6 −46 30
24 R. Posterior Cingulate Cortex R.PCC Cortical 6 −46 30
25 L. Orbitofrontal Cortex L.OFC Cortical −32 42 −16
26 R. Orbitofrontal Cortex R.OFC Cortical 32 42 −16
27 L. Angular Gyrus L.Ang Cortical −45 −58 30
28 R. Angular Gyrus L.Ang Cortical 45 −58 30
29 L. Superior Parietal Lobule L.SPL Cortical −24 −68 56
30 R. Superior Parietal Lobule R.SPL Cortical 24 −68 56
31 L. Dorsolateral PFC L.DLP Cortical −44 38 19
32 R. Dorsolateral PFC R.DLP Cortical 44 38 19
33 L. Putamen L.Ptm Subcortical −27 5 −6
34 R. Putamen R.Ptm Subcortical 27 5 −6
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Figure 2. Brain reward network regions of interest comprising 16 cortical areas (top panels, C1–C3)
and 18 subcortical areas (bottom panels, S1–S3), as listed in Table 1. Bilateral cortical regions: Insula
(Ins), Parahippocampal Gyrus (PHG), Anterior Cingulate Cortex (ACC), Mid-Cingulate Cortex (MCC),
Mid-Cingulate Cortex (MCC), Posterior Cingulate Cortex (PCC), Orbitofrontal Cortex (OFC), Angular
Gyrus (Ang), Superior Parietal Lobule (SPL), Dorsolateral (PFC), and Dorsolateral Prefrontal Cortex
(DLP). Bilateral subcortical regions: Ventral Tegmental Area (V), Nucleus Accumbens (N), Amygdala (A),
Hippocampus (Hi), Caudate (Cd), Pallidum (Pa), Thalamus (T), and Putamen (Pt). Colors: Blue—Left
hemispheric regions; Red—Right hemispheric regions. Views: C1/S1—Axial top view; C2/S2—Coronal
front view; C3/S3—Sagittal left view. Directions: A—Anterior; P—Posterior; S—Superior; I—Inferior;
L—Left; R—Right.
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2.7. Feature Selection of FC Variables

Recent approaches dealing with machine learning analyses have used a two-stage
approach, consisting of feature selection followed by a predictive algorithm using a selected
sets of variables [75–79]. Feature selection methods are used as the first stage to reduce
irrelevant and redundant variables, which may otherwise add noise to the predictive mod-
els [75–77]. The advantages of feature selection include a better understanding of the data,
reducing computation requirements, mitigating the effect of the curse of dimensionality,
and also improving the predictor performance [76]. We applied binomial lasso regres-
sion [80–82] as a feature selection method [83,84], as implemented in R-package “glmnet”,
to extract a subset of fMRI FC variables (N = 561) that held significant predictive value
to discriminate AUD from the CTL group. Feature selection was implemented only for
the rsFC variables, due to a high number of connections, most of which were deemed not
relevant for our purpose of AUD classification. The method adapted in the current analysis
is based on the Lasso method, as implemented in Fonti and Belitser [84]. The maximum
number of output features “pmax” was set to 10% (i.e., 56 of the total 561 variables). A
10-fold cross-validation and lambda thresholding with 1 SE (λ1se) were set to extract the
final set of key variables. The area under the curve (AUC) was plotted to determine the
classification performance of the selected features. The final subset resulting from the
feature selection process included 21 rsFC variables (see Table A1, Appendix A).

2.8. Random Forest Classification

The random forest classification model, as used in the current study, has been described
in our previous work on rsFC of the default mode network (DMN) [63]. The predictor
variables included in the model were 21 reward network connections identified by feature
selection (Table A1), 13 neuropsychological scores consisting of 5 TOLT scores and 8 VST
scores (see Section 2.2), and 3 BIS scores (see Section 2.3), while the group status (AUD
and CTL) served as the outcome variable (see Table A1, Appendix A). Although age was
significantly different between the groups, we did not include age as an input variable in
the classification model for the following reasons: (i) as done in our previous publications
on the same sample of subjects [63,85], we performed post hoc correlational analysis of age
with the significant features of the random forest model, to see if any of the top variables
had associations with age in the individual groups or in total sample (see Section 3.4);
and (ii) since the age difference between the groups was highly significant, including
age as a feature in the classification model would likely artificially increase the accuracy
of classification, which would not be desirable. To compute the classification accuracy
of the random forest model, we used an out-of-bag (OOB) error estimate. According to
Breiman and Cutler [86], in random forests, owing to the inbuilt OOB feature in the model,
additional cross-validation is not a requirement to obtain an unbiased estimate of the test
sample error, since it is estimated internally in the OOB algorithm. The random forest
algorithm constructs each of the decision trees using separate bootstrap subsamples from
the training data, and about one-third of the observations from the training data are left out
during each bootstrap, called the OOB sample, which are used as a form of test data only,
to estimate the prediction accuracy of the RF model. While classification trees are grown for
each bootstrap sample (which is approximately two-thirds of the training data), the OOB
error rate is calculated for each classification tree built. According to Breiman [87], there are
two reasons for using bagging: (i) to enhance the accuracy when random features are used;
and (ii) to give ongoing estimates of the generalization error of the combined ensemble of
trees, as well as estimates for the strength and correlation. The aggregate of OOB scores on
all “ntree” trees (which is the maximum number of trees pre-set in the model calculation)
provides the ensemble OOB error rate. Thus, the OOB score provides validation for the RF
model. Therefore, unlike in other machine learning algorithms, random forests method
does not require separate training data and test data while specifying the model term. In
the current study, the maximum number of trees “ntree” was set at 1000. The optimal
number of features analyzed at each node (“Mtry”) in the model was estimated to be 8
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(using the “tuneRF” function). The final list of variables that significantly contributed to
the classification was tabulated and sorted based on their importance to classification. For
the top significant FC variables, the brain connectivity across ROIs was mapped onto a
3-dimensional ICBM atlas [88] using custom Matlab scripts.

3. Results
3.1. Random Forests Classification
3.1.1. Classification Accuracy and Top Significant Variables

The RF algorithm correctly identified group membership of 26 out of 30 individuals in
each group, in classifying them into either AUD or CTL group, with an accuracy rate of
86.67% and the area under the curve of 93% (Figure 3). The OOB error or the misclassifica-
tion rate was 13.33% (for each group). The model also identified 12 rsFC connections and
two impulsivity scores (motor and non-planning) as significantly (p < 0.05) contributing
to the classification (Table 3). Relative to the CTL individuals, AUD subjects showed a
predominant pattern of hypoconnectivity (i.e., decreased rsFC in 9 out of 12 connections)
across the major cortical and subcortical nodes of the reward network, in addition to three
connections with hyperconnectivity in specific nodes (i.e., left nucleus accumbens–left
posterior cingulate cortex (PCC), right pallidum–right PCC, and right hippocampus–left
dorsolateral prefrontal cortex). AUD individuals also showed increased impulsivity in
motor and non-planning categories. However, none of the neuropsychological variables
were significant based on the p-value criterion.
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Table 3. Random forest importance parameters mean minimal depth, number of nodes, accuracy
decrease, Gini decrease, number of trees, times a root, and p-value), and the direction of significance
for the top significant variables (p < 0.05) are shown. Two of the impulsivity scores (motor and
non-planning) and 12 rsFC connections were identified as important features to classify individuals
into either AUD or CTL group. The variables are sorted based on the p-values.

Feature Mean Minimum Depth No. of Nodes Accuracy Decrease Gini Decrease No. of Trees Time a Root p-Value Direction
BIS Motor
Impulsivity 1.3824 348 0.0170 2.0202 319 94 1.87E-19 A > C

FC_3_23
(L.NAc–L.PCC) 1.9354 330 0.0130 1.6903 295 74 1.82E-15 A > C

FC_16_20
(R.Ins–R.ACC) 2.0062 326 0.0149 1.5132 291 57 1.23E-14 C > A

BIS
Non-planning 1.7619 319 0.0187 1.6830 294 74 3.05E-13 A > C

FC_2_19
(R.VTA–L.ACC) 2.0561 313 0.0040 1.4706 274 58 4.23E-12 C > A

FC_20_26
(R.ACC–R.OFC) 2.2513 299 0.0101 1.3203 272 45 1.24E-09 C > A

FC_6_7
(R.Amg–L.Hip) 2.3798 275 0.0063 1.1669 258 41 4.40E-06 C > A

FC_9_12
(L.Cdt–R.Pal) 2.5018 268 0.0039 0.9725 255 29 3.26E-05 C > A

FC_20_24
(R.ACC–R.PCC) 2.4732 266 0.0054 1.0002 249 28 5.58E-05 C > A

FC_13_14
(L.Tha–R.Tha) 2.5681 252 0.0023 0.9843 233 40 0.0016 C > A

FC_12_24
(R.Pal–R.PCC) 2.8735 249 0.0022 0.8844 223 20 0.0030 A > C

FC_9_13
(L.Cdt–L.Tha) 2.7035 249 0.0056 0.9541 228 34 0.0030 C > A

FC_13_34
(L.Tha–R.Ptm) 2.7980 247 0.0053 0.9212 234 24 0.0044 C > A

FC_8_31
(R.Hip–L.DLP) 2.9451 238 0.0047 0.8020 217 20 0.0220 A > C

Acronym: BIS—Barratt Impulsiveness Scale, FC—Functional Connectivity, R—Right, L—Left, ACC—Anterior Cingu-
late Cortex, Amg—Amygdala, Ang—Angular Gyrus, Cdt—Caudate, DLP—Dorsolateral PFC, Hip—Hippocampus,
Ins—Insula (anterior), NAc—Nucleus Accumbens, OFC—Orbitofrontal Cortex, Pal—Pallidum, PCC—Posterior
Cingulate Cortex, PHG—Parahippocampal Gyrus, Ptm—Putamen, Tha—Thalamus, VTA—Ventral Tegmental Area.
Key: A > C = AUD > CTL; C > A = CTL > AUD.

3.1.2. Distribution of Minimal Depth

The distribution of minimal depth among the decision trees of the forests for the top
significant variables is shown in Figure 4. Minimal depth of a variable represents the depth
of the node that splits on that variable and is the closest to the root of the decision tree.
The lower mean minimal depth of a variable represents a higher number of observations
(participants) categorized in a specific group based on that variable. The ranking based on
the minimal depth parameter shows that two of the impulsivity variables are a the top of the
importance list, followed by several reward network connections and a neuropsychological
feature (total correct score in the forward trials of the visual span test).

3.1.3. Multi-Way Importance

The top significant variables can also be shown by a multi-way importance plot based
on any of the three RF importance measures. Figure 5 illustrates the important features
that contributed to group classification based on Gini decrease, number of trees, and p-value.
These features include: (i) 12 FC variables (representing connections across cortical and
subcortical regions) (see Table 2 for details), (ii) one neuropsychological variable (i.e., total
number of correct trials in forward span), and (iii) two impulsivity scores (motor and
non-planning categories).
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Figure 4. The distribution of minimal depth among the trees of the forest for the significant variables
is shown in different colors for each level of minimal depth. The mean minimal depth in the
distribution for each variable is marked by a vertical black bar overlapped by a value label inside a
box. Based on the mean minimal depth values, the importance list comprised 2 BIS scores, 13 FC, and
1 neuropsychological score, which contributed to the RF classification of AUD and CTL individuals.
The lower mean minimal depth of a feature represents a higher number of observations (participants)
categorized in a specific group based on the feature. The number of trees for a feature represents the
total number of decision trees in which a split occurs on the feature (see Table 2 for details about the
ROI numbers (1–34) represented in the FC variables).
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lending further support to the utility of the RF technique as a powerful tool for classifying 
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Figure 5. Multi-way importance plot showing the top significant features (labeled and marked with
black circles) that contributed to the classification of alcohol use disorder from control individuals
based on the measures Gini decrease (mean decrease in node impurity or classification error), number
of trees (total number of decision trees in which a split occurred), and p-value (probability of node
splits). The top variables of importance included 2 impulsivity scores, 12 rsFC connections, and
1 neuropsychological variable (see the circled and labeled dots). Notations in the variable labels:
BIS–Barratt Impulsivity Scale; MI–Motor impulsivity; NP–Non-planning; TotCor_Fw–Total correct
forward. ROIs of FC variables: Refer to Table 2 for details about the ROI numbers (1-34) that are
represented in the rsFC variable names.

3.1.4. Correlations among Rankings of RF Parameters

The correlations among the rankings of features based on different RF parameters
(Figure 6) were very high and significant (r > 0.9), suggesting that each of the RF parameters
would rank the features in a very similar order while classifying the individuals into either
the AUD or CTL group. High correlations among these parameters also suggest that
each parameter is very valuable and reliable in terms of its classification performance,
lending further support to the utility of the RF technique as a powerful tool for classifying
individuals using a set of multi-domain features.
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Figure 6. Illustration of rankings of features based on correlation between any two random forest
(RF) parameters. The panels in the lower triangle of the grid show the distribution of rankings of
all predictor variables with black dots along a blue trend line. The panels in the upper triangle of
the grid show correlation coefficients across rankings of any two parameters. It is shown that all RF
parameters of importance were found to have very high correlations among each other, suggesting
the high reliability of each of these parameters in ranking the importance of features for classification.
The asterisks (***) represents that the correlations were highly significant (p < 0.001).

3.1.5. Connectivity Mapping of Significant rsFC Connections

Significant reward network connections are illustrated in Figure 7. Among the
12 significant connections, nine were hypoconnected and three were hyperconnected in
AUD individuals, involving 17 regions (7 from the left and 10 from the right hemisphere)
of the 34 reward network ROIs. While the majority of these nodes (12 of 17) were of solo
paths, connecting to another single node (ROI # 2, 3, 6, 7, 8, 14, 16, 19, 23, 26, 31, 34),
two of them (ROI # 13, 20) were linked with three connections each, and three of them
(ROI # 9, 12, 24) had two connections each. Out of nine hypoconnected FC variables,
three were cortico-cortical connections (R.Ins–R.ACC, R.ACC–R.OFC, and R.ACC–R.PCC),
involving only the right hemisphere, and five were subcortical–subcortical connections
(R.Amg–L.Hip, L.Cdt–R.Pal, L.Tha–R.Tha, L.Cdt–L.Tha, and L.Tha–R.Ptm) involving both
hemispheres, and one inter-hemispheric subcortical–cortical connection (R.VTA–L.ACC).
Interestingly, all three hyperconnected FC variables were subcortical–cortical connections,
involving a left-hemispheric connection (L.NAc–L.PCC), a right-hemispheric connection
(R.Pal–R.PCC), and an inter-hemispheric connection (R.Hip–L.DLP).
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common node, i.e., L.Cdt, L.Tha, and R.ACC, respectively. 

Figure 7. Significant reward network connections that contribute to the random forest classification of
alcohol use disorder (AUD) from control (CTL), as listed in Table 3. (A): Hypoconnectivity manifested
by the AUD group (cyan lines) across cortical and subcortical ROI regions of the RN, predominantly
involving right hemisphere structures; (B): Hyperconnectivity in three connections manifested by the
AUD group (orange lines). Images within each panel: Left: axial (top) view; Middle: coronal (front)
view; Right: sagittal (left) view.

3.2. Correlations among the Top Significant Variables

Exploratory (descriptive) analysis using zero-order correlations among the top signifi-
cant variables is shown in Figure 8. Only five positive correlations survived Bonferroni cor-
rection for multiple comparisons (as represented by the sign +++), which include: (i) three
positive correlations between FC features (L.Cdt–R.Pal with L.Cdt–L.Tha; L.Tha–R.Tha with
L.Tha–R.Ptm; and R.Ins–R.ACC with R.ACC–R.PCC), (ii) a negative correlation between
memory recall and motor impulsivity, and (iii) a positive correlation between non-planning
and motor impulsivity. Each of the significant FC correlations had a common node, i.e.,
L.Cdt, L.Tha, and R.ACC, respectively.
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Feature 
AUD (N = 30) CTL (N = 30) § ALL (N = 60) 

r p r p r p 
FC_2_19 (R.VTA–L.ACC) −0.08 0.6744 0.22 0.2449 0.03 0.8131 
FC_3_23 (L.NAc–L.PCC) 0.16 0.3949 −0.21 0.2693 0.02 0.8956 
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FC_8_31 (R.Hip–L.DLP) 0.16 0.3977 0.27 0.1489 0.20 0.1276 

Figure 8. Correlation matrix showing associations among the top significant variables based on
explorative (descriptive) correlational analysis for the interpretative purpose. Values within each cell
represent a bivariate Pearson correlation between the variable on its vertical axis and the variable
on its horizontal axis. Correlation coefficients are color-coded (red/pink shades represent negative
r-values, blue/cyan shades indicate positive r-values, darker color represent higher magnitude) and
significant correlations (before Bonferroni correction) have been marked with asterisks in black font
(* p < 0.05; ** p < 0.01; *** p < 0.001). The significant correlations that survived Bonferroni correction
have been marked with +++ sign in white font (+++ Significant after Bonferroni correction). Refer to
Table 2 for details about the ROI numbers (1–34) that are represented in the rsFC variable names.
Acronyms: FC–Functional connectivity, TotCor_Fw–total number of correctly performed forward
trials, BIS–Barratt Impulsiveness Scale, NP–Non-planning, MI–Motor Impulsivity.

3.3. Correlations between Significant Variables and Age

Since the age difference across the groups was statistically significant (p < 0.001), the
association of age with significant predictor variables from the RF analysis was calculated
within each group using bivariate Pearson correlation and in the total sample using partial
correlation adjusted for the group effect (Table 4) as an exploratory (descriptive) analysis. It
was found that there was no significant association of age with the top significant variables
in any of the groups or in the total sample, after correcting for multiple comparisons.
However, a single FC variable (FC_6_7) representing the connectivity between the right
amygdala and left hippocampus was significant (r = 0.38; p = 0.0374), but it did not survive
multiple testing correction.
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Table 4. Pearson bivariate correlations between the age of the participant and the top significant
variables of the RF model. Correlation coefficient (r) and p-values (before Bonferroni correction) are
provided for alcohol use disorder (AUD), control (CTL) group, and the total sample (ALL). None of
the variables survived Bonferroni correction for multiple comparisons. Zero-order correlations were
used for each group separately (N = 30) and partial correlations controlling for group effects were
used for the all sample (N = 60).

Feature
AUD (N = 30) CTL (N = 30) § ALL (N = 60)

r p r p r p
FC_2_19 (R.VTA–L.ACC) −0.08 0.6744 0.22 0.2449 0.03 0.8131
FC_3_23 (L.NAc–L.PCC) 0.16 0.3949 −0.21 0.2693 0.02 0.8956
FC_6_7 (R.Amg–L.Hip) −0.02 0.8993 0.38 0.0374 *# 0.11 0.4225
FC_8_31 (R.Hip–L.DLP) 0.16 0.3977 0.27 0.1489 0.20 0.1276
FC_9_12 (L.Cdt–R.Pal) 0.16 0.3964 −0.01 0.9583 0.09 0.5079
FC_9_13 (L.Cdt–L.Tha) −0.15 0.4430 0.05 0.7812 −0.06 0.6349
FC_12_24 (R.Pal–R.PCC) 0.01 0.9579 −0.09 0.6402 −0.03 0.8298
FC_13_14 (L.Tha–R.Tha) −0.26 0.1616 −0.02 0.9168 −0.15 0.2588
FC_13_34 (L.Tha–R.Ptm) 0.07 0.7127 0.12 0.5196 0.09 0.5002
FC_16_20 (R.Ins–R.ACC) −0.19 0.3149 0.09 0.6203 −0.07 0.6062
FC_20_24 (R.ACC–R.PCC) −0.05 0.7849 0.01 0.9574 −0.03 0.8195
FC_20_26 (R.ACC–R.OFC) 0.19 0.3182 0.11 0.5460 0.16 0.2110
BIS_NP (Non-planning) 0.03 0.8936 0.21 0.2644 0.09 0.4815
BIS_MI (Motor Impulsivity) 0.23 0.2121 0.12 0.5432 0.20 0.1268

* p < 0.05 (before Bonferroni correction); # Not significant after Bonferroni correction; § Based on partial correlation
adjusted for group effect. Refer to Table 2 for the details of the ROIs in the FC variable.

3.4. Neuropsychological Scores between the Groups

Since the rankings of neuropsychological variables varied widely across different
parameters of the random forest classification, these features were statistically compared
across the participant groups using one-way analysis of variance (ANOVA) to determine
the level of significance (see Table 5). Only two variables from the visual span test (i.e.,
TotCor_Fw and Span_Fw) were significant after Bonferroni corrections. The score “Tot-
Cor_Fw” (total number of correctly performed forward trials), which showed the highest
significance level, was also identified by some of the parameters of the random forest as a
variable contributing to group classification.

Table 5. Comparison of neuropsychological variables between AUD or CTL group using one-
way ANOVA.

AUD CTL
F p

Mean SD Mean SD
ExcMovMade_All 15.04 17.02 7.83 6.66 4.43 0.0402 *
AvgPicTime_All 3.09 1.09 2.81 0.96 1.02 0.3167
AvgTotTime_All 5.16 1.58 4.72 1.64 1.01 0.3199
TotTrlTime_All 482.60 178.18 404.24 139.05 3.29 0.0755
AvgTrlTime_All 22.98 8.48 19.25 6.62 3.29 0.0755
TotCor_Fw 7.00 2.58 10.21 2.78 19.06 0.0001 ++
TotCor_Bw 6.31 3.02 8.31 1.87 8.95 0.0042 *
Span_Fw 5.44 1.33 6.83 1.36 14.25 0.0004 ++
Span_Bw 4.65 1.44 5.52 0.95 7.02 0.0106 *
TotAvgTime_Fw 26.72 9.13 28.31 10.53 0.35 0.5591
TotAvgTime_Bw 17.72 9.39 17.79 10.01 0.00 0.9791
TotCorAvgTime_Fw 38.15 12.39 32.48 8.07 4.06 0.0490 *
TotCorAvgTime_Bw 28.93 13.92 27.16 10.66 0.28 0.5963

* Significant before Bonferroni correction; ++ Significant after Bonferroni correction.
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4. Discussion

The goal of the present study was to identify specific features from a set of multi-
domain measures, including functional connectivity in the reward network, neuropsy-
chological performance, and impulsivity, to classify individuals with AUD from healthy
controls. The results showed that the random forest algorithm was highly successful in
identifying the key features that contributed significantly to differentiating AUD from CTL
individuals. Relative to controls, AUD individuals manifested (i) alterations in functional
connectivity across reward network regions (including ventral tegmental area, nucleus
accumbens, anterior insula, anterior cingulate cortex, and other cortical and subcorti-
cal structures), showing hypoconnectivity in nine connections and hyperconnectivity in
three connections, (ii) increased impulsivity in motor and non-planning categories, and
(iii) poorer neuropsychological performance, in terms of total number of correct trials
in the forward sequence of the visual-spatial memory span test. In summary, relative
to healthy controls, AUD individuals manifested aberrant functional connectivity in the
reward network, increased impulsivity, and poor neuropsychological performance in
visual–spatial memory.

4.1. Altered Functional Connectivity across Reward Network in AUD Individuals

Addiction to drugs and alcohol involves a cascade of neuroadaptive processes, causing
changes in the brain circuitries at different stages of addiction [18,89,90]. Our findings on
resting state FC in the reward network indicate that AUD subjects manifested alterations in
connectivity patterns, in terms of hypoconnectivity in nine connections and hyperconnec-
tivity in three connections, involving 17 key reward structures [see Figure 7]. In particular,
out of the nine reward network functional connections that showed hypoconnectivity, three
were cortico–cortical connections (R.Ins–R.ACC, R.ACC–R.OFC, and R.ACC–R.PCC) in
the right hemisphere, and five were subcortical–subcortical connections (R.Amg–L.Hip,
L.Cdt–R.Pal, L.Tha–R.Tha, L.Cdt–L.Tha, and L.Tha–R.Ptm) involving both hemispheres,
and a single inter-hemispheric subcortical-cortical connection (R.VTA–L.ACC). The three
subnetworks that were hyperconnected in AUD individuals were subcortical–cortical con-
nections, involving a left-hemispheric connection (L.NAc–L.PCC), a right-hemispheric
connection (R.Pal–R.PCC), and an inter-hemispheric connection (R.Hip–L.DLP). These
findings of altered brain connectivity in AUD individuals may be suggestive of neuroad-
aptation in the hub regions of the reward network, caused by chronic alcohol intake. In
general, previous fMRI studies have reported such aberrations in resting state connectivity
underlying multiple brain networks in individuals with SUD [19,28,91], including those
with AUD [30–33,63,92–94]. Our previous study on the same sample of participants as
in the current study reported that AUD individuals manifested altered default mode net-
work (DMN) connectivity compared to controls [63]. It is clear from the findings of our
past and current rsFC studies that AUD individuals manifest brain connectivity changes
across neural structures involved in spontaneous, self-referential thoughts, as elicited by
the DMN [95], as well as the commonly reported reward processing deficits, as elicited
by the RN [10]. It is also remarkable to note that both studies showed hypoconnectivity
between the ACC and PCC nodes in AUD subjects, confirming the notion of abnormal
self-referential processing in these individuals [92]. Furthermore, hypoconnectivity across
reward structures during resting state, as found in the current study, may also indicate a
vulnerability to relapse in individuals with a history of SUD [96]. Taken together, these
findings lend support to the findings of the current study, that individuals with a long
history of alcohol use continue to manifest network abnormalities across the reward regions,
in addition to the previously reported aberrations in DMN, even after prolonged abstinence
from alcohol consumption.

The predominant pattern observed in AUD individuals was hypoconnectivity (9 out
of 12 connections) across subcortical reward regions (5 connections) followed by cortical
(3 connections) and cortical–subcortical (1 connection) subnetworks. Specifically, these
hypoconnected nodes include key reward regions such as the VTA, amygdala, hippocam-
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pus, thalamus, pallidum, putamen, insula, ACC, PCC, and OFC, possibly indicating lower
or less efficient neural communication across these subnetworks [6]. Since addiction has
been characterized as a reward deficiency syndrome [97], hypoconnectivity across these
reward structures in abstinent AUD subjects may indicate reduced responsiveness to re-
warding stimuli during resting state, possibly due to decreased dopamine function in
these individuals [50,98]. Although elevated levels of dopamine in the dorsal striatum are
associated with motivation to seek and consume alcohol and drugs, long-term substance
use is associated with decreased dopaminergic function, as evidenced by reductions in D2
dopamine receptors and dopamine release in the striatum in addicted subjects [50], which
can also lead to reduced activity in other cortical reward regions such as the orbitofrontal
cortex and cingulate gyrus, resulting in loss of control and compulsive substance use. It
may be worth noting that the majority of the hypoconnected regions in AUD (9 out of
13 regions) involved the right hemisphere, implicating hemispheric asymmetry in connec-
tivity in AUD and, hence, their functional attributes [99]. For instance, laterality studies on
motivation and emotions reported that the right hemisphere responds more to unpredicted,
urgent, and novel environmental events, while the left hemisphere engages with routine
and habitual behaviors [100]. Therefore, it is possible that the alterations in resting state
brain connectivity across reward network seen in AUD individuals have more impact on
right hemispheric function, including novelty seeking and impulsivity [101].

The other FC finding was that AUD individuals manifested hyperconnectivity in
three connections across five brain regions, i.e., nucleus accumbens, pallidum, hippocam-
pus, posterior cingulate, and dorsolateral prefrontal cortex, possibly suggesting excessive
and/or less focused communication during resting state among these structures. While
each of these key regions is associated with distinct and shared neurocognitive processes,
hyperconnectivity across these nodes during resting state can be generally interpreted
as excessive rumination about reward and preoccupation with reward-related imagery
or inherent reward-seeking tendencies, such as craving. Similar to our finding, a higher
FC between nucleus accumbens and posterior cingulate gyrus was observed in relapsers
compared to abstainers of stimulant use [96]. In addition, akin to our finding, higher
hippocampal–prefrontal connectivity has also been observed in internet gaming addic-
tion [102]. Furthermore, recent evidence implicating the pallidum as an important structure
in mesocorticolimbic reward processing [103], and, therefore, the increased connectivity
between pallidum and PCC, may indicate reward related tendencies (e.g., drug seeking) in
the resting state. However, despite the growing number of fMRI brain connectivity studies
on AUD and other SUDs during resting state and task conditions [19,28,63,94,102,104],
more studies are needed to understand the exact role of specific connectivity patterns across
the reward network.

4.2. Heightened Impulsivity in AUD Individuals

The findings of the current study also showed that motor and non-planning impul-
sivity components were the topmost features contributing to the classification of AUD
individuals from controls. This finding reinforces the long-held notion that AUD and other
externalizing traits are part of the externalizing spectrum disorders [105–109]. It is also
known that AUD is associated with making impulsive choices during decision-making [16].
It is possible that the increased impulsivity manifested by AUD individuals may be due
to altered FC across the frontal nodes [63] and/or relatively lower brain volumes of the
frontal regions, as reported in our previous study [54]. Evidence from the imaging lit-
erature strongly suggest that both structural and functional aspects of the frontal lobes
contribute to increased impulsivity in AUD patients [110–113]. Furthermore, recent studies
have also reported associations between impulsivity and resting state measures of EEG
power [114], EEG-based FC [115], and fMRI-based FC [36], suggesting that specific brain
networks may mediate aspects of impulsivity in AUD, as well as other externalizing dis-
orders. Therefore, identifying and quantifying behavioral impulsivity may contribute to
improving prevention and intervention programs related to alcohol and other substance
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use problems [116,117]. Although attentional impulsivity was not found to significantly
contribute to the classification, our previous studies [63,85] found contributions from all
three components of impulsivity, while motor and non-planning aspects were top of the
key features of classification, suggesting their relative importance in AUD pathology.

4.3. Poorer Memory Span in AUD Individuals

In the current study, the neuropsychological score “TotCor_Fw” (i.e., total number of
correctly performed forward trials) from the visual span test was also identified as one of
the key variables contributing to the classification of AUD individuals from controls by
the RF model. On the other hand, parametric group comparison of neuropsychological
variables (Table 5) revealed that the AUD group performed poorly in both “TotCor_Fw”
and “Span_Fw” (i.e., span of recalled items during forward trials), compared to controls.
Interestingly, these two variables tapping short-term memory performance were also
found to be significant in our previous classification studies with the same sample of
participants [63,85]. Furthermore, there is a strong literature support for memory deficits
in individuals with chronic AUD [118–121], and some of the deficits linger even after
prolonged abstinence [37]. It is also worth noting that in our previous structural MRI
study on the same groups of subjects, we found that the AUD group showed lower
volumes in prefrontal cortex and left hippocampus, which were associated with poorer
visuospatial memory performance [54]. Furthermore, in another study on the same sample,
we found that AUD subjects manifested hyperconnectivity across the parahippocampal
hub regions [63], adding support to the current finding related to memory deficits. On the
other hand, it is surprising that none of the scores related to executive functioning in the
TOLT were significantly different from controls, possibly suggesting a partial or complete
recovery of these functions in the AUD group due to abstinence. It is also possible that the
current study failed to capture deficits in additional domains, as the data involved in the
current study were limited to only two tests and the sample size was only modest. Future
studies may employ a comprehensive and sensitive battery of neuropsychological tests in a
larger sample of abstinent AUD individuals, to map neuropsychological performance in
multiple domains.

4.4. Correlations of Significant Variables among Themselves and with Age

Correlations among the significant variables that were identified by the RF classifica-
tion model revealed three highly significant positive associations among the FC features
(L.Cdt–R.Pal with L.Cdt–L.Tha; L.Tha–R.Tha with L.Tha–R.Ptm; and R.Ins–R.ACC with
R.ACC–R.PCC), and each of these significant pairs had a common node, i.e., L.Cdt, L.Tha,
and R.ACC, respectively. While it is expected that the pairs with a common node would
correlate with each other, they are also known to be structurally connected. For instance,
while the caudate nucleus connects the pallidum with radial fibers [122], these basal ganglia
structures have reciprocal connections with the thalamus and cortical regions and, thus,
mediate cognitive and motor functions [123]. Similarly, while the ACC has both structural
and functional connectivity with the PCC as part of the DMN [124], reciprocal interaction
between the ACC and anterior insula serves as a major connection with the salience and
reward network [125]. Interestingly, the negative correlation between memory performance
(working memory) and impulsivity observed in our study was also previously reported by
other studies on individuals with substance use disorders [126,127]. Lastly, as expected,
non-planning and motor impulsivity were positively correlated with each other [128], and
both of these dimensions were shown to be associated with craving and relapse among
alcohol-dependent males [129]. On the other hand, none of the correlations between the
top predictor variables and age sustained a statistical significance after multiple testing
corrections, suggesting that age did not impact the classification of groups based on these
top predictors. However, it is suggested that future studies may confirm these preliminary
findings using a large sample of subjects involving both males and females matched on
multiple characteristics, such as education, ethnicity, premorbid IQ, etc.
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4.5. Limitations of the Current Study

The current study has several limitations. (i) The sample consisted of only males, and
the findings may not be generalizable to females. In general, findings from prediction-based
studies will be more useful when they are generalizable to different strata of the population
from which the sample is drawn. Therefore, we suggest that future predictive studies
aim for samples from both genders. (ii) The outcome groups (AUD and CTL) were not
matched for age, as the age difference was statistically significant. Although age was not
significantly associated with the key features, either in each group or in the total sample,
the results would have been more credible if the groups were matched for age. Therefore,
future studies should also aim to apply predictive models on age-matched groups, to avoid
confounding the results. (iii) Finally, the sample size for a predictive model was rather
small, although the random forest algorithm is known to handle such situations more
effectively than other machine learning models. Therefore, similar studies with larger
sample sizes are needed to confirm the findings of the present study. A larger sample is
also warranted to explore associations among the features from multiple domains, since
the current study did not identify potential associations among the features, possibly due
to a lack of statistical power. Given these limitations, it is to be noted that the obtained
results are only preliminary, while the findings of the present study might help to design
future studies avoiding or mitigating these limitations.

5. Summary and Conclusions

The findings of the current study suggest that multidomain features drawn from the
measures of brain connectivity, impulsivity, and neuropsychological tests can be success-
fully used in a machine learning framework to classify AUD individuals from healthy
controls. In summary, our study revealed that the abstinent individuals with past AUD
showed impaired brain connectivity across specific reward regions and also manifested
relatively increased impulsivity and poor memory function. Evidence from the litera-
ture suggests that these anomalies may have been caused by neuroadaptation due to
chronic drinking. Since treatment interventions intended to reverse these neuroadaptations
show promise as potential therapeutic approaches for addiction [1], the findings of the
current study may have important clinical implications. We suggest that future studies
should further characterize these neural and behavioral abnormalities at multiple levels
and groups, such as gender, race/ethnicity, educational attainment, socio-economic sta-
tus, genomic liability, and drinking patterns, so that the findings may contribute towards
personalized medicine.
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Appendix A

Table A1. List of features (F) included in the random forest classification model: (i) 21 reward
network connections identified by the feature selection process (F1–F21), 13 neuropsychological
scores involving 5 TOLT scores (F22–F26) and 8 VST scores (F27–F34), and 3 BIS scores (F35–F37).

F# Feature Detail
1. FC_2_19 (R.VTA–L.ACC) FC between R. Ventral Tegmental Area and L. Anterior Cingulate Cortex
2. FC_3_23 (L.NAc–L.PCC) FC between L. Nucleus Accumbens and L. Posterior Cingulate Cortex
3. FC_6_11 (R.Amg–L.Pal) FC between R. Amygdala and L. Pallidum
4. FC_6_7 (R.Amg–L.Hip) FC between R. Amygdala and L. Hippocampus
5. FC_8_31 (R.Hip–L.DLP) FC between R. Hippocampus and L. Dorsolateral Prefrontal Cortex
6. FC_9_12 (L.Cdt–R.Pal) FC between L. Caudate and R. Pallidum
7. FC_9_13 (L.Cdt–L.Tha) FC between L. Caudate and L. Thalamus
8. FC_9_18 (L.Cdt–R.PHG) FC between L. Caudate and R. Parahippocampal Gyrus
9. FC_9_23 (L.Cdt–L.PCC) FC between L. Caudate and L. Posterior Cingulate Cortex
10. FC_9_27 (L.Cdt–L.Ang) FC between L. Caudate and L. Angular Gyrus
11. FC_12_24 (R.Pal–R.PCC) FC between R. Pallidum and R. Posterior Cingulate Cortex
12. FC_13_14 (L.Tha–R.Tha) FC between L. Thalamus and R. Thalamus
13. FC_13_34 (L.Tha–R.Ptm) FC between L. Thalamus and R. Putamen
14. FC_16_20 (R.Ins–R.ACC) FC between R. Insula and R. Anterior Cingulate Cortex
15. FC_17_31 (L.PHG–L.DLP) FC between L. Parahippocampal Gyrus and L. Dorsolateral Prefrontal Cortex
16. FC_20_24 (R.ACC–R.PCC) FC between R. Anterior Cingulate Cortex and R. Posterior Cingulate Cortex
17. FC_20_26 (R.ACC–R.OFC) FC between R. Anterior Cingulate Cortex and R. Orbitofrontal Cortex
18. FC_20_31 (R.ACC–L.DLP) FC between R. Anterior Cingulate Cortex and L. Dorsolateral Prefrontal Cortex
19. FC_21_24 (L.MCC–R.PCC) FC between L. Middle Cingulate Cortex and R. Posterior Cingulate Cortex
20. FC_22_33 (R.MCC–L.Ptm) FC between R. Middle Cingulate Cortex and L. Putamen
21. FC_28_29 (L.Ang–L.SPL) FC between L. Angular Gyrus and L. Superior Parietal Lobule
22. ExcMovMade_All Overall excess moves beyond the minimum moves required to solve the puzzle
23. AvgPicTime_All Overall average pickup time to solve the puzzle
24. AvgTotTime_All Overall average total time to solve the puzzle
25. TotTrlTime_All Overall total trial time within each puzzle type
26. AvgTrlTime_All Overall average trial time across trials per puzzle type
27. TotCor_Fw Total number of correctly performed trials in forward sequence
28. TotCor_Bw Total number of correctly performed trials in backward sequence
29. Span_Fw Maximum span or sequence-length achieved in forward sequence
30. Span_Bw Maximum span or sequence-length achieved in backward sequence
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Table A1. Cont.

F# Feature Detail
31. TotAvgTime_Fw Total average time taken across all trials performed in forward sequence
32. TotAvgTime_Bw Total average time taken across all trials performed in backward sequence
33. TotCorAvgTime_Fw Total correct average time taken across all correct trials in forward sequence
34. TotCorAvgTime_Bw Total correct average time taken across all correct trials in backward sequence
35. BIS_AI Barratt Impulsiveness Scale, Attentional Impulsivity Score
36. BIS_MI Barratt Impulsiveness Scale, Motor Impulsivity Score
37. BIS_NP Barratt Impulsiveness Scale, Non-planning Impulsivity Score

References
1. Volkow, N.D.; Michaelides, M.; Baler, R. The Neuroscience of Drug Reward and Addiction. Physiol. Rev. 2019, 99, 2115–2140.

[CrossRef] [PubMed]
2. Volkow, N.D.; Morales, M. The Brain on Drugs: From Reward to Addiction. Cell 2015, 162, 712–725. [CrossRef] [PubMed]
3. Luijten, M.; Schellekens, A.F.; Kuhn, S.; Machielse, M.W.; Sescousse, G. Disruption of Reward Processing in Addiction: An

Image-Based Meta-analysis of Functional Magnetic Resonance Imaging Studies. JAMA Psychiatry 2017, 74, 387–398. [CrossRef]
4. Heinz, A.; Beck, A.; Grusser, S.M.; Grace, A.A.; Wrase, J. Identifying the neural circuitry of alcohol craving and relapse

vulnerability. Addict. Biol. 2009, 14, 108–118. [CrossRef] [PubMed]
5. Haber, S.N.; Knutson, B. The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology 2010, 35, 4–26.

[CrossRef]
6. Liu, X.; Hairston, J.; Schrier, M.; Fan, J. Common and distinct networks underlying reward valence and processing stages: A

meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 2011, 35, 1219–1236. [CrossRef]
7. Volkow, N.D.; Wang, G.J.; Fowler, J.S.; Tomasi, D.; Telang, F. Addiction: Beyond dopamine reward circuitry. Proc. Natl. Acad. Sci.

USA 2011, 108, 15037–15042. [CrossRef]
8. Porjesz, B.; Begleiter, H.; Bihari, B.; Kissin, B. Event-related brain potentials to high incentive stimuli in abstinent alcoholics.

Alcohol 1987, 4, 283–287. [CrossRef]
9. Bowirrat, A.; Oscar-Berman, M. Relationship between dopaminergic neurotransmission, alcoholism, and Reward Deficiency

syndrome. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2005, 132B, 29–37. [CrossRef]
10. Wrase, J.; Schlagenhauf, F.; Kienast, T.; Wustenberg, T.; Bermpohl, F.; Kahnt, T.; Beck, A.; Strohle, A.; Juckel, G.; Knutson, B.;

et al. Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. Neuroimage 2007, 35, 787–794.
[CrossRef]

11. Makris, N.; Oscar-Berman, M.; Jaffin, S.K.; Hodge, S.M.; Kennedy, D.N.; Caviness, V.S.; Marinkovic, K.; Breiter, H.C.; Gasic, G.P.;
Harris, G.J. Decreased volume of the brain reward system in alcoholism. Biol. Psychiatry 2008, 64, 192–202. [CrossRef] [PubMed]

12. Diekhof, E.K.; Falkai, P.; Gruber, O. Functional neuroimaging of reward processing and decision-making: A review of aberrant
motivational and affective processing in addiction and mood disorders. Brain Res. Rev. 2008, 59, 164–184. [CrossRef] [PubMed]

13. De Greck, M.; Supady, A.; Thiemann, R.; Tempelmann, C.; Bogerts, B.; Forschner, L.; Ploetz, K.V.; Northoff, G. Decreased
neural activity in reward circuitry during personal reference in abstinent alcoholics—A fMRI study. Hum. Brain Mapp. 2009,
30, 1691–1704. [CrossRef] [PubMed]

14. Kamarajan, C.; Rangaswamy, M.; Manz, N.; Chorlian, D.B.; Pandey, A.K.; Roopesh, B.N.; Porjesz, B. Topography, power, and
current source density of theta oscillations during reward processing as markers for alcohol dependence. Hum. Brain Mapp. 2012,
33, 1019–1039. [CrossRef] [PubMed]

15. Kamarajan, C.; Rangaswamy, M.; Tang, Y.; Chorlian, D.B.; Pandey, A.K.; Roopesh, B.N.; Manz, N.; Saunders, R.; Stimus, A.T.;
Porjesz, B. Dysfunctional reward processing in male alcoholics: An ERP study during a gambling task. J. Psychiatr. Res. 2010,
44, 576–590. [CrossRef]

16. Dennis, L.E.; Kohno, M.; McCready, H.D.; Schwartz, D.L.; Schwartz, B.; Lahna, D.; Nagel, B.J.; Mitchell, S.H.; Hoffman,
W.F. Neural correlates of reward magnitude and delay during a probabilistic delay discounting task in alcohol use disorder.
Psychopharmacology 2020, 237, 263–278. [CrossRef]

17. Everitt, B.J.; Robbins, T.W. Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nat.
Neurosci. 2005, 8, 1481–1489. [CrossRef]

18. Koob, G.F.; Volkow, N.D. Neurocircuitry of addiction. Neuropsychopharmacology 2010, 35, 217–238. [CrossRef]
19. Sutherland, M.T.; McHugh, M.J.; Pariyadath, V.; Stein, E.A. Resting state functional connectivity in addiction: Lessons learned

and a road ahead. Neuroimage 2012, 62, 2281–2295. [CrossRef]
20. Di Chiara, G.; Bassareo, V.; Fenu, S.; De Luca, M.A.; Spina, L.; Cadoni, C.; Acquas, E.; Carboni, E.; Valentini, V.; Lecca, D.

Dopamine and drug addiction: The nucleus accumbens shell connection. Neuropharmacology 2004, 47 (Suppl. S1), 227–241.
[CrossRef]

21. Wise, R.A. Dopamine and reward: The anhedonia hypothesis 30 years on. Neurotox. Res. 2008, 14, 169–183. [CrossRef] [PubMed]

http://doi.org/10.1152/physrev.00014.2018
http://www.ncbi.nlm.nih.gov/pubmed/31507244
http://doi.org/10.1016/j.cell.2015.07.046
http://www.ncbi.nlm.nih.gov/pubmed/26276628
http://doi.org/10.1001/jamapsychiatry.2016.3084
http://doi.org/10.1111/j.1369-1600.2008.00136.x
http://www.ncbi.nlm.nih.gov/pubmed/18855799
http://doi.org/10.1038/npp.2009.129
http://doi.org/10.1016/j.neubiorev.2010.12.012
http://doi.org/10.1073/pnas.1010654108
http://doi.org/10.1016/0741-8329(87)90024-3
http://doi.org/10.1002/ajmg.b.30080
http://doi.org/10.1016/j.neuroimage.2006.11.043
http://doi.org/10.1016/j.biopsych.2008.01.018
http://www.ncbi.nlm.nih.gov/pubmed/18374900
http://doi.org/10.1016/j.brainresrev.2008.07.004
http://www.ncbi.nlm.nih.gov/pubmed/18675846
http://doi.org/10.1002/hbm.20634
http://www.ncbi.nlm.nih.gov/pubmed/18711709
http://doi.org/10.1002/hbm.21267
http://www.ncbi.nlm.nih.gov/pubmed/21520344
http://doi.org/10.1016/j.jpsychires.2009.11.019
http://doi.org/10.1007/s00213-019-05364-3
http://doi.org/10.1038/nn1579
http://doi.org/10.1038/npp.2009.110
http://doi.org/10.1016/j.neuroimage.2012.01.117
http://doi.org/10.1016/j.neuropharm.2004.06.032
http://doi.org/10.1007/BF03033808
http://www.ncbi.nlm.nih.gov/pubmed/19073424


Behav. Sci. 2022, 12, 128 23 of 26

22. Lv, H.; Wang, Z.; Tong, E.; Williams, L.M.; Zaharchuk, G.; Zeineh, M.; Goldstein-Piekarski, A.N.; Ball, T.M.; Liao, C.; Wintermark,
M. Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know. AJNR Am. J. Neuroradiol. 2018,
39, 1390–1399. [CrossRef] [PubMed]

23. Van den Heuvel, M.P.; Hulshoff Pol, H.E. Exploring the brain network: A review on resting-state fMRI functional connectivity.
Eur. Neuropsychopharmacol. 2010, 20, 519–534. [CrossRef] [PubMed]

24. Barch, D.M. Resting-State Functional Connectivity in the Human Connectome Project: Current Status and Relevance to Under-
standing Psychopathology. Harv. Rev. Psychiatry 2017, 25, 209–217. [CrossRef]

25. Biswal, B.; Yetkin, F.Z.; Haughton, V.M.; Hyde, J.S. Functional connectivity in the motor cortex of resting human brain using
echo-planar MRI. Magn. Reson. Med. 1995, 34, 537–541. [CrossRef]

26. Barch, D.M. Brain network interactions in health and disease. Trends Cogn. Sci. 2013, 17, 603–605. [CrossRef]
27. Mehta, U.M.; Ibrahim, F.A.; Sharma, M.S.; Venkatasubramanian, G.; Thirthalli, J.; Bharath, R.D.; Bolo, N.R.; Gangadhar, B.N.;

Keshavan, M.S. Resting-state functional connectivity predictors of treatment response in schizophrenia—A systematic review
and meta-analysis. Schizophr. Res. 2021, 237, 153–165. [CrossRef]

28. Zhang, R.; Volkow, N.D. Brain default-mode network dysfunction in addiction. Neuroimage 2019, 200, 313–331. [CrossRef]
29. Wilcox, C.E.; Abbott, C.C.; Calhoun, V.D. Alterations in resting-state functional connectivity in substance use disorders and

treatment implications. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 91, 79–93. [CrossRef]
30. Camchong, J.; Stenger, A.; Fein, G. Resting-state synchrony in long-term abstinent alcoholics. Alcohol. Clin. Exp. Res. 2013, 37, 75–85.

[CrossRef]
31. Camchong, J.; Stenger, A.; Fein, G. Resting-state synchrony during early alcohol abstinence can predict subsequent relapse. Cereb.

Cortex 2013, 23, 2086–2099. [CrossRef] [PubMed]
32. Camchong, J.; Stenger, V.A.; Fein, G. Resting-state synchrony in short-term versus long-term abstinent alcoholics. Alcohol. Clin.

Exp. Res. 2013, 37, 794–803. [CrossRef] [PubMed]
33. Camchong, J.; Stenger, V.A.; Fein, G. Resting state synchrony in long-term abstinent alcoholics with versus without comorbid

drug dependence. Drug Alcohol Depend. 2013, 131, 56–65. [CrossRef] [PubMed]
34. Zheng, H.; Kong, L.; Chen, L.; Zhang, H.; Zheng, W. Acute effects of alcohol on the human brain: A resting-state FMRI study.

Biomed. Res. Int. 2015, 2015, 947529. [CrossRef] [PubMed]
35. Hu, S.; Ide, J.S.; Chao, H.H.; Zhornitsky, S.; Fischer, K.A.; Wang, W.; Zhang, S.; Li, C.R. Resting state functional connectivity of

the amygdala and problem drinking in non-dependent alcohol drinkers. Drug Alcohol Depend. 2018, 185, 173–180. [CrossRef]
[PubMed]

36. Zhu, X.; Cortes, C.R.; Mathur, K.; Tomasi, D.; Momenan, R. Model-free functional connectivity and impulsivity correlates of
alcohol dependence: A resting-state study. Addict. Biol. 2017, 22, 206–217. [CrossRef]

37. Le Berre, A.P.; Fama, R.; Sullivan, E.V. Executive Functions, Memory, and Social Cognitive Deficits and Recovery in Chronic
Alcoholism: A Critical Review to Inform Future Research. Alcohol. Clin. Exp. Res. 2017, 41, 1432–1443. [CrossRef]

38. Fein, G.; Bachman, L.; Fisher, S.; Davenport, L. Cognitive impairments in abstinent alcoholics. West. J. Med. 1990, 152, 531–537.
39. Shear, P.K.; Jernigan, T.L.; Butters, N. Volumetric magnetic resonance imaging quantification of longitudinal brain changes in

abstinent alcoholics. Alcohol. Clin. Exp. Res. 1994, 18, 172–176. [CrossRef]
40. Parsons, O.A. Neuropsychological deficits in alcoholics: Facts and fancies. Alcohol. Clin. Exp. Res. 1977, 1, 51–56. [CrossRef]
41. Parsons, O.A.; Butters, N.; Nathan, P.E. (Eds.) Neuropsychology of Alcoholism: Implications for Diagnosis and Treatment; The Guilford

Press: New York, NY, USA, 1987; p. 414.
42. Tarter, R.E.; Ryan, C.M. Neuropsychology of alcoholism. Etiology, phenomenology, process, and outcome. Recent Dev. Alcohol.

1983, 1, 449–469. [PubMed]
43. Oscar-Berman, M. Neuropsychological consequences of long-term chronic alcoholism. Am. Sci. 1980, 68, 410–419. [PubMed]
44. Oscar-Berman, M. Neuropsychological Vulnerabilities in Chronic Alcoholism. In Review of NIAAA’s Neuroscience and Behavioral

Research Portfolio National Institute on Alcohol Abuse and Alcoholism (NIAAA) Research Monograph No 34; Noronha, A., Eckardt, M.J.,
Warren, K., Eds.; NIAAA: Bethesda, MD, USA, 2000; pp. 437–471.

45. Day, A.M.; Kahler, C.W.; Ahern, D.C.; Clark, U.S. Executive Functioning in Alcohol Use Studies: A Brief Review of Findings and
Challenges in Assessment. Curr. Drug Abus. Rev. 2015, 8, 26–40. [CrossRef]

46. Chen, A.C.; Porjesz, B.; Rangaswamy, M.; Kamarajan, C.; Tang, Y.; Jones, K.A.; Chorlian, D.B.; Stimus, A.T.; Begleiter, H. Reduced
frontal lobe activity in subjects with high impulsivity and alcoholism. Alcohol. Clin. Exp. Res. 2007, 31, 156–165. [CrossRef]
[PubMed]

47. Lawrence, A.J.; Luty, J.; Bogdan, N.A.; Sahakian, B.J.; Clark, L. Impulsivity and response inhibition in alcohol dependence and
problem gambling. Psychopharmacology 2009, 207, 163–172. [CrossRef] [PubMed]

48. Aragues, M.; Jurado, R.; Quinto, R.; Rubio, G. Laboratory paradigms of impulsivity and alcohol dependence: A review. Eur.
Addict. Res. 2011, 17, 64–71. [CrossRef]

49. Koob, G.F.; Rassnick, S.; Heinrichs, S.; Weiss, F. Alcohol, the reward system and dependence. EXS 1994, 71, 103–114. [CrossRef]
50. Volkow, N.D.; Fowler, J.S.; Wang, G.J.; Swanson, J.M. Dopamine in drug abuse and addiction: Results from imaging studies and

treatment implications. Mol. Psychiatry 2004, 9, 557–569. [CrossRef]
51. Koob, G.F. Dynamics of neuronal circuits in addiction: Reward, antireward, and emotional memory. Pharmacopsychiatry 2009, 42

(Suppl. S1), S32–S41. [CrossRef]

http://doi.org/10.3174/ajnr.A5527
http://www.ncbi.nlm.nih.gov/pubmed/29348136
http://doi.org/10.1016/j.euroneuro.2010.03.008
http://www.ncbi.nlm.nih.gov/pubmed/20471808
http://doi.org/10.1097/HRP.0000000000000166
http://doi.org/10.1002/mrm.1910340409
http://doi.org/10.1016/j.tics.2013.09.004
http://doi.org/10.1016/j.schres.2021.09.004
http://doi.org/10.1016/j.neuroimage.2019.06.036
http://doi.org/10.1016/j.pnpbp.2018.06.011
http://doi.org/10.1111/j.1530-0277.2012.01859.x
http://doi.org/10.1093/cercor/bhs190
http://www.ncbi.nlm.nih.gov/pubmed/22819968
http://doi.org/10.1111/acer.12037
http://www.ncbi.nlm.nih.gov/pubmed/23421812
http://doi.org/10.1016/j.drugalcdep.2013.04.002
http://www.ncbi.nlm.nih.gov/pubmed/23639390
http://doi.org/10.1155/2015/947529
http://www.ncbi.nlm.nih.gov/pubmed/25705701
http://doi.org/10.1016/j.drugalcdep.2017.11.026
http://www.ncbi.nlm.nih.gov/pubmed/29454928
http://doi.org/10.1111/adb.12272
http://doi.org/10.1111/acer.13431
http://doi.org/10.1111/j.1530-0277.1994.tb00899.x
http://doi.org/10.1111/j.1530-0277.1977.tb05767.x
http://www.ncbi.nlm.nih.gov/pubmed/6390559
http://www.ncbi.nlm.nih.gov/pubmed/7416575
http://doi.org/10.2174/1874473708666150416110515
http://doi.org/10.1111/j.1530-0277.2006.00277.x
http://www.ncbi.nlm.nih.gov/pubmed/17207114
http://doi.org/10.1007/s00213-009-1645-x
http://www.ncbi.nlm.nih.gov/pubmed/19727677
http://doi.org/10.1159/000321345
http://doi.org/10.1007/978-3-0348-7330-7_11
http://doi.org/10.1038/sj.mp.4001507
http://doi.org/10.1055/s-0029-1216356


Behav. Sci. 2022, 12, 128 24 of 26

52. Fede, S.J.; Grodin, E.N.; Dean, S.F.; Diazgranados, N.; Momenan, R. Resting state connectivity best predicts alcohol use severity in
moderate to heavy alcohol users. Neuroimage Clin. 2019, 22, 101782. [CrossRef]

53. Zhu, X.; Du, X.; Kerich, M.; Lohoff, F.W.; Momenan, R. Random forest based classification of alcohol dependence patients and
healthy controls using resting state MRI. Neurosci. Lett. 2018, 676, 27–33. [CrossRef] [PubMed]

54. Pandey, A.K.; Ardekani, B.A.; Kamarajan, C.; Zhang, J.; Chorlian, D.B.; Byrne, K.N.; Pandey, G.; Meyers, J.L.; Kinreich, S.; Stimus,
A.; et al. Lower Prefrontal and Hippocampal Volume and Diffusion Tensor Imaging Differences Reflect Structural and Functional
Abnormalities in Abstinent Individuals with Alcohol Use Disorder. Alcohol. Clin. Exp. Res. 2018, 42, 1883–1896. [CrossRef]
[PubMed]

55. Bucholz, K.K.; Cadoret, R.; Cloninger, C.R.; Dinwiddie, S.H.; Hesselbrock, V.M.; Nurnberger, J.I., Jr.; Reich, T.; Schmidt, I.; Schuckit,
M.A. A new, semi-structured psychiatric interview for use in genetic linkage studies: A report on the reliability of the SSAGA. J.
Stud. Alcohol. 1994, 55, 149–158. [CrossRef] [PubMed]

56. Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for
the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [CrossRef]

57. Davis, H.P.; Keller, F. Colorado Assessment Tests (CATs), Version 1.2; Springs: Colorado, CO, USA, 2002.
58. Shallice, T. Specific impairments of planning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1982, 298, 199–209. [CrossRef]
59. Berch, D.B.; Krikorian, R.; Huha, E.M. The Corsi block-tapping task: Methodological and theoretical considerations. Brain Cogn.

1998, 38, 317–338. [CrossRef]
60. Milner, B. Interhemispheric differences in the localization of psychological processes in man. Br. Med. Bull. 1971, 27, 272–277.

[CrossRef]
61. Patton, J.H.; Stanford, M.S.; Barratt, E.S. Factor structure of the Barratt impulsiveness scale. J. Clin. Psychol. 1995, 51, 768–774.

[CrossRef]
62. Stanford, M.S.; Mathias, C.W.; Dougherty, D.M.; Lake, S.L.; Anderson, N.E.; Patton, J.H. Fifty years of the Barratt Impulsiveness

Scale: An update and review. Pers. Individ. Differ. 2009, 47, 385–395. [CrossRef]
63. Kamarajan, C.; Ardekani, B.A.; Pandey, A.K.; Kinreich, S.; Pandey, G.; Chorlian, D.B.; Meyers, J.L.; Zhang, J.; Bermudez, E.; Stimus,

A.T.; et al. Random Forest Classification of Alcohol Use Disorder Using fMRI Functional Connectivity, Neuropsychological
Functioning, and Impulsivity Measures. Brain. Sci. 2020, 10, 115. [CrossRef]

64. Ardekani, B.A.; Braun, M.; Hutton, B.F.; Kanno, I.; Iida, H. A fully automatic multimodality image registration algorithm. J.
Comput. Assist. Tomogr. 1995, 19, 615–623. [CrossRef] [PubMed]

65. Cox, R.W. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res.
1996, 29, 162–173. [CrossRef]

66. Ardekani, B.A.; Bappal, A.; D’Angelo, D.; Ashtari, M.; Lencz, T.; Szeszko, P.R.; Butler, P.D.; Javitt, D.C.; Lim, K.O.; Hrabe, J.;
et al. Brain morphometry using diffusion-weighted magnetic resonance imaging: Application to schizophrenia. Neuroreport 2005,
16, 1455–1459. [CrossRef] [PubMed]

67. Klein, A.; Andersson, J.; Ardekani, B.A.; Ashburner, J.; Avants, B.; Chiang, M.C.; Christensen, G.E.; Collins, D.L.; Gee, J.; Hellier, P.;
et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 2009, 46, 786–802.
[CrossRef] [PubMed]

68. Joshi, S.; Davis, B.; Jomier, M.; Gerig, G. Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage 2004,
23 (Suppl. S1), S151–S160. [CrossRef] [PubMed]

69. Koay, C.G.; Carew, J.D.; Alexander, A.L.; Basser, P.J.; Meyerand, M.E. Investigation of anomalous estimates of tensor-derived
quantities in diffusion tensor imaging. Magn. Reson. Med. 2006, 55, 930–936. [CrossRef]

70. Tomasi, D.; Volkow, N.D. Functional connectivity of substantia nigra and ventral tegmental area: Maturation during adolescence
and effects of ADHD. Cereb. Cortex 2014, 24, 935–944. [CrossRef]

71. Flannery, J.S.; Riedel, M.C.; Bottenhorn, K.L.; Poudel, R.; Salo, T.; Hill-Bowen, L.D.; Laird, A.R.; Sutherland, M.T. Meta-analytic
clustering dissociates brain activity and behavior profiles across reward processing paradigms. Cogn. Affect Behav. Neurosci. 2020,
20, 215–235. [CrossRef]

72. Yushkevich, P.A.; Yang, G.; Gerig, G. ITK-SNAP: An interactive tool for semi-automatic segmentation of multi-modality
biomedical images. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2016, 2016, 3342–3345. [CrossRef]

73. Whitfield-Gabrieli, S.; Nieto-Castanon, A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain
networks. Brain Connect. 2012, 2, 125–141. [CrossRef]

74. Dansereau, C.; Benhajali, Y.; Risterucci, C.; Pich, E.M.; Orban, P.; Arnold, D.; Bellec, P. Statistical power and prediction accuracy in
multisite resting-state fMRI connectivity. Neuroimage 2017, 149, 220–232. [CrossRef] [PubMed]

75. Nguyen, C.; Wang, Y.; Nguyen, H.N. Random forest classifier combined with feature selection for breast cancer diagnosis and
prognostic. J. Biomed. Sci. Eng. 2013, 6, 551–560. [CrossRef]

76. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [CrossRef]
77. Cai, J.; Luo, J.W.; Wang, S.L.; Yang, S. Feature selection in machine learning: A new perspective. Neurocomputing 2018, 300, 70–79.

[CrossRef]
78. Kamala, R.F.; Thangaiah, P.R.J. A Novel Two-Stage Selection of Feature Subsets in Machine Learning. Eng. Technol. Appl. Sci. Res.

2019, 9, 4169–4175. [CrossRef]

http://doi.org/10.1016/j.nicl.2019.101782
http://doi.org/10.1016/j.neulet.2018.04.007
http://www.ncbi.nlm.nih.gov/pubmed/29626649
http://doi.org/10.1111/acer.13854
http://www.ncbi.nlm.nih.gov/pubmed/30118142
http://doi.org/10.15288/jsa.1994.55.149
http://www.ncbi.nlm.nih.gov/pubmed/8189735
http://doi.org/10.1016/0022-3956(75)90026-6
http://doi.org/10.1098/rstb.1982.0082
http://doi.org/10.1006/brcg.1998.1039
http://doi.org/10.1093/oxfordjournals.bmb.a070866
http://doi.org/10.1002/1097-4679(199511)51:6&lt;768::AID-JCLP2270510607&gt;3.0.CO;2-1
http://doi.org/10.1016/j.paid.2009.04.008
http://doi.org/10.3390/brainsci10020115
http://doi.org/10.1097/00004728-199507000-00022
http://www.ncbi.nlm.nih.gov/pubmed/7622696
http://doi.org/10.1006/cbmr.1996.0014
http://doi.org/10.1097/01.wnr.0000177001.27569.06
http://www.ncbi.nlm.nih.gov/pubmed/16110271
http://doi.org/10.1016/j.neuroimage.2008.12.037
http://www.ncbi.nlm.nih.gov/pubmed/19195496
http://doi.org/10.1016/j.neuroimage.2004.07.068
http://www.ncbi.nlm.nih.gov/pubmed/15501084
http://doi.org/10.1002/mrm.20832
http://doi.org/10.1093/cercor/bhs382
http://doi.org/10.3758/s13415-019-00763-7
http://doi.org/10.1109/EMBC.2016.7591443
http://doi.org/10.1089/brain.2012.0073
http://doi.org/10.1016/j.neuroimage.2017.01.072
http://www.ncbi.nlm.nih.gov/pubmed/28161310
http://doi.org/10.4236/jbise.2013.65070
http://doi.org/10.1016/j.compeleceng.2013.11.024
http://doi.org/10.1016/j.neucom.2017.11.077
http://doi.org/10.48084/etasr.2735


Behav. Sci. 2022, 12, 128 25 of 26

79. Raj, S.; Singh, S.; Kumar, A.; Sarkar, S.; Pradhan, C. Feature Selection and Random Forest Classification for Breast Cancer Disease.
In Data Analytics in Bioinformatics; Wiley: Hoboken, NJ, USA, 2021; pp. 191–210. [CrossRef]

80. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw.
2010, 33, 1–22. [CrossRef]

81. Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Cox’s Proportional Hazards Model via Coordinate
Descent. J. Stat. Softw. 2011, 39, 1–13. [CrossRef]

82. Tibshirani, R.; Bien, J.; Friedman, J.; Hastie, T.; Simon, N.; Taylor, J.; Tibshirani, R.J. Strong rules for discarding predictors in
lasso-type problems. J. R. Stat. Soc. Ser. B Stat. Methodol. 2012, 74, 245–266. [CrossRef]

83. Muthukrishnan, R.; Rohini, R. LASSO: A Feature Selection Technique in Predictive Modeling for Machine Learning. In Proceed-
ings of the IEEE International Conference on Advances in Computer Applications (ICACA), Coimbatore, India, 24 October 2016;
pp. 18–20.

84. Fonti, V.; Belitser, E. Feature Selection Using LASSO. 2017. Available online: https://beta.vu.nl/nl/Images/werkstuk-fonti_tcm2
35-836234.pdf (accessed on 1 June 2019).

85. Kamarajan, C.; Ardekani, B.A.; Pandey, A.K.; Chorlian, D.B.; Kinreich, S.; Pandey, G.; Meyers, J.L.; Zhang, J.; Kuang, W.; Stimus,
A.T.; et al. Random Forest Classification of Alcohol Use Disorder Using EEG Source Functional Connectivity, Neuropsychological
Functioning, and Impulsivity Measures. Behav. Sci. 2020, 10, 62. [CrossRef]

86. Breiman, L.; Cutler, A. Random Forest. Available online: https://www.stat.berkeley.edu/~{}breiman/RandomForests/cc_home.
htm#ooberr (accessed on 1 June 2019).

87. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
88. Mazziotta, J.; Toga, A.; Evans, A.; Fox, P.; Lancaster, J.; Zilles, K.; Woods, R.; Paus, T.; Simpson, G.; Pike, B.; et al. A probabilistic

atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. London
B Biol. Sci. 2001, 356, 1293–1322. [CrossRef] [PubMed]

89. Kalivas, P.W. Neurocircuitry of Addiction. In Neuropsychopharmacology—The fifth Generation of Progress; Davis, K.L., Charney, D.,
Coyle, J.T., Nemeroff, C., Eds.; Lippincott, Williams and Wilkins: Philadelphia, PA, USA, 2002; Volume 17, pp. 1357–1366.

90. Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 2016, 3, 760–773. [CrossRef]
91. Resad, S. Resting State Functional Connectivity in Addiction: Drug Abuse and Reward Dysregulation; Boston University: Boston, MA,

USA, 2017.
92. Chanraud, S.; Pitel, A.L.; Pfefferbaum, A.; Sullivan, E.V. Disruption of functional connectivity of the default-mode network in

alcoholism. Cereb. Cortex 2011, 21, 2272–2281. [CrossRef] [PubMed]
93. Muller-Oehring, E.M.; Jung, Y.C.; Pfefferbaum, A.; Sullivan, E.V.; Schulte, T. The Resting Brain of Alcoholics. Cereb. Cortex 2015,

25, 4155–4168. [CrossRef] [PubMed]
94. Arias, A.J.; Ma, L.; Bjork, J.M.; Hammond, C.J.; Zhou, Y.; Snyder, A.; Moeller, F.G. Altered effective connectivity of the reward

network during an incentive-processing task in adults with alcohol use disorder. Alcohol. Clin. Exp. Res. 2021, 45, 1563–1577.
[CrossRef]

95. Davey, C.G.; Pujol, J.; Harrison, B.J. Mapping the self in the brain’s default mode network. Neuroimage 2016, 132, 390–397.
[CrossRef]

96. Camchong, J.; Macdonald, A.W., III; Mueller, B.A.; Nelson, B.; Specker, S.; Slaymaker, V.; Lim, K.O. Changes in resting functional
connectivity during abstinence in stimulant use disorder: A preliminary comparison of relapsers and abstainers. Drug Alcohol
Depend. 2014, 139, 145–151. [CrossRef]

97. Blum, K.; Braverman, E.R.; Holder, J.M.; Lubar, J.F.; Monastra, V.J.; Miller, D.; Lubar, J.O.; Chen, T.J.; Comings, D.E. Reward
deficiency syndrome: A biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J.
Psychoact. Drugs 2000, 32 (Suppl. 1–5), 1–112. [CrossRef]

98. Volkow, N.D.; Fowler, J.S.; Wang, G.J.; Baler, R.; Telang, F. Imaging dopamine’s role in drug abuse and addiction. Neuropharmacol-
ogy 2009, 56 (Suppl. S1), 3–8. [CrossRef]

99. Tops, M.; Quirin, M.; Boksem, M.A.S.; Koole, S.L. Large-scale neural networks and the lateralization of motivation and emotion.
Int. J. Psychophysiol. 2017, 119, 41–49. [CrossRef]

100. Rogers, L.J.; Vallortigara, G.; Andrew, R.J. Divided Brains: The Biology and Behaviour of Brain Asymmetries; Cambridge University
Press: Cambridge, UK, 2013.

101. Gordon, H.W. Laterality of Brain Activation for Risk Factors of Addiction. Curr. Drug Abus. Rev. 2016, 9, 1–18. [CrossRef]
[PubMed]

102. Yoon, E.J.; Choi, J.S.; Kim, H.; Sohn, B.K.; Jung, H.Y.; Lee, J.Y.; Kim, D.J.; Park, S.W.; Kim, Y.K. Altered hippocampal volume and
functional connectivity in males with Internet gaming disorder comparing to those with alcohol use disorder. Sci. Rep. 2017, 7, 5744.
[CrossRef] [PubMed]

103. Smith, K.S.; Tindell, A.J.; Aldridge, J.W.; Berridge, K.C. Ventral pallidum roles in reward and motivation. Behav. Brain Res. 2009,
196, 155–167. [CrossRef]

104. Forbes, E.E.; Rodriguez, E.E.; Musselman, S.; Narendran, R. Prefrontal response and frontostriatal functional connectivity to
monetary reward in abstinent alcohol-dependent young adults. PLoS ONE 2014, 9, e94640. [CrossRef]

http://doi.org/10.1002/9781119785620.ch8
http://doi.org/10.18637/jss.v033.i01
http://doi.org/10.18637/jss.v039.i05
http://doi.org/10.1111/j.1467-9868.2011.01004.x
https://beta.vu.nl/nl/Images/werkstuk-fonti_tcm235-836234.pdf
https://beta.vu.nl/nl/Images/werkstuk-fonti_tcm235-836234.pdf
http://doi.org/10.3390/bs10030062
https://www.stat.berkeley.edu/~{}breiman/RandomForests/cc_home.htm#ooberr
https://www.stat.berkeley.edu/~{}breiman/RandomForests/cc_home.htm#ooberr
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1098/rstb.2001.0915
http://www.ncbi.nlm.nih.gov/pubmed/11545704
http://doi.org/10.1016/S2215-0366(16)00104-8
http://doi.org/10.1093/cercor/bhq297
http://www.ncbi.nlm.nih.gov/pubmed/21368086
http://doi.org/10.1093/cercor/bhu134
http://www.ncbi.nlm.nih.gov/pubmed/24935777
http://doi.org/10.1111/acer.14650
http://doi.org/10.1016/j.neuroimage.2016.02.022
http://doi.org/10.1016/j.drugalcdep.2014.03.024
http://doi.org/10.1080/02791072.2000.10736099
http://doi.org/10.1016/j.neuropharm.2008.05.022
http://doi.org/10.1016/j.ijpsycho.2017.02.004
http://doi.org/10.2174/1874473709666151217121309
http://www.ncbi.nlm.nih.gov/pubmed/26674074
http://doi.org/10.1038/s41598-017-06057-7
http://www.ncbi.nlm.nih.gov/pubmed/28720860
http://doi.org/10.1016/j.bbr.2008.09.038
http://doi.org/10.1371/journal.pone.0094640


Behav. Sci. 2022, 12, 128 26 of 26

105. Ruiz, M.A.; Skeem, J.L.; Poythress, N.G.; Douglas, K.S.; Lilienfeld, S.O. Structure and correlates of the Barratt Impulsiveness Scale
(BIS-11) in offenders: Implications for psychopathy and externalizing pathology. Int. J. Forensic Ment. Health 2010, 9, 237–244.
[CrossRef]

106. Carlson, S.R.; Katsanis, J.; Iacono, W.G.; Mertz, A.K. Substance dependence and externalizing psychopathology in adolescent
boys with small, average, or large P300 event-related potential amplitude. Psychophysiology 1999, 36, 583–590. [CrossRef]

107. Hill, S.Y.; Lowers, L.; Locke, J.; Snidman, N.; Kagan, J. Behavioral inhibition in children from families at high risk for developing
alcoholism. J. Am. Acad. Child Adolesc. Psychiatry 1999, 38, 410–417. [CrossRef]

108. Eiden, R.D.; Edwards, E.P.; Leonard, K.E. A conceptual model for the development of externalizing behavior problems among
kindergarten children of alcoholic families: Role of parenting and children’s self-regulation. Dev. Psychol. 2007, 43, 1187–1201.
[CrossRef]

109. Dick, D.M.; Aliev, F.; Wang, J.C.; Grucza, R.A.; Schuckit, M.; Kuperman, S.; Kramer, J.; Hinrichs, A.; Bertelsen, S.; Budde, J.P.; et al.
Using dimensional models of externalizing psychopathology to aid in gene identification. Arch. Gen. Psychiatry 2008, 65, 310–318.
[CrossRef]

110. Wang, J.; Fan, Y.; Dong, Y.; Ma, M.; Ma, Y.; Dong, Y.; Niu, Y.; Jiang, Y.; Wang, H.; Wang, Z.; et al. Alterations in Brain Structure and
Functional Connectivity in Alcohol Dependent Patients and Possible Association with Impulsivity. PLoS ONE 2016, 11, e0161956.
[CrossRef]

111. Gropper, S.; Spengler, S.; Stuke, H.; Gawron, C.K.; Parnack, J.; Gutwinski, S.; Wiers, C.E.; Bermpohl, F. Behavioral impulsivity me-
diates the relationship between decreased frontal gray matter volume and harmful alcohol drinking: A voxel-based morphometry
study. J. Psychiatr. Res. 2016, 83, 16–23. [CrossRef] [PubMed]

112. Lejuez, C.W.; Magidson, J.F.; Mitchell, S.H.; Sinha, R.; Stevens, M.C.; de Wit, H. Behavioral and biological indicators of impulsivity
in the development of alcohol use, problems, and disorders. Alcohol. Clin. Exp. Res. 2010, 34, 1334–1345. [CrossRef] [PubMed]

113. Cyders, M.A.; Dzemidzic, M.; Eiler, W.J.; Coskunpinar, A.; Karyadi, K.; Kareken, D.A. Negative urgency and ventromedial
prefrontal cortex responses to alcohol cues: FMRI evidence of emotion-based impulsivity. Alcohol. Clin. Exp. Res. 2014, 38,
409–417. [CrossRef] [PubMed]

114. Lee, J.Y.; Park, S.M.; Kim, Y.J.; Kim, D.J.; Choi, S.W.; Kwon, J.S.; Choi, J.S. Resting-state EEG activity related to impulsivity in
gambling disorder. J. Behav. Addict. 2017, 6, 387–395. [CrossRef] [PubMed]

115. Herrera-Diaz, A.; Mendoza-Quinones, R.; Melie-Garcia, L.; Martinez-Montes, E.; Sanabria-Diaz, G.; Romero-Quintana, Y.;
Salazar-Guerra, I.; Carballoso-Acosta, M.; Caballero-Moreno, A. Functional Connectivity and Quantitative EEG in Women with
Alcohol Use Disorders: A Resting-State Study. Brain Topogr. 2016, 29, 368–381. [CrossRef]

116. Um, M.; Hershberger, A.R.; Whitt, Z.T.; Cyders, M.A. Recommendations for applying a multi-dimensional model of impulsive
personality to diagnosis and treatment. Bord. Pers. Disord. Emot. Dysregul. 2018, 5, 6. [CrossRef]

117. Hershberger, A.R.; Um, M.; Cyders, M.A. The relationship between the UPPS-P impulsive personality traits and substance use
psychotherapy outcomes: A meta-analysis. Drug Alcohol Depend. 2017, 178, 408–416. [CrossRef]

118. Oscar-Berman, M.; Ellis, R.J. Cognitive deficits related to memory impairments in alcoholism. Recent Dev. Alcohol. 1987, 5, 59–80.
[CrossRef]

119. Ober, B.A.; Stillman, R.C. Memory in chronic alcoholics: Effects of inconsistent versus consistent information. Addict. Behav. 1988,
13, 11–15. [CrossRef]

120. Pfefferbaum, A.; Desmond, J.E.; Galloway, C.; Menon, V.; Glover, G.H.; Sullivan, E.V. Reorganization of frontal systems used by
alcoholics for spatial working memory: An fMRI study. Neuroimage 2001, 14, 7–20. [CrossRef]

121. Pitel, A.L.; Beaunieux, H.; Witkowski, T.; Vabret, F.; Guillery-Girard, B.; Quinette, P.; Desgranges, B.; Eustache, F. Genuine episodic
memory deficits and executive dysfunctions in alcoholic subjects early in abstinence. Alcohol. Clin. Exp. Res. 2007, 31, 1169–1178.
[CrossRef] [PubMed]

122. Kotz, S.A.; Anwander, A.; Axer, H.; Knosche, T.R. Beyond cytoarchitectonics: The internal and external connectivity structure of
the caudate nucleus. PLoS ONE 2013, 8, e70141. [CrossRef] [PubMed]

123. Robinson, J.L.; Laird, A.R.; Glahn, D.C.; Blangero, J.; Sanghera, M.K.; Pessoa, L.; Fox, P.M.; Uecker, A.; Friehs, G.; Young, K.A.;
et al. The functional connectivity of the human caudate: An application of meta-analytic connectivity modeling with behavioral
filtering. Neuroimage 2012, 60, 117–129. [CrossRef] [PubMed]

124. Washington, S.D.; VanMeter, J.W. Anterior-Posterior Connectivity within the Default Mode Network Increases During Maturation.
Int. J. Med. Biol. Front. 2015, 21, 207–218.

125. Qadir, H.; Krimmel, S.R.; Mu, C.; Poulopoulos, A.; Seminowicz, D.A.; Mathur, B.N. Structural Connectivity of the Anterior
Cingulate Cortex, Claustrum, and the Anterior Insula of the Mouse. Front. Neuroanat. 2018, 12, 100. [CrossRef]

126. Day, A.M.; Metrik, J.; Spillane, N.S.; Kahler, C.W. Working memory and impulsivity predict marijuana-related problems among
frequent users. Drug Alcohol Depend. 2013, 131, 171–174. [CrossRef]

127. Kjome, K.L.; Lane, S.D.; Schmitz, J.M.; Green, C.; Ma, L.; Prasla, I.; Swann, A.C.; Moeller, F.G. Relationship between impulsivity
and decision making in cocaine dependence. Psychiatry Res. 2010, 178, 299–304. [CrossRef]

128. Enticott, P.G.; Ogloff, J.R.P.; Bradshaw, J.L. Associations between laboratory measures of executive inhibitory control and
self-reported impulsivity. Pers. Individ. Differ. 2006, 41, 285–294. [CrossRef]

129. Evren, C.; Durkaya, M.; Evren, B.; Dalbudak, E.; Cetin, R. Relationship of relapse with impulsivity, novelty seeking and craving in
male alcohol-dependent inpatients. Drug Alcohol Rev. 2012, 31, 81–90. [CrossRef]

http://doi.org/10.1080/14999013.2010.517258
http://doi.org/10.1111/1469-8986.3650583
http://doi.org/10.1097/00004583-199904000-00013
http://doi.org/10.1037/0012-1649.43.5.1187
http://doi.org/10.1001/archpsyc.65.3.310
http://doi.org/10.1371/journal.pone.0161956
http://doi.org/10.1016/j.jpsychires.2016.08.006
http://www.ncbi.nlm.nih.gov/pubmed/27529648
http://doi.org/10.1111/j.1530-0277.2010.01217.x
http://www.ncbi.nlm.nih.gov/pubmed/20491733
http://doi.org/10.1111/acer.12266
http://www.ncbi.nlm.nih.gov/pubmed/24164291
http://doi.org/10.1556/2006.6.2017.055
http://www.ncbi.nlm.nih.gov/pubmed/28856896
http://doi.org/10.1007/s10548-015-0467-x
http://doi.org/10.1186/s40479-018-0084-x
http://doi.org/10.1016/j.drugalcdep.2017.05.032
http://doi.org/10.1007/978-1-4899-1684-6_3
http://doi.org/10.1016/0306-4603(88)90020-2
http://doi.org/10.1006/nimg.2001.0785
http://doi.org/10.1111/j.1530-0277.2007.00418.x
http://www.ncbi.nlm.nih.gov/pubmed/17511749
http://doi.org/10.1371/journal.pone.0070141
http://www.ncbi.nlm.nih.gov/pubmed/23922939
http://doi.org/10.1016/j.neuroimage.2011.12.010
http://www.ncbi.nlm.nih.gov/pubmed/22197743
http://doi.org/10.3389/fnana.2018.00100
http://doi.org/10.1016/j.drugalcdep.2012.12.016
http://doi.org/10.1016/j.psychres.2009.11.024
http://doi.org/10.1016/j.paid.2006.01.011
http://doi.org/10.1111/j.1465-3362.2011.00303.x

	Introduction 
	Materials and Methods 
	Sample 
	Neuropsychological Assessment 
	Tower of London Test (TOLT) 
	Visual Span Test (VST) 

	Impulsivity Scores 
	MRI Data Acquisition 
	Image Processing 
	Reward Network Seed Regions and rsFC Calculations 
	Feature Selection of FC Variables 
	Random Forest Classification 

	Results 
	Random Forests Classification 
	Classification Accuracy and Top Significant Variables 
	Distribution of Minimal Depth 
	Multi-Way Importance 
	Correlations among Rankings of RF Parameters 
	Connectivity Mapping of Significant rsFC Connections 

	Correlations among the Top Significant Variables 
	Correlations between Significant Variables and Age 
	Neuropsychological Scores between the Groups 

	Discussion 
	Altered Functional Connectivity across Reward Network in AUD Individuals 
	Heightened Impulsivity in AUD Individuals 
	Poorer Memory Span in AUD Individuals 
	Correlations of Significant Variables among Themselves and with Age 
	Limitations of the Current Study 

	Summary and Conclusions 
	Appendix A
	References

