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Abstract 

Background:  Hometime, the total number of days a person is living in the community (not in a healthcare institu-
tion) in a defined period of time after a hospitalization, is a patient-centred outcome metric increasingly used in 
healthcare research. Hometime exhibits several properties which make its statistical analysis difficult: it has a highly 
non-normal distribution, excess zeros, and is bounded by both a lower and upper limit. The optimal methodology for 
the analysis of hometime is currently unknown.

Methods:  Using administrative data we identified adult patients diagnosed with stroke between April 1, 2010 and 
December 31, 2017 in Ontario, Canada. 90-day hometime and clinically relevant covariates were determined through 
administrative data linkage. Fifteen different statistical and machine learning models were fit to the data using a deri-
vation sample. The models’ predictive accuracy and bias were assessed using an independent validation sample.

Results:  Seventy-five thousand four hundred seventy-five patients were identified (divided into a derivation set of 
49,402 and a test set of 26,073). In general, the machine learning models had lower root mean square error and mean 
absolute error than the statistical models. However, some statistical models resulted in lower (or equal) bias than the 
machine learning models. Most of the machine learning models constrained predicted values between the minimum 
and maximum observable hometime values but this was not the case for the statistical models. The machine learning 
models also allowed for the display of complex non-linear interactions between covariates and hometime. No model 
captured the non-normal bucket shaped hometime distribution.

Conclusions:  Overall, no model clearly outperformed the others. However, it was evident that machine learning 
methods performed better than traditional statistical methods. Among the machine learning methods, generalized 
boosting machines using the Poisson distribution as well as random forests regression were the best performing. No 
model was able to capture the bucket shaped hometime distribution and future research on factors which are associ-
ated with extreme values of hometime that are not available in administrative data is warranted.
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Background
Hometime, defined as the total number of days a per-
son is living in the community (not in a healthcare 
institution) in a defined time period after a hospitaliza-
tion for a health condition, is a patient outcome metric 

increasingly being used in heart failure, atrial fibrillation, 
surgical, and stroke research [1–11]. Hometime has also 
been referred to as “days alive and out of hospital” and 
can be calculated across any time period of clinical rel-
evance; commonly used timeframes for hometime cal-
culation are 30, 90, 180, and 365 days. This metric has 
several advantages in clinical research. First, hometime 
be obtained using linked administrative data, making it 
more resistant to loss to follow up/attrition bias and it 
can be calculated for large populations. Second, unlike 
clinical outcome scores which may be vulnerable to low 
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inter-rater reliability, hometime is an objective meas-
ure of outcome. Finally, this metric is valued by patients 
because returning home is important to patients and 
their families as well as by policymakers because 
increased time in health institutions is inherently related 
to increased healthcare costs [3].

However, hometime also exhibits statistical properties 
which make its analysis difficult. First, hometime exhib-
its a highly non-normal bucket-shaped distribution with 
a spike at or near its lower and upper limits. Second, 
part of hometime’s non-normal distribution is made up 
of an inordinate excess of 0’s. Zero hometime can arise 
from two different scenarios: 1) the patient remained in a 
healthcare institution for the entire duration of follow up; 
or 2) the patient died before discharge from hospital and 
therefore could not accumulate any hometime. Typically, 
if the patient dies during the follow up window, any time 
spent at home before death is counted towards home-
time [1–8, 10, 11]. However, in some studies, hometime 
has also been calculated such that patients who die at 
any point during the follow up window are assigned a 
hometime of 0 (even if they spent time at home during 
the observation window) [9]. Third, the lower and upper 
limits themselves cause difficulty in the analysis of home-
time, as many traditional regression methods can result 
in predicted values of hometime that are outside of the 
range of possible values (e.g., predicting negative home-
time or hometime beyond the upper limit of the observa-
tion window (i.e. predicting 100 days of hometime when 
the outcome of interest is 90-day hometime)).

In prior applied studies, a range of statistical methods 
have been used to analyze hometime; however, there 
have been no direct comparisons of different methodolo-
gies. Consequently, the optimal method for the analysis 
of hometime as an outcome is unknown. Additionally, 
there has been little use of methods from the machine 
learning literature for the analysis of hometime. In this 
study we aimed to compare the relative performance of 
different analytic strategies for predicting hometime. We 
performed these analyses in the context of stroke (both 
ischemic and hemorrhagic) as the index event causing 
hospitalization and the observation window to calculate 
hometime being 90 days.

Description of the hometime modelling methods
We provide a brief description of different candidate 
approaches to model the effect of covariates on home-
time. We will describe both traditional statistical and 
machine learning methods. Throughout the rest of this 
paper, we assume that the outcome is 90-day hometime, 
rather than hometime calculated using a different time 
period.

Statistical models
Linear regression
Linear regression, estimated using ordinary least squares 
(OLS), has been used in the analysis of hometime in 
patients with sub-arachnoid hemorrhage  [8]. An advan-
tage of linear regression is that the model is additive, and 
the regression coefficients are easily interpreted as the 
change in mean hometime for a one unit increase in a 
given predictor variable. However, statistical inference 
using linear regression relies on the assumption that the 
error terms are normally distributed and have uniform 
variance. Hometime exhibits a highly non-normal distri-
bution; consequently the distribution of error terms may 
have a non-normal distribution, which brings the infer-
ences made from this model into question [12]. Addition-
ally, the assumption of uniform variance likely does not 
hold true for hometime data. Finally, linear regression 
allows for predicted hometime to exceed the constraints 
on observed hometime, such as producing estimates < 0 
or greater than the upper limit of the follow up window 
(90-days).

Ordinal logistic regression
The ordinal logistic regression (or proportional odds) 
model has been used to model hometime in patients with 
ischemic stroke [13]. An advantage of ordinal logistic 
regression specific to hometime is that it will not extrap-
olate beyond the range of possible outcome values, as 
it does not model the probability of having a value less 
than the minimum or greater than the maximum on the 
ordinal scale. However, this model makes the important 
assumption that the odds ratio assessing any effects of the 
exposure variable(s) on the outcome is invariant to the 
cut point used when the ordinal categories are dichoto-
mized, which may not hold true for hometime [14, 15]. 
Another disadvantage of ordinal logistic regression is 
that it does not directly provide an estimated hometime 
for each individual in the sample; however, this can be 
overcome through calculation of the probability of each 
possible value of hometime for each individual, and 
then using these probabilities to determine the mean or 
expected hometime for each individual, conditional on 
their observed characteristics.

Poisson regression
The Poisson distribution is often used to model the 
distribution of hospital length of stay. Hometime can 
be thought of as similar to this, and as such could be 
modelled using Poisson regression. The advantage of 
using Poisson regression for hometime is that the fact 
that hometime is strictly non-negative is explicitly rec-
ognized. However, Poisson regression will allow for 
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predicted values of hometime to exceed the upper limit 
of 90 days. Additionally, the use of the Poisson distri-
bution relies on the assumption of equidispersion [16]; 
however, overdispersion is likely to be a problem with 
hometime data due to the spikes in hometime at 0 and 
near its upper limit of 90.

Negative binomial regression
Negative binomial regression has been used in a previ-
ous study to model hometime in patients with stroke 
[4]. Negative binomial regression is a generalization 
of Poisson regression which relaxes the assumption of 
equidispersion [16]. As with Poisson regression, the non-
negative integer characteristics of hometime are explic-
itly recognized, but again it can result in predicted values 
of hometime that exceed the upper limit of 90 days.

Zero‑inflated poisson regression and zero‑inflated negative 
binomial regression
There are two reasons that a patient may have home-
time = 0: the first being that they died in hospital and the 
second being that they remained alive but institutional-
ized until day 90. As such the hometime distribution suf-
fers from excess zeros and zero-inflated methodologies 
such as zero-inflated Poisson regression or zero-inflated 
negative binomial regression may be appropriate for use. 
In these models it is assumed that the excess zeros are 
produced by a separate process from the rest of the count 
data and as such can be modelled separately [17]. Similar 
considerations made for using traditional Poisson or neg-
ative binomial regression need to be made here as well.

Hurdle regression
Hurdle models are another way of dealing with excess 
zeros and overdispersion which have been used before 
in the modelling of hometime in patients with stroke due 
to large vessel occlusion [11]. These are two-part mod-
els which specify separate processes for the zero counts 
and for the positive integer counts [17]. The premise is 
that a positive count occurs once a threshold (hurdle) is 
crossed, but if the threshold is not crossed the predicted 
count remains zero. Several different model types can 
be used for the zero process, including binomial, Pois-
son, negative binomial, or geometric distributions. For 
the positive integer counts Poisson, negative binomial, or 
geometric distributions can be used. The ability to use a 
variety of model types for both the zero count and posi-
tive integer count processes allows more flexibility than 
the zero inflated binomial and zero inflated negative 
binomial model families.

Cox proportional hazards regression
Proportional hazards models have not previously been 
used for modeling hometime. In using a proportional 
hazards model for hometime one is modelling “time to 
end of hometime” using the hazard function. One can 
then estimate the survival function for each patient and 
the area under the curve of the survival function can be 
used as an estimate of expected hometime. While this 
may seem like an unusual application of proportional 
hazards models, hazard models have some properties 
which may be useful in the analysis of hometime. Home-
time’s complex distribution may lend itself better to sem-
iparametric models, such as proportional hazards models 
[15]. Another advantage to using a proportional hazards 
model for hometime is that at day 90 the estimate sur-
vival function will be 0 for all patients. Consequently, the 
model will not produce estimates of expected hometime 
that exceed its theoretical lower and upper bounds.

Machine learning methods
Ridge regression
Ridge regression (and lasso regression below) may be 
classified as both statistical and machine learning meth-
ods as they rely on a parametric model but use a data-
driven approach to estimate the model coefficients. 
Unlike the least squares estimator used in linear regres-
sion which is designed to reduce the sum of squared 
residuals the ridge estimator is a shrinkage method which 
is designed at reducing the sum of squared residuals plus 
the L2 penalty which is made up of the sum of squared 
coefficients multiplied by � where � > 0 . [18] This pen-
alty introduces bias into the estimator; however, the bias 
results in lower variance. The size of the penalty is deter-
mined by � and the optimal � is chosen using cross valida-
tion. Ridge regression has not been used with hometime.

Lasso regression
The lasso estimator is similar to the ridge estimator, but 
it applies the L1 penalty to the estimator which is made 
up of � multiplied by the sum of the absolute values of 
the coefficients. Unlike ridge regression, the lasso estima-
tor can shrink the coefficients to 0 whereas the in ridge 
regression the coefficients can only become asymptoti-
cally close to zero [18]. This means that lasso regression 
can also perform variable selection. Lasso regression has 
not been used with hometime data.

Support vector regression
Support vector regression is a variant of the support vec-
tor machine typically used for classification problems. 
In classification problems the goal is to find a hyper-
plane which optimally separates two classes of data. This 
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hyperplane is a maximum margin separator, meaning 
that while minimizing error the hyperplane should also 
be at maximum distance from the different classes. This 
ensures that the support vector machine has good gen-
eralizability and is not prone to overfitting [18]. If perfect 
separation is not possible, slack variables are introduced 
to allow some error in misclassification (soft margin clas-
sifier). Support vector machines are generalized to the 
regression context by introducing an ε-insensitive region 
around the function (sometimes called the ε-tube). The 
value of ε determines the level of accuracy of the func-
tion and the number of support vectors used to construct 
the regression function. In support vector regression the 
aim is to find the flattest ε-tube that contains most of the 
training data while balancing model complexity and pre-
diction error [19]. While support vector regression is a 
powerful prediction tool, it requires heavy computational 
time and storage requirements for large data sets.

Bagged regression trees
Bootstrapped aggregation (or bagging) was one of the 
earliest developed ensemble machine learning tech-
niques, meaning its results are the combination of many 
models’ predictions [20]. In bagged regression trees, sev-
eral (typically hundreds) of regression trees are generated 
from bootstrapped samples and predictions are averaged 
across the different regression trees. This aggregation can 
reduce prediction variance or noise in predictions. One 
downside to bagging is that trees can end up being very 
similar in structure, especially at the top of the tree, in a 
presence of strong predictors. This is known as correla-
tion and when the bagged trees are highly correlated the 
reduction in variance desired by using bagging is often 
not achieved.

Random forests regression
Random forests regression has been used previously to 
model 90-day hometime in a population of patients with 
ischemic stroke or intracerebral hemorrhage [21]. Ran-
dom forests are an extension of bagging where several 
hundred trees are grown from the same dataset and their 
results averaged. Like bagging, these trees are generated 
from bootstrapped samples of the full dataset. However, 
unlike bagging each time a split is considered only a ran-
dom sample of predictors among the full set of predictors 
are chosen as candidates for the split. This both creates 
an improvement over bagging by decorrelating the trees 
and allows multicollinearity to be addressed as not all 
predictors are considered at each split [22]. The predic-
tions for each observation from each tree are averaged to 
obtain the final predicted values. Random forests allow 
for complex interaction structures to be captured. How-
ever, as with other ensemble-based methods, they are 

considered a “black box” machine learning method, for 
which no interpretable regression coefficients are pro-
duced. This means that the direct interpretation of each 
variables impact on the outcome cannot be described 
without the use of additional measures such as calculat-
ing partial dependence.

Generalized boosting machines
Boosting is another ensemble machine learning tech-
nique in which multiple weak models are combined into 
a single strong model. Boosting begins with a series of 
weak learners which are simple algorithms with rela-
tively high error rates. Unlike bagging or random forests, 
the individual models in the ensemble are not trained in 
parallel but rather are trained sequentially and each new 
model focuses on subjects for whom the previous model 
performed poorly. This allows for a focus on observations 
whose outcomes are difficult to predict with the goal of 
improving prediction for these subjects. Several different 
methodologies can be used within this algorithm includ-
ing regression methods, Poisson models, and Cox pro-
portional hazards models among others [23].

Methods
Cohort identification and data collection
The cohort of patients used in this study has been pre-
viously described  [21]. In brief, all patients with a diag-
nosis of stroke (ischemic or intracerebral hemorrhage) 
admitted to an acute care hospital in Ontario between 
April 1, 2010 and December 31, 2017 were identified 
using the Canadian Institute for Health Information 
(CIHI) Discharge Abstract Database (DAD) using ICD 
10 codes I61, I63, and I64. Exclusion criteria included 
non-residents of Ontario, those < 18 or > 105 years of age, 
those with stroke occurring in-hospital, patients with 
history of prior stroke, and patients in long-term care 
at baseline. Through data linkage, several covariates rel-
evant to the prediction of long term outcomes after stoke 
were collected, including: age, sex, arrival by ambulance, 
stroke type, history of atrial fibrillation, diabetes, hyper-
tension, myocardial infarction, treatment with throm-
bolysis, stroke unit care, frailty (measured using the 
Hospital Frailty Risk Score)  [24], stroke severity (meas-
ured using the Passive Surveillance Stroke seVerity Indi-
cator (PaSSV))  [25], rural vs. urban home location, and 
quintile of median neighbourhood income. Patients with 
missing data were excluded from these analyses.

Ninety-day hometime was calculated using data link-
age of several administrative data sources spanning from 
acute to long term care. Data linkage occurred through 
unique encoded identifiers at ICES; these datasets have 
been linked and validated extensively for research pur-
poses  [26]. Ninety-day hometime was calculated as 90 
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minus the sum of length(s) of stay in any care setting. For 
patients who did not survive to day 90, the hometime cal-
culation was censored at the date of death. Patients who 
died during the index admission had a hometime of 0 
days by definition.

Statistical methods
The study cohort was randomly split into a derivation 
sample (containing 2/3 of the patients) and a validation 
sample (containing the remaining 1/3 of the patients). All 
models were fit using the derivation sample. For all meth-
ods, full models were fit using all covariates and variable 
selection was not performed. For machine learning mod-
els the following parameters were used: for bootstrap 
aggregated regression trees 10,000 trees were grown. For 
random forests regression a random forest of 500 trees 
was grown using p/3 candidate predictors at each split 
(where p = total number of predictors), minimum node 
size was 5, and no restrictions on tree depth or num-
ber of terminal nodes were imposed. For support vector 
regression, epsilon regression with ε = 0.1 was used. For 
generalized boosting machines, two different parameter 
sets were used: one using the Gaussian distribution with 
an interaction depth of 2 and the second using the Pois-
son distribution with an interaction depth of 15 (several 
interaction depths were tested and those producing the 
best results in the derivation sample were chosen for 
use with the test sample). For lasso and ridge regression 
lambda values of 0.03 and 1.59 were used, respectively 
(chosen via tenfold cross validation in the derivation 
sample).

Generating predicted hometime and evaluating predictive 
accuracy
The resultant fitted models were applied to the valida-
tion dataset. Thus, a predicted or expected hometime 
was obtained from each model for each subject in the 
validation sample. For a given prediction model, let Ŷk 
denotes the predicted hometime for the kth patient and 
Yk denotes the observed hometime for the kth patient. 
Model accuracy was determined by calculating the root 
mean square error (RMSE), mean absolute error (MAE), 
and bias in predicted hometime. These values were 
defined as follows:

RMSE =

√
1

n

∑

k

(
Ŷk − Yk

)2

MAE =
1

n

∑

k

∣∣∣Ŷk − Yk
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Model calibration was assessed using calibration 
plots and calibration slopes as outlined by Archer et  al. 
[27] Calibration plots were generated by plotting actual 
hometime against predicted hometime values. The cali-
bration slope (�cal) is derived from the calibration model 
which is fitted as follows:

Additionally, it was documented if the model con-
strained predicted values to the range of possible values 
for 90-day hometime values (from 0 to 90 inclusive).

The marginal effects of each continuous co-variate on 
the expected 90-day hometime were illustrated using 
partial dependence plots. These plots show how pre-
dicted values partially depend on the values of one or 
more co-variates. These graphs provide a method of 
model interpretation which plots the change in average 
predicted outcome value as a covariate is varied over its 
marginal distribution  [28]. They do not reveal the inner 
workings of the model, but rather reveal how the model 
behaves as a result of changing inputs. One-way partial 
dependence plots were generated for each covariate. All 
analyses were performed using Stata13 and R v3.3.0.

Ethics and data availability statement
This study was approved by the Sunnybrook Health Sci-
ences Centre Research Ethics Board. The use of data in 
this project was authorized under Sect.  45 of Ontario’s 
Personal Health Information Protection Act. The first 
author had full access to all the data in the study and 
takes responsibility for its integrity and the data analysis. 
The data sets used for this study were held securely in a 
linked, de-identified form and analyzed at ICES. While 
data sharing agreements prohibit ICES from making the 
data set publicly available, access may be granted to those 
who meet pre-specified criteria for confidential access, 
available at www.​ices.​on.​ca/​DAS.

Results
Patient characteristics
We identified 75,475 patients. Baseline characteristics 
are described in Table  1. The median 90-day home-
time across the cohort was 59 days (Q1: 2, Q3: 83) and 
at day-90 68.54% of patients were home and 17.49% of 
patients had died (Table 1). After the random split 49,402 
observations were assigned to the derivation dataset 
and 26,073 to the validation dataset. The distribution of 

Bias =
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90-day hometime in the derivation and validation data-
sets is shown in Fig. 1.

Comparison of predictive models
The ability of each model to predict hometime in the 
validation dataset is reported in Table  2. The gener-
alized boosting machine using the Poisson distribu-
tion with interaction depth = 15 produced the lowest 
RMSE at 27.89. This was closely followed by random 
forests regression (28.32) and the generalized boosting 

machine using the Gaussian distribution with interaction 
depth = 2 (28.39). The maximum RMSE of 30.15 resulted 
from negative binomial regression.

The model with the lowest MAE was support vector 
regression (21.55, Table 2). Similar to RMSE, the gener-
alized boosting machine using the Poisson distribution 
with interaction depth = 15 and random forests regres-
sion also produced low MAE (22.81 and 23.08 respec-
tively, Table  2). The highest MAE (25.62) was produced 
by the Cox proportional hazards model.

Overall, bias was low across all models (Table  2). 
Bagged regression trees, Poisson regression, and hurdle 
regression produced the lowest bias of -0.25 days. With 
the exception of negative binomial regression and sup-
port vector regression all models underpredicted mean 
hometime. Negative binomial regression and support 
vector regression overpredicted hometime by relatively 
small amounts (0.75 and 2.08 days respectively).

The calibration slopes ranged from 0.74 to 1.33 across 
all models (Table  2). There was not a substantial differ-
ence in the range of slopes between the statistical and 
machine learning models. Support vector regression 
and negative binomial regression had the lowest calibra-
tion slopes (0.74 and 0.77 respectively), indicating that 
some of their predictions were too extreme. The Cox 
proportional hazards model and the generalized boost-
ing machine using the Gaussian distribution (1.33 and 
1.11 respectively) indicating that the range of predictions 
from these models may be too narrow. All other models 
produced calibration slopes near 1, with lasso and linear 
regression having calibration slopes of exactly 1. Calibra-
tion plots for all models are available in the supplemental 
materials.

Linear regression, lasso regression, ridge regression, 
and support vector regression produced implausible 
negative minimum values for hometime (-53.74, -53.45, 
-50.06, and -17.1 respectively); all other models produced 
minimum values of hometime which were plausible (i.e., 
greater than or equal to 0) (Table  2). Six of the models 
produced maximum values of hometime which were 
plausible (less than or equal to 90); these were bagged 
regression trees (73.29), Cox proportional hazards model 
(77.00), generalized boosting machine using the Gaussian 
distribution and interaction depth = 2 (78.72), general-
ized boosting machine using the Poisson distribution and 
interaction depth = 15 (83.39), ordinal logistic regression 
(84.03), and random forest regression (85.83).

The distribution of predicted hometime values for 
each model are displayed in Figs. 2 and 3. Many of the 
models result in a unimodal left skewed distribution of 
predicted values. Exceptions were Poisson regression 
and negative binomial regression, which both produced 

Table 1  Baseline characteristics and outcomes of study cohort

Q1 First quartile, Q3 Third quartile, PaSSV Passive Surveillance Stroke seVerity 
indicator
a A continuous score ranging from 0 – 99 where scores < 5 indicate low risk of 
frailty, scores from 5 – 15 indicate intermediate risk of frailty, and scores > 15 
indicate high risk of frailty [24]
b A continuous score where < 4 indicates severe stroke, 4 – 8 indicates moderate 
stroke severity, and > 8 indicates mild stroke severity [25]

Characteristic Study 
Cohort 
(n = 75,475)

Female (%) 47.44

Median Age (Q1, Q3) – years 75 (64, 84)

Arrived by Ambulance (%) 71.19

Stroke Type (%)

  Intra-cerebral Hemorrhage 12.87

  Ischemic Stroke 87.12

Diabetes (%) 36.61

Atrial Fibrillation (%) 14.18

Hypertension (%) 82.76

Myocardial Infarction (%) 9.19

Neighbourhood Income Quintile (%)

  Quintile 1 (lowest) 23.60

  Quintile 2 21.99

  Quintile 3 19.70

  Quintile 4 17.75

  Quintile 5 (highest) 16.96

Home Location (%)

  Rural 12.40

  Urban 87.60

Median Frailty Scorea (Q1, Q3) 4.2 (0.8, 9.1)

Median PaSSV Scoreb (Q1, Q3) 7.7 (6.5, 8.7)

Received Thrombolysis (%) 13.36

Received Stroke Unit Care (%) 56.01

Median 90-day hometime (Q1, Q3) 59 (2, 83)

90-day location (%)

  Acute Care 4.14

  Rehabilitation 2.91

  Long Term Care 6.91

  Home 68.54

  Death 17.49
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unimodal right skewed distributions (Fig. 2) and bagged 
regression trees which produced a multimodal distribu-
tion (Fig. 3). Random forests regression and both gen-
eralized boosting machines resulted in distributions 
which were relatively flat compared to those produced 
by the different generalized linear models which exhib-
ited obvious peaks. While support vector regression 
did produce a spike in values near 90; none of the other 

distributions exhibited the spikes normally seen at or 
near the lower and upper limits of hometime.

Marginal effects of covariates on the prediction 
of hometime
Age had an inverse relationship with hometime in all 
the models, which is consistent with the clinical obser-
vation that older patients have longer length of stay in 

Fig. 1  Distribution of 90-day hometime across training and test cohorts

Table 2  Comparison of accuracy and bias metrics for predictive models used

* a plausible minimum predicted value is ≥ 0, a plausible maximum predicted value is ≤ 90

Model Root Mean 
Square 
Error

Mean 
Absolute 
Error

Bias Minimum 
Predicted 
Value

Maximum 
Predicted 
Value

Calibration 
Slope

Statistical Methods

  Linear Regression 28.82 24.13 -0.26 -53.74 103.37 1.00

  Ordinal Logistic Regression 28.64 23.96 -0.38 0.23 84.03 1.04

  Poisson Regression 29.02 24.50 -0.25 2.90 144.98 0.95

  Negative Binomial Regression 30.15 25.15 0.75 2.47 189.83 0.77

  Zero Inflated Poisson Regression 28.47 23.68 -0.31 0.17 95.59 1.04

  Zero Inflated Negative Binomial Regression 28.53 23.74 -0.31 0.18 97.46 1.03

  Cox Proportional Hazards Model 29.29 25.62 -1.64 0.00 77.00 1.33

  Hurdle Regression
(negative binomial zero distribution, Poisson distribution)

28.47 23.65 -0.25 0.50 95.99 1.02

Machine Learning Methods

  Random Forests Regression 28.32 23.08 -0.40 0.04 85.83 0.98

  Bagged Regression Trees 29.48 24.98 -0.25 18.20 73.29 1.06

  Support Vector Regression 29.18 21.55 2.08 -17.91 91.99 0.74

  Generalized Boosting Machine (Gaussian Distribution, Interaction 
Depth = 2)

28.39 23.89 -0.30 3.23 78.72 1.11

  Generalized Boosting Machine (Poisson Distribution, Interaction 
Depth = 15)

27.89 22.81 -0.35 3.49 83.39 1.01

  Lasso Regression 28.82 24.14 -0.26 -53.45 103.21 1.00

  Ridge Regression 28.83 24.25 -0.27 -50.06 101.93 1.03



Page 8 of 18Holodinsky et al. BMC Med Res Methodol          (2021) 21:138 

health institutions or are more likely to die soon after the 
stroke, and therefore have less hometime than younger 
ones. The nature of this relationship varied with model 
type. As expected, the conventional statistical models 
as well as lasso and ridge regression showed linear rela-
tionships between age and hometime (Figs.  4 and 5). 
However, the other machine learning models all showed 

non-linear relationships (Fig.  5). The bagged regression 
tree analysis resulted in a step function whereas the 
other non-linear relationships showed hometime as high 
and relatively stable at younger ages and then rapidly 
dropped as age increased, the point at which the decline 
began varied between age 30 and 60 depending on the 
model used.

Fig. 2  Distribution of predicted 90-day hometime across the test data set using eight different statistical models with 15 clinically relevant 
covariates (A Linear regression; B Ordinal logistic regression; C Poisson regression; D Negative binomial regression; E Zero-inflated Poisson 
regression; F Zero-inflated negative binomial regression; G Hurdle regression (negative binomial zero distribution, Poisson count distribution); H Cox 
proportional hazards model)
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Frailty score also exhibited an inverse relationship 
with hometime. Again, the nature of this relation-
ship varied with model type with those assuming lin-
ear relationships showing linear relationships (Figs.  6 
and 7) and the other machine learning models showing 
non-linear relationships (Fig.  7). All machine learning 

models aside from ridge and lasso regression showed a 
steep drop in hometime as frailty score increased fol-
lowed by relatively constant low hometime among 
higher frailty scores. The point at which hometime 
became relatively constant ranged between frailty 
scores of 5 to 15 depending on model used.

Fig. 3  Distribution of predicted 90-day hometime across the test data set using seven different machine learning models with 15 clinically relevant 
covariates (A Random forests regression; B Bagged regression trees; C Support vector regression; D Generalized boosting machine (Gaussian 
distribution, interaction depth = 2); E Generalized boosting machine (Poisson distribution, interaction depth = 15)); F Lasso regression; G Ridge 
regression
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Fig. 4  Partial dependence plots depicting the relationship between age and predicted 90-day hometime across the test data set using eight 
different statistical models (A Linear regression; B Ordinal logistic regression; C Poisson regression; D Negative binomial regression; E Zero-inflated 
Poisson regression; F Zero-inflated negative binomial regression; G Hurdle regression (negative binomial zero distribution, Poisson count 
distribution); H Cox proportional hazards model)
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Fig. 5  Partial dependence plots depicting the relationship between age and predicted 90-day hometime across the test data set using seven 
different machine learning models. (A Random forests regression; B Bagged regression trees; C Support vector regression; D Generalized boosting 
machine (Gaussian distribution, interaction depth = 2); E Generalized boosting machine (Poisson distribution, interaction depth = 15)); F Lasso 
regression; G Ridge regression
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Fig. 6  Partial dependence plots depicting the relationship between frailty score and predicted 90-day hometime across the test data set using 
eight different statistical models (A Linear regression; B Ordinal logistic regression; C Poisson regression; D Negative binomial regression; E 
Zero-inflated Poisson regression; F Zero-inflated negative binomial regression; G Hurdle regression (negative binomial zero distribution, Poisson 
count distribution); H Cox proportional hazards model)
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Fig. 7  Partial dependence plots depicting the relationship between age and predicted 90-day hometime across the test data set using seven 
different machine learning models. (A Random forests regression; B Bagged regression trees; C Support vector regression; D Generalized boosting 
machine (Gaussian distribution, interaction depth = 2); E Generalized boosting machine (Poisson distribution, interaction depth = 15)); F Lasso 
regression; G Ridge regression



Page 14 of 18Holodinsky et al. BMC Med Res Methodol          (2021) 21:138 

Fig. 8  Partial dependence plots depicting the relationship between stroke severity (measured using the PaSSV score) and predicted 90-day 
hometime across the test data set using eight different statistical models (A Linear regression; B Ordinal logistic regression; C Poisson regression; 
D Negative binomial regression; E Zero-inflated Poisson regression; F Zero-inflated negative binomial regression; G Hurdle regression (negative 
binomial zero distribution, Poisson count distribution); H Cox proportional hazards model)
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Fig. 9  Partial dependence plots depicting the relationship between stroke severity (measured using the PaSSV score) and predicted 90-day 
hometime across the test data set using seven different machine learning models. (A Random forests regression; B Bagged regression trees; C 
Support vector regression; D Generalized boosting machine (Gaussian distribution, interaction depth = 2); E Generalized boosting machine (Poisson 
distribution, interaction depth = 15)); F Lasso regression; G Ridge regression
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A direct relationship was observed between PaSSV 
score and hometime. Again, this relationship varied by 
model type, with most machine learning models dis-
playing variations on an S-shaped relationship between 
PaSSV score and hometime where at low PaSSV scores 
hometime was low and relatively constant, hometime 
then rapidly increased through mid-range PaSSV scores 
and then again was high and relatively constant through 
higher PaSSV scores (Figs.  8 and 9). The one exception 
to this pattern was the support vector regression model 
which displayed a slightly different pattern whereby 
hometime did not flatten at higher values of PaSSV score 
and a small U-shaped relationship was seen at lower 
PaSSV scores.

Discussion
We evaluated 15 models from the statistical and machine 
learning literature for the prediction of 90-day home-
time in a cohort of 75,475 patients with stroke. Overall, 
there was not one model which clearly outperformed the 
others in terms of accuracy, bias, and range of predicted 
values.

Across all models the variability in RMSE and MAE 
was relatively low, spanning 27.89 to 30.15 and 21.55 
to 25.62 respectively (Table  2). For both of these met-
rics, the machine learning models resulted in the lowest 
error; specifically, both generalized boosting machines 
and random forests regression had the lowest RMSE and 
support vector regression along with the generalized 
boosting machine (Poisson distribution) and random 
forests regression had the lowest MAE. However, not all 
the machine learning models outperformed the statisti-
cal models in this respect; bagged regression trees, which 
had the worst performance of the machine learning mod-
els, was outperformed by several of the statistical mod-
els. When evaluating bias this same trend of machine 
learning models resulting in the best performance was 
not observed. The models with the lowest bias were hur-
dle regression, Poisson regression, and bagged regression 
trees, which all underpredicted hometime by a mean of 
0.25 days (Table  2). The largest bias resulted from sup-
port vector regression which overpredicted hometime by 
a mean of 2.08 days. There was no trend differentiating 
machine learning from statistical models in terms of cali-
bration with most models being well calibrated (Table 2).

In terms of constraining the predicted values to those 
which are plausible (between 0 and 90 inclusive) the 
machine learning models outperformed the statistical 
models. All machine learning models, with the exception 
of support vector regression, lasso regression, and ridge 
regression, resulted in predicted values of hometime 
which were plausible. All of the statistical models, with 
the exception of linear regression, produced minimum 

predicted values which were plausible but only ordinal 
logistic regression and the Cox proportional hazards 
model produced maximum values which were plausible 
(Table 2).

Although many of the models performed reason-
ably well in terms of accuracy and bias, when compar-
ing the distribution of predicted hometime to actual 
hometime, none of the models were able to capture the 
bucket-shaped distribution with spikes at 0 and near 
90. Patients with these extreme values of hometime 
(0-hometime or very high hometime) were systemati-
cally under-represented in the distributions of predicted 
hometime, especially those with 0-hometime. As extreme 
values of hometime were poorly predicted across a wide 
range of different model types, we hypothesize that there 
may be factors strongly associated with either very low 
or very high hometime which were not captured in this 
study. Part of the difficultly may be that the 0-hometime 
group is not homogeneous. There are two different ways 
to arrive at 0-hometime: 1) the patient does not survive 
their initial stroke admission and thus never has the 
chance to accumulate any hometime, and 2) the patient 
remains institutionalized for the duration of the 90-days 
following their stroke. The characteristics of patients 
who die early and those who survived without the abil-
ity to return home are likely different. Interestingly, all 
models also systematically under predicted hometime 
values for patients with high hometime. Unlike 0-home-
time, high hometime only has one interpretation, that the 
patient was sufficiently well for early discharge to home. 
It is plausible that some factors which could be associated 
with going home quickly (high hometime) may also be 
related to prolonged institutionalization (0-hometime). 
This includes factors like marital status, living situation, 
lifestyle factors, social support, and indicators of quality 
of care all of which are not readily available in adminis-
trative data. Future modelling studies of hometime using 
prospectively collected data may seek to include these 
types of variables.

We also explored the relationship between certain 
covariates of interest and hometime across the different 
model types using partial dependence plots. The machine 
learning models allowed for more flexibility in displaying 
non-linear relationships between continuous covariates 
and hometime. These complex non-linear relationships 
are likely more representative of what is seen in clinical 
practice. While these non-linear relationships could have 
also been captured using the conventional models, (ex. 
through the use of restricted cubic splines), we elected to 
use a simple implementation of these methods to reflect 
what is often done in practice. Put another way, the 
machine learning models allow the user to identify these 
complex non-linear relationships between covariates 
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and hometime even if they aren’t specifically looking for 
them. However, the machine learning models come with 
the disadvantage that they do not readily produce regres-
sion coefficients which allow one to build equations for 
the prediction of hometime based on different patient 
level inputs.

Conclusions
Hometime can be modelled with reasonable overall 
accuracy and low bias by many different model types. 
Machine learning models, especially the generalized 
boosting machine utilizing the Poisson distribution 
and random forests regression, exhibited the highest 
accuracy and least bias. However, no model was able 
to reproduce the bucket shaped hometime distribution 
with spikes at 0 and near 90, and future work will be 
needed to determine whether this is due to unmeas-
ured variables which are associated with very high or 
very low hometime, and whether other analytic strate-
gies are needed to address this.
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